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Do quantum correlations play a role in high-temperature dynamics of many-body systems? A common ex-
pectation is that thermal fluctuations lead to fast decoherence and make dynamics classical. In this paper, we
provide a striking example that a single particle created in a featureless, infinite temperature spin bath not
only exhibits non-classical dynamics but it also induces strong long-lived correlations between the surrounding
spins. We study the non-equilibrium dynamics of a hole created in a Mott insulator in the atomic limit, which
corresponds to a degenerate spin system. In the absence of interactions, the spin correlations arise purely from
quantum interference. Furthermore, these correlations are both antiferromagnetic and ferromagnetic, in striking
contrast to the equilibrium Nagaoka effect. These results are relevant for a number of condensed matter spin
systems and should be observable using state of the art bosonic or fermionic quantum gas microscopes.

I. INTRODUCTION

Understanding the role of quantum coherence in dynam-
ics of many-body systems at high temperatures remains a
challenging open problem. Usually coherence is fragile and
quickly destroyed by interaction with the environment and
by local fluctuations inherent to thermal ensembles. Hence
it is commonly assumed that observing quantum coherent dy-
namics requires preparing isolated quantum systems close to
their ground states. Famous experimental demonstrations of
quantum coherence, including interference of Cooper pairs in
nanostructures [1, 2] or interference of atomic Bose-Einstein
condensates and superfluids [3–5] have all been achieved un-
der these conditions. On the other hand it has been argued
that quantum interference can lead to strong deviations from
simple classical dynamics. For example, the breakdown of
spin diffusion was predicted for the Heisenberg model even at
infinite temperature [6–8]. Several important examples can
be found in biophysics: in photosynthesis the interplay of
quantum interference and decoherence leads to a much faster
energy transport than would be possible classically [9–11];
quantum coherence has also been suggested to play a crucial
role in bird navigation [12] and the chemistry of smelling [13].
Understanding how quantum interference can operate at high
temperatures is therefore a crucial question, with tremen-
dous potential for quantum information science [14–16], con-
densed matter [17] and biology [18].

Whereas it is well understood that the entanglement of a
subsystem with its environment leads to dephasing that drives
the subsystem towards classical behavior, the fate of quantum
coherence created in the environment is much less discussed.
It is conventionally assumed that the environment’s coherence
quickly vanishes due to dephasing among its large number of
degrees of freedom [19]. Here, we show however that this
is not necessarily the case. We present a surprising example,
where adding a single quantum particle to an infinite tempera-
ture spin environment can lead to appreciable dynamical cor-
relations among the spins (Fig. 1). We consider a system of
non-interacting spins on a two-dimensional lattice, which is
routinely realizable with bosonic or fermionic ultracold quan-
tum gas microscopes. In a deep optical lattice, on-site repul-

sion brings the atoms into a Mott state, where each site is oc-
cupied by exactly one atom. The spins are represented by in-
ternal degrees of freedom of the atoms, such as their hyperfine
states [20] or nuclear spins [21], withN = 2S + 1 degrees of
freedom, modeling a spin S system. In the limit of strong on-
site repulsion, the spins completely decouple, as virtual tun-
neling to the neighboring sites is suppressed. This realizes the
non-interacting spin system discussed here. Removing a spin
on one site creates a hole that can move on the lattice at no
energy cost and permute the spins during its motion [22–25],
see Fig. 1 (a-b). In contrast to a classical particle perform-
ing Brownian motion that would only scramble the random
spins along its path and keep the environment completely dis-
ordered, the quantum mechanical hole is capable of exploring
alternative paths in parallel. As each path can lead to different
permutations of the spins, the superposition of these outcomes
creates entanglement in the spin bath. This leads to dynam-
ical spin correlations in the environment, whereas individual
sites remain paramagnetic. In contrast to the usual polaron ef-
fect, where a particle locally modifies its environment due to
their interaction [26–34], these correlations arise purely from
quantum interference.

Our system is also closely related to the ideas of dissipa-
tionless decoherence [35, 36], studied in the context of quan-
tum information [15, 16], condensed matter [37] and cosmol-
ogy [38]. Even though there is no energy transfer between the
hole and the environment, the hole’s propagation is slowed
down as quantum coherence is suppressed due to its entangle-
ment with the surrounding spins as was studied by Carlström
et al. [25]. The new insight of our work is that this process
also induces spin correlations in the environment (Figs. 1 and
2), and therefore these correlations and decoherence are in-
timately related. The non-interacting system discussed here
is special in the sense that the degrees of freedom in the en-
vironment are all degenerate, which suppresses the effects of
dephasing. In fact, during the time scale of our simulations,
these correlations remain finite.

We identify the interference terms that make the hole’s dy-
namics dependent on the environment’s spin S [25]. These
terms are identical to those that generate spin correlations in
the environment, and they vanish exponentially in environ-
ments of large spin. Finally, we find that the simple analytical
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FIG. 1: (Color.) Experimental realization of the proposed proce-
dure. (a) The system of non-interacting spins is realized by creat-
ing a Mott insulator of spinful atoms in a deep optical lattice. The
atoms are shown as gray (dark) and blue (light) dots. In the limit
of infinitely strong on-site repulsion, the spin interaction vanishes.
The hole (black) is created at the beginning of the experiment by
removing one of the atoms; its position and the spin correlations in
the environment can be measured after a propagation time t using a
quantum gas microscope. (b) As the hole moves along the trajectory
indicated by arrows (top) the spins on this path are reordered (bot-
tom). (c) Spin correlations are calculated by thermal averaging over
all possible spin configurations. During its dynamics, the hole ex-
plores all alternative paths simultaneously. Due to its interplay with
the spins, the hole permutes each of these environments differently,
leading to non-vanishing spin correlations even after thermal aver-
aging. Right panel: Spin correlations Col in the laboratory frame
between the origin o (green site at the center) and site l, whose coor-
dinates are denoted by x and y. The calculations were performed at
time t = 1.1 in a spin S = 1/2 environment.

model of a hole on the Bethe lattice [39] closely approximates
the hole’s dynamics in a S →∞ environment within the time
scales of the simulation. It has been suggested that the dynam-
ics of the hole should cross over from the initial ballistic to
diffusive behavior at long times [25]. However, this question
remained inconclusive due to the limited time available for
numerical simulations. The correspondence with the Bethe
lattice provides further evidence that the hole’s dynamics in-
deed crosses over to diffusive behavior.

Dynamics of charge carriers in fluctuating and disordered
spin background lies at the heart of many physical systems,
including high-temperature superconductors [24, 40, 41], the
paramagnetic phase of supersolid 3He [42–45], organic mate-
rials [46], manganites exhibiting colossal magneto resistance
effect [47, 48], and multicomponent ultracold atoms in optical
lattices [20, 49, 50]. The Hubbard model provides a paradig-
matic model of these systems, characterized by the nearest
neighbor tunneling energy th and an on-site repulsion between

the atoms. As the spinful atoms or electrons in each of these
systems repel each other strongly, they occupy individual lat-
tice sites, realizing a Mott insulator of spins [20, 24, 49, 50].
Assuming spin-independent on-site repulsion U , a spin inter-
action J of the order of t2h/U is provided by virtual tunneling
to neighboring sites, leading to the so-called t−J model [24].
The spin coupling J then vanishes in the limit of large on-site
interactions U → ∞, realizing the non-interacting spin sys-
tem studied here.

Despite its simplicity, the degenerate spin environment
has surprisingly rich physics. As has been shown by Na-
gaoka [22, 23], the ground state of the system becomes
ferromagnetically ordered in the presence of a single hole, as
this state provides free propagation to the hole so that it can
minimize its kinetic energy. Here, we discuss the opposite
limit of an infinite temperature spin environment, where
the hole creates dynamical correlations among the spins.
These correlations are of similar origin as the equilibrium
Nagaoka effect, as they arise from the dependence of the
hole’s dynamics on the surrounding spin configurations: lo-
cally ferromagnetic spin domains lead to enhanced quantum
coherence and to faster propagation. As the hole acts on
the spins in each spin background differently, the resulting
correlations are not averaged out to zero due to thermal fluc-
tuations. However, in contrast to the Nagaoka ground state,
the correlations studied in this paper are both ferromagnetic
and antiferromagnetic.

II. EXPERIMENTAL REALIZATION

Fig. 1 (a) shows a possible experimental realization of our
proposal. The non-interacting spin system is realized by cre-
ating a Mott insulator of fermionic or bosonis atoms in a deep
optical lattice, with a single atom per site. Tuning the lattice
depth allows one to reach the limit of strong on-site repulsion
U � th such that the spin interactions become negligible.
The hole can be created by removing a single atom at at the
origin o, with coordinates (0, 0), using a quantum gas micro-
scope that can optically address sites independently [51]. The
microscope can also measure the hole’s position as well as the
spin state at each site after a propagation time t. In order to
account for thermal fluctuations at infinite temperature, this
procedure has to be repeated many times, in each case with a
different, random initial spin configuration (see Appendix A),
resulting in an averaging over all possible spin states, as we
show in Fig. 1 (c).

The dynamics of the hole is governed by the Hamiltonian

Ĥ = −th
∑
〈jl〉

ĉ†j P̂jl ĉl,

where the operator ĉl annihilates the hole at site l. As the
hole moves from site l to j, the operator P̂jl moves the spin
at site j to site l. Since there is no energy cost of moving the
spins around, the tunneling th is the single energy scale of the
model, and it is chosen to be th ≡ 1, which also determines
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FIG. 2: (Color.) Induced spin correlations of the hole in a degenerate spin S = 1/2 environment in the laboratory frame (left). The reference
site j is denoted by green, whereas x and y specify the coordinates of the second site l. The reference site is chosen to be (0, 0) for (a), (e) and
(i); (0, 1) for (b), (f) and (j); and (1, 1) for (c), (g) and (k). The probability density of the hole, also discussed by Ref. 25, is exhibited on the
right. Results are shown at times t = 0.6 (a-d), t = 1.2 (e-h) and t = 1.8 (i-l) in a spin S = 1/2 system.

the time scale of the dynamics. After a propagation time t,
the probability of finding the hole at site j is given by pj(t) =

〈ĉ†j ĉj〉(t). Here, the non-equilibrium average denotes

〈. . . 〉(t) =
1

NM−1
Tr(ĉoe

iĤt . . . e−iĤtĉ†o),

where the trace sums over all possible spin configurations
Tr(. . . ) =

∑
Γ 〈Γ| . . . |Γ〉 and the denominator accounts for

the of number spin configurations in the environment of M
sites.

Whereas the spin environment modifies the propagation of
the hole [25], the effect of the hole on the environment can
also be observed in the form of dynamical spin correlations,
which are the primary focus of this work. The correlations
between sites j and l are defined as

Cjl(t) =
1

S2
〈Ŝzj Ŝzl 〉(t),

where Ŝzj denotes the z component of the spin at that site, and
it evaluates to 0 when the hole is at site j. In the initial state,
off-diagonal spin correlations Cj 6=l are averaged out to zero
by thermal fluctuations. Fig. 2 shows how the introduction
of the hole leads to dynamical correlations at longer times,
reaching values as large as 4% near the origin in a system of
S = 1/2 spins. These correlations appear as the hole extends
over the lattice, so that it can build up coherence between the

spins surrounding it. In the non-interacting environment, the
correlations remain finite at the times available to our simula-
tions. Since the hole cannot create spin flips, the z component
of the total spin of the lattice is conserved. This leads to the
conservation of the sum of off-diagonal correlations (see Ap-
pendix B) ∑

j 6=l

Cjl(t) = 0. (1)

Therefore, the appearance of ferromagnetic correlations al-
ways need to be accompanied with antiferromagnetic ones
and vice versa.

The onset of spin correlations can be understood as fol-
lows. In each possible spin background, the hole permutes the
spins slightly differently during its dynamics. For instance,
locally ferromagnetic environments lead to slightly faster
propagation due to interference terms: as the hole has no
effect on ferromagnetically aligned spins, any pair of paths
interfere. Spin correlations therefore evolve differently in
time in each spin environment, and they are not averaged out
by thermal fluctuations. Although an experimental realization
of the infinite temperature spin background would involve
averaging over all initial spin configurations, we estimate
that the spin correlations can be observable in existing
experimental setups [50–54] already after a few hundred
measurements with a good signal to noise ratio (Appendix A).
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FIG. 3: (Color.) Interference of different pairs of paths in the same
initial spin background. The spin states are denoted by gray (light)
and blue (dark) dots. (a) By definition, the two equivalent paths
(black full and red dashed lines) permute any spin state identically,
making the final spin state the same. Therefore, these paths interfere
in any spin background. The inequivalent paths shown in (b) how-
ever bring the spin configuration into orthogonal final states, there-
fore their interference vanishes. In contrast, the paths in (c) and (d)
lead to the same final state as these paths permute the spins over
locally ferromagnetic regions. The dashed region in (d) shows the
permutation cycles generated by the hole moving along the paths.
Spin correlations arise from interference between inequivalent paths
(b-d). However, these contributions vanish in environments of large
spin S → ∞. In these systems, the hole’s dynamics is determined
only by interference between equivalent paths (a).

III. QUANTUM INTERFERENCE BETWEEN PATHS

Similarly to the famous double-slit experiment [55], the
probability of finding the hole at any site is determined from
interference between different paths. This leads to inter-
ference fringes in the probability density of the hole [25].
The hole’s dynamics can be represented in terms of these
paths by expanding its time evolution [22, 23] as e−iĤt =∑∞
n=0

(−i t)n
n! Ĥn. Each power of Ĥ generates a step of the

hole to one of its z = 4 neighboring sites. Therefore Ĥn

corresponds to a collection of zn possible hole paths of total
length n. During its time evolution, the hole is in the superpo-
sition state of all paths. Since the expectation value 〈. . . 〉(t)
of experimental observables, contains both the time evolution
operator and its conjugate, we need to expand both of these
operators in terms of paths of the hole. These are referred to as
forward and backward time evolution paths, respectively. We

determine the transition probability pj(t) by summing over
interference terms between all pairs of forward (α) and back-
ward (β) evolution paths ending at site j. In order that two
paths can interfere in a given spin environment, the hole needs
to end up at the same site along both paths, and they need to
produce the same final spin state. As the hole moves along
these paths, it generates the permutations π̂α and π̂β on the
spins. Thus, the transition probability to site j is given by

pj(t) =
∑
α,β

(−i t)nβ (i t)nα

nβ !nα!
〈π̂†β π̂α〉0,

where the average denotes 〈. . . 〉0 ≡ 〈. . . 〉(t = 0), and nα
and nβ refer to the lengths of the paths α and β. The inter-
ference term between paths α and β is thus depetermined by
the combined permutation π̂†β π̂α = π̂−1

β π̂α, which can be
generated by the hole moving forward on path α to site j, and
then returning to the origin on β. Due to the degeneracy of
the spin environment, time-dependent observables cannot be
evaluated using ordinary perturbation theory up to finite order
in the hopping [56] (see Appendix C). We therefore model
the hole’s dynamics by sampling its paths using a real-time
quantum Monte Carlo algorithm [25, 57]. In order to account
for the tn

n! expansion parameter and the large phase space con-
sisting of zn paths we choose random walk paths of length
n from the Poisson distribution Pn ∝ (zt)n

n! (see Appendix
D) [25]. The permutations generated by these paths are stored
together with the acquired phase factors in and we take all
pairs of these paths to evaluate their contributions to the tran-
sition probabilities and the spin correlations, as we show in
Appendix D. We evaluate interference terms between paths by
calculating the thermal average 〈. . . 〉0 over all spin states ex-
actly. This allows us to determine the spin correlations to high
numerical accuracy, in contrast to earlier approaches [25].

The interference contributions between two paths strongly
depend on how the spins are permuted as the hole moves along
them. Paths that generate the same permutation of the spin en-
vironment π̂β = π̂α, are referred to as being equivalent. These
paths restore the original spin configuration at the end of the
combined path π̂†β π̂α = 1 irrespective of the spin background,
leading to maximal interference 〈π̂†β π̂α〉0 = 1. For exam-
ple, two paths that only differ in self-retracing components
are equivalent [58], as we show in Fig. 3 (a). However, more
complicated scenarios are also possible. For instance, the path
traversing a two-by-two plaquette three times is equivalent to
the trivial path, where the hole stays at the origin [59].

Importantly, equivalent paths do not contribute to spin cor-
relations. As they perform the same transformation on the lat-
tice spins, thermal averaging makes the spin correlators van-
ish. Instead, spin correlations between lattice spins arise from
pairs of inequivalent paths, that have different effect on the
spins, π̂β 6= π̂α. In these pairs, the combined forward and
backward paths always contain loops, such as those shown in
Fig. 3 (b-d). Depending on the initial spin state, the paths in
these pairs often create orthogonal final spin configurations
(Fig. 3 (b)). Inequivalent paths can interfere only in spe-
cific initial spin states where π̂†β π̂α acts over locally ferromag-
netic domains that are restored by the combined permutation
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(Fig. 3 (c-d)). These terms thus make the hole’s propagation
depend on the spin state of the lattice. Similar to the equi-
librium Nagaoka effect, the correlations thus arise from the
enhancement of interference terms in ferromagnetic spin do-
mains.

IV. SPIN CORRELATIONS.

Fig. 4 (a) shows that the correlations build up gradually at
short times and show slightly oscillating behavior at interme-
diate times. Whereas correlation between the origin and site
(0, 1) as well as that between sites (1, 0) and (0, 1) are ferro-
magnetic, we find antiferromagnetic correlations between the
origin and site (1, 1). Fig. 2 demonstrates that correlations ex-
ist between other sites that are further away from the origin.
These correlations appear gradually as the hole approaches the
surrounding spins. Within the time scale of our calculations,
the correlations stay finite. Their long time behavior remains
an open question, which could be addressed experimentally.

To illustrate how spin correlations with different signs
emerge, let us consider the lowest order contribution to the
correlation between the origin o and site (1, 1). As shown in
Fig. 4 (b), the sites of the plaquette containing these two sites
are labeled by letters A = o to D = (1, 1), and we thus in-
vestigate the spin correlations CAD(t). The hole thus needs
to end up at sites j = B or C at time t, otherwise the interfer-
ence term does not contribute to CAD(t). Due to symmetry,
we only need to consider the case when the hole ends up at
site C. As we mentioned earlier, spin correlations can only
arise from inequivalent pairs of paths. The lowest order such
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FIG. 4: (Color.) Time-dependent spin correlations. (a) Correlations
between sites neighboring the origin appear gradually and they stay
finite during the time-scale of our calculation. Results are shown for
a spin S = 1/2 system. Letters A,B,C and D in (b) denote sites
(0, 0), (0, 1), (1, 0) and (1, 1), respectively. Different curves in (a)
show correlations between A-B (full line), A-D (dashed line) and
B-C (dotted line). (c) Lowest order contributions to A − D cor-
relations (gray dashed circle in (b)) arise from interference between
paths encircling the two-by-two plaquette, with the hole ending up
at B or at C. Interference between two such paths α1 (top) and α2

(bottom) requires non-orthogonality of final spin states. Therefore,
all three spins on the plaquette need to be identical.

pair ending at site C is shown in the upper and lower panels of
Fig. 4 (c), and we denote them as α1 and α2, respectively. The
diagonal matrix elements of the spin correlator vanish after
taking the thermal average over all initial spin configurations,
〈π̂†α1

ŜzA Ŝ
z
Dπ̂α1

〉0 = 〈ŜzB〉0 〈ŜzC〉0 = 0, and similarly for path
α2. The interference terms between paths α1 and α2, how-
ever, yield a non-vanishing contribution for special initial spin
states, where α1 and α2 result in the same final spin configura-
tion. As the combined effect of the two paths π̂†α2

π̂α1
moves

all spins to a neighboring site, the interference term is zero
unless all three spins are ferromagnetically aligned. In the in-
finite temperature system, all spins take random values with
equal probability 1/N . The probability of all three spins tak-
ing on the same configuration is given by 〈π̂†α2

π̂α1〉0 = 1/N 2.
As interference terms between identical paths average out to
zero due to thermal fluctuation, this term determines the sign
of correlations

CAD(t) = 2 (it)
(−it)3

3!
〈π̂†α2

π̂α1
〉0 ∝ −

t4

3N 2

at lowest order, which is negative due to the phase factors ac-
quired by the hole along the two paths. Fig. 4 (a) shows that
the corresponding correlator CAD(t) stays antiferromagnetic
at intermediate times as well, whereas CAB(t) and CBC(t)
are ferromagnetic.

In order to evaluate spin correlations and transition prob-
abilities up to any order, we consider two arbitrary paths α
and β and evaluate their interference 〈π̂†β π̂α〉0. Permutations
created by longer paths can be more complicated than the one
shown in Fig. 4 (c) on the two-by-two plaquette. Since longer
paths may intersect each other and themselves, the hole may
permute different regions of the lattice independently, as we
illustrate in Fig. 3 (d). In each of these regions, the spins need
to be ferromagnetically aligned to ensure that the initial and
the final spin state are not orthogonal. However, the individ-
ual regions may take on different ferromagnetic states. These
regions can be identified by the separate permutation cycles
Ca of the combined permutation π̂†β π̂α = ΠaCa [60]. The in-
terference term 〈π̂†β π̂α〉0 is thus determined by the probability
of the spins being ferromagnetically aligned in each cycle,

〈π̂†β π̂α〉0 =
∏
a

1

N |Ca|−1
. (2)

Here, |Ca| denotes the number of spins in cycle Ca and
N = 2S + 1 is the number of spin degrees of freedom. This
interference term also contributes to the spin correlations be-
tween sites within the same ferromagnetic region, as we show
in Appendix E. When the spins on sites π†α(j) and π†α(l) are
within the same ferromagnetic domain, the matrix element
〈π̂†βSzj Szl π̂α〉 is simply given by Eq. (2). In contrast, it van-
ishes for all other combination of sites, as the spin correlations
between independent domains average out to zero. We deter-
mine both the transition probabilities and spin correlations by
Monte Carlo sampling the paths and use Eq. (2) to calculate
the interference between each pair of paths (Appendix E).

When the number of spin degrees of freedom is large, it
is very unlikely to find locally ferromagnetic regions in an
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RMS distance of the hole on the Bethe lattice (blue dashed line) and for a classical random walk (orange dotted line) at long times.

infinite temperature bath. Since interference of inequivalent
paths relies on these domains, these contributions vanish
in the limit of large spins S = ∞, as Eq. (2) shows. The
strongest spin correlations can thus be observed in a spin
S = 1/2 system. Furthermore, the interference term is
also exponentially suppressed if the paths permute a large
number of spins differently. The largest contribution to
spin correlations thus arises from the paths that have almost
identical effect on the spins. This explains why the induced
spin correlations are localized within a few sites in Fig. 2.

V. HOLE DYNAMICS

The dependence of the hole’s propagation on the spin S
of the environment has been demonstrated numerically [25].
Here, we show that this effect can be attributed to interference
between inequivalent paths, that are also responsible for the
spin correlations in the environment. Furthermore, we give
a simple analytic approximation of the hole’s dynamics in a
large spin S =∞ environment.

In the simplest case of a ferromagnet (S = 0), all pairs of
paths interfere with a maximal amplitude 〈π̂†π̂〉0 = 1. As
shown in Fig. 5, the resulting propagation is ballistic, and the
root mean squared (RMS) distance of the hole

dRMS = (
∑
j

pj r
2
j )

1/2

grows linearly in time, with rj denoting the distance of site
j from the origin. However, the propagation of the hole is
slowed down in environments of finite spin, as a result of the
suppression of interference terms between inequivalent paths,
shown in Eq. (2). Thus, in the S → ∞ limit, only equivalent
paths contribute to the dynamics.

In order to gain insight into this limit, we investigate the
propagation of the hole on the Bethe lattice [39], shown in
Fig. 5 (a). The Bethe lattice is a tree graph, with the origin
at the root level l = 0. Each site has z = 4 neighbors, that
can be identified with left, right, up and down steps on the
two-dimensional lattice. Each random walk on the Bethe lat-
tice can thus be identified with one on the square lattice. The
position of the hole on the Bethe lattice keeps full informa-
tion of its two-dimensional path up to self-retracing compo-
nents, and two paths interfere if and only if their endpoints are
the same. Due to the geometrical constraint imposed by the
graph, interfering paths cannot include loops. In particular,
the Bethe lattice only allows interference between equivalent
paths, that are identical except for self-retracing components,
see Fig. 5 (b). This construction covers most of the phase
space of equivalent pairs, which determine the hole’s prop-
agation in the S = ∞ environment. Therefore, the hole’s
dynamics in this system is expected to be well approximated
by the Bethe lattice construction.

As two interfering paths on the Bethe lattice always per-
mute the spins the same way, the hole’s dynamics on the Bethe
lattice decouples completely from that of the spins. The hole’s
propagation therefore becomes a single particle problem that
can be solved analytically (Appendix F). This behavior is
reminiscent of the physics of spin-charge separation in a one-
dimensional lattice [54, 61, 62], which is equivalent to the
Bethe lattice of coordination number z = 2. In that case a
hole moves coherently in the lattice, while keeping the or-
der of the spins unchanged. Although the spin-configuration
depends on the hole position, this does not introduce correla-
tions between the spins. In two dimensions, the dynamics on
the z = 4 Bethe lattice is more subtle. Due to interference be-
tween equivalent paths, the average level of the graph grows
linearly in time similar to one dimensional systems (see Sup-
plemental Material [63]). However, this does not manifest as
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ballistic propagation on the square lattice. The RMS distance
of sites on level l of the Bethe lattice becomes

dl =

√
2l − 3

2
(1− 3−l), (3)

which grows as dl ∼
√

2l at large distances (Appendix
F). Therefore, instead of ballistic propagation, we find that
the hole shows diffusive behavior at long times dRMS ∼√

2DBethet, with a diffusion constant

DBethe ≈ 2.73.

Thus, the quantum propagation through the random spin en-
vironment leads to a diffusion that is faster than that of a clas-
sical random walk, with a diffusion constant Dcl = 2 (Ap-
pendix G).

The RMS distance is shown for different models in Fig. 5.
We find the usual ballistic propagation in the S = 0 ferro-
magnet, whereas the hole appears to cross over from ballis-
tic to diffusive behavior in the S > 0 case at intermediate
times [25]. Fig. 5 shows, that although the interference be-
tween inequivalent paths are small, they lead to faster prop-
agation in the S = 1/2 spin environment than in the infinite
spin case. This difference is therefore due to the same in-
terference terms that give rise to the spin correlations in the
environment. The insight of our work is that the RMS dis-
tance of the S = ∞ model and the Bethe lattice agree within
error bars of our simulation, indicating that the behavior of
the two models are in very good agreement at short and inter-
mediate times. Therefore we expect that, similar to the Bethe
lattice propagation, the hole’s dynamics will cross over from
ballistic to diffusive behavior in an infinite spin environment.

VI. CONCLUSION

The spin correlations presented in this paper demonstrate
a general paradigm of how originally completely disordered
environment can acquire correlations due to quantum interfer-
ence in the course of non-equilibrium dynamics of a particle.
We emphasize that this mechanism is fundamentally different
from the interaction-induced correlations in the bath [26–34]
and can be observed at infinite temperature of the spin bath.
Experimental realization of this phenomenon using ultracold
atoms would provide an ideal opportunity for the study of en-
tanglement between a particle and its environment that is usu-
ally challenging in other setups due to the fast decoherence
in the environment. These experiments could also provide in-
formation on the long time dynamics of spin correlation, that
remains an open question.

Further interesting questions arise about the effect of spin
interactions, which appear naturally in experiments with
smaller on-site interactions, whether in ultracold atomic or
electronic Mott insulators. This would affect spin correlations
even in an infinite temperature spin system, as the spin
correlations can be decohered by magnetic excitations of
the environment. At lower temperatures, the energy cost of
permuting spins leads to a strongly renormalized dynamics of

the hole [29–31, 58, 59, 64–69]. Understanding this limit, and
especially the interplay of multiple holes with the environ-
ment could also lead to a better understanding of the role of
doping in the cuprate phase diagram [24, 40, 41, 64, 68–70].

VII. ACKNOWLEDGEMENTS

We thank J. Carlström, N. Prokof’ev, G. Zaránd and J. van
den Brink for enlightening discussions. The authors acknowl-
edge support from Harvard-MIT CUA, NSF Grant No. DMR-
1308435, AFOSR Quantum Simulation MURI, AFOSR grant
number FA9550-16-1-0323, the Moore Foundation, the Har-
vard Quantum Optics Center and the Swiss National Foun-
dation. I. L. was supported by the Hungarian research grant
OTKA Nos. K105149 and SNN118028.



8

APPENDIX

Appendix A. MODELING EXPERIMENTAL NOISE

Quantum gas microscope experiments take individual mea-
surements of the spin configuration on the lattice, and the
thermal average is evaluated by averaging over many exper-
imental runs. In the infinite temperature spin environment,
each spin takes on one of the N spin states with equal prob-
ability. Therefore, after K measurements, the experimental
noise of the spin correlations is proportional to K−1/2. In or-
der to reduce experimental noise, one can also make use of
the reflection and four-fold rotation symmetries of the two-
dimensional lattice, and average the spin correlations accord-
ing to these symmetries. We illustrate the role of experi-
mental noise, by starting simulations from K random ini-
tial spin configurations |Γi〉 in a spin S = 1/2 system. In-
stead of evaluating the spin average exactly as we did in the
main text, we average over only these configurations Cjl(t) ≈
1
K

∑K
i=1〈Γi|co eiHt Szj Szl e−iHtc†o|Γi〉. Fig. A1 shows the

spin correlations of the hole after symmetry averaging. We
obtain good signal-to-noise ratio already after K = 500 runs.
The details of the quantum Monte Carlo procedure perform-
ing finite number of spin averaging is described in Appendix
D.

We mention furthermore that quantum gas experiments are
often initialized with approximately the same total magneti-
zation in each experimental run, which constrains the total
magnetization of the system. In this work we assume that the
infinite temperature spin bath realizes all possible spin config-
urations with equal probability, and we neglect any constraint
on the total magnetization. This assumption is a good approx-
imation if the hole’s dynamics is studied in a region that is
small compared to the overall size of the system, as the con-
straint on the total magnetization of the entire system will not
significantly affect the magnetization of the measurement re-
gion.

Appendix B. EFFECT OF SPIN CONSERVATION.

Since the hole cannot create spin flips, the total spin Sztot =∑
j S

z
j is conserved. The time dependence of the square of

this operator can be expressed in terms of spin correlations,

1

S2
〈c†o eiHt (Sztot)

2 e−iHt c†o〉 =
∑
j

Cjj(t) +
∑
j 6=l

Cjl(t).

The diagonal spin correlations are simply given by Cjj(t) =
1 − pj(t), the sum of these correlations is thus constant∑
j Cjj(t) = M − 1, where M is the number of sites of the

system. We thus find, that the sum of off-diagonal spin cor-
relations is conserved. Since it is zero in the initial state, we
arrive at the sum rule in Eq. (1)
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FIG. A1: (Color.) Simulation of spin correlations after a finite num-
ber of experimental runs. Spin correlations Cjl(t) measured after
time evolution of t = 1.2 in a spin S = 1/2 system. The reference
site j is chosen to be the origin, whereas the coordinates of the lat-
tice correspond to site l. The spin correlations are averaged over the
four-fold rotational symmetry and over all reflection symmetries of
the lattice to obtain better signal to noise ratio. (a), (b), (c) and (d)
represent averaging over 500, 1000, 2000 and all initial spin states,
respectively.

Appendix C. BREAKDOWN OF PERTURBATION
THEORY AT FINITE ORDERS

Due to the degeneracy of the spin environment, perturba-
tion theory of the time evolution up to any finite order in time
breaks down, as we discussed in the main text [56]. Therefore,
the expansion of the time evolution e−iHt =

∑∞
n=0

(−it)n
n! Hn

needs to be summed up to infinite order. We perform the sum-
mation numerically by sampling the paths of the hole using
a quantum Monte Carlo procedure [25]. This method falls
into the family of stochastic series expansion quantum Monte
Carlo techniques [71]. As we discussed in the main text, the
paths are chosen according to a Poisson distribution of mean
zt, where z = 4 is the coordination number of the lattice.
Fig. A2 (a) shows the distribution of paths at different times.
Whereas the average length of paths is zt, one needs to take
into account significantly shorter and longer paths as well to
ensure convergence. Truncating the series at any finite order,
and thereby neglecting the contribution of long paths leads to
the divergence of the time evolution of the spin correlations
Cjl(t) at long enough times, as we show in Fig. A2 (b).

Appendix D. REAL-TIME QUANTUM MONTE CARLO
ALGORITHM

We sample the time evolution operator using stochastic se-
ries expansion quantum Monte Carlo [25, 71]. At the begin-
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FIG. A2: (Color.) Quantum Monte Carlo versus finite order pertur-
bation theory. (a) Distribution of the path lengths in the quantum
Monte Carlo algorithm at different times. The panels show five dif-
ferent examples of random paths at these times. (b) Comparison of
spin correlations results using perturbation theory to 12th order in
time (dashed lines) versus the quantum Monte Carlo procedure pre-
sented in the main text (full lines). Blue (dark) and green (light) lines
denote correlations between sites (0, 0)− (0, 1) and (0, 0)− (1, 1),
respectively.

ning of the simulation, we generate of the order of 2×108 ran-
dom walk paths. The permutations generated by these paths
are binned, and their phase factors in are added. The tn

n! am-
plitudes are taken into account by sampling the path lengths n
according to a Posson distribution

Pn =
(zt)n

n!
e−zt.

The resulting amplitudes λ are stored together with the cor-
responding permutations π̂ as pairs (λ, π̂). We take all possi-
ble combinations of forward (λα, π̂α) and backward (λβ , π̂β)
time evolution bins. We evaluate the many-body trace associ-
ated with each pair exactly, using Eq. (2). We add the interfer-
ence contribution λ∗β λα〈π̂

†
β π̂α〉 to the histogram of the tran-

sition probabilities p̃j(t) and that of spin correlations C̃jl(t)
for appropriate sites j and l. At the end of the simulation, we
normalize the histograms p̃j(t) and C̃jl(t) by dividing them
by

∑
j p̃j(t).

Evaluating the infinte temperature spin averages exactly al-
lows us to sample the spin correlation with very small noise
as compared to performing numerical averaging over differ-
ent spin configurations [25]. However, around time t ∼ 1.8,
the phase space of probable paths becomes significantly larger

than the number of our path samples. Since the number of
path bins L also becomes very large, calculating the interfer-
ence contributions of all the L×L pairs of path bins becomes
impractical. Therefore, at longer times 2 < t < 3, we cal-
culate the RMS distance using a slightly modified version of
the algorithm of Ref. 25, but with different set of forward and
backward paths. Although this method provides noisy spin
correlation data, it determines RMS distance at longer times
very accurately, and requires only of the order of L steps.

Throughout this paper, we sample the forward e−iHt and
backward eiHt time evolution paths independently, in con-
trast to earlier approaches [25]. The independent sampling be-
comes important at times longer than t ∼ 1.8, when the phase
space of paths becomes so large, that the quantum Monte
Carlo procedure can sample it only sparsely. At these times,
two typical paths α and β will in general enclose large loops.
According to Eq. (2), their interference 〈π̂†β π̂α〉0 is exponen-
tially small.

Choosing the forward and backward time evolution paths
from the same sample would lead to large systematic er-
rors. In contrast to independent sampling, this procedure
would over-sample those cases when the forward and back-
ward paths are identical. These pairs have an interference
of 〈π̂†α π̂α〉0 = 1, in contrast to the typically exponentially
small interference of non-identical pairs. Therefore, the pairs
consisting of identical paths would overwhelm contributions
from non-identical paths, leading to incorrect results. By
sampling the forward and backward evolution paths indepen-
dently, these errors can be avoided.

Appendix E. INTERFERENCE CONTRIBUTION TO SPIN
CORRELATIONS

The contribution of paths α and β to the spin correlations
Cjl(t) is given by (−it)nβ (it)nα

nβ !nα! 〈π̂†βSzj Szl π̂α〉. Here, nβ and
nα denote the lengths of these paths. The non-orthogonality
of the initial and the final spin states requires each permutation
cycle of the combined path π̂†β π̂α to be ferromagnetic. There-
fore, if the spins on sites j′ = π†α(j) and l′ = π†α(l) are in the
same permutation cycle, the above expectation value becomes

〈 π̂†β S
z
j S

z
l π̂α〉 = 〈 π̂†β π̂α S

z
j′ S

z
l′〉 =

S(S + 1)

3
〈 π̂†β π̂α〉.

The S dependent prefactor in the previous equation arises
from averaging the spin operators over all (2S + 1) possi-
ble ferromagnetic spin configurations. For all other pairs of
sites, the spins are independent, and the expectation value
〈 π̂†βSzj Szl π̂α〉 thus averages out to zero in the infinite temper-
ature spin environment.

Appendix F. PROPAGATION ON THE BETHE LATTICE

The hole’s propagation on the Bethe lattice can be solved
analytically, as we show in the Supplemental Material [63].
Here, we present a shorter, recursive solution. Expanding the



10

time evolution in terms of random walks, we find that the wave
function of the hole at level l is given by

ψl(t) =
1

Ml

∞∑
n=0

(−izt)n

n!
ρn,l,

where Ml denotes the number of sites on level l of the Bethe
lattice, with Ml = 1/(z (z − 1)l−1) for l ≥ 1, and M0 = 1.
The matrix ρn,l denotes the probability that a random walk
path of length n ends up at level l. These probabilities can
be determined using simple recurrence relations. At all levels
l ≥ 1, the probability of taking a step one level down on the
graph is 3/4 and taking a step up has a probability 1/4. At the
origin, the walker goes to level l = 1 with probability 1. This
leads to the following recurrence relations

ρn+1, l =
3

4
ρn, l−1 +

1

4
ρn, l+1

for l ≥ 2, and for levels l = 0, 1 we get

ρn+1, 1 = ρn, 0 +
1

4
ρn, 2,

ρn, 0 =
1

4
ρn, 1.

We solve these equations iteratively, starting from the initial
condition ρ0,l = δ0,l.

We determine the RMS distance dl of sites on level l, using
an iterative procedure. When mapping the sites at level l of the
Bethe lattice to the square lattice, we get the end points of all
possible random walks of length l, involving no self-retracing
components. In order to calculate the RMS distance for the
end points of such random walks, we write down a recurrence

relation between d2
l and d2

l−1. Let (xl, yl) denote the hole’s
displacement in its lth step. We can assume without the loss
of generality that the first step was taken to the right. The
RMS distance of the endpoint can be written as

d2
l = d2

l−1 + 2xl−1 + 1,

where xl−1 denotes the average number of right steps in the
remaining path. This quantity is non-zero since the left-right
symmetry of the walk is broken due to the initial step. How-
ever, after the first time the hole moves in the up or down di-
rection, the left-right symmetry of the model is restored, and
the remaining part of the path does not contribute to xl−1.
The probability of taking n steps to the right, and then an
up or down step is given by (1/3)n (2/3). Summing up the
series for all n < l − 1, and adding the probability of tak-
ing all remaining l − 1 steps to the right, (1/3)l−1, leads to
xl−1 = (1 − 3−(l−1))/2. We thus obtain the recurrence rela-
tion

d2
l = d2

l−1 + 2− 3−(l−1),

which can be solved exactly, yielding Eq. (3).
Appendix G. COMPARISON WITH CLASSICAL RANDOM

WALKS

We compare the quantum dynamics of the hole to that of a
classical particle performing Brownian motion. With the par-
ticle starting from the origin, its time evolution is governed by
a transition rate matrix, assigning the transition rate 1 to each
of its neighboring sites i and j. The probability distribution of
the particle thus follows a classical diffusion equation, with a
diffusion constant Dcl = 2.
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