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We investigate the phenomenon of spatial many-body localization (MBL) through pairwise correlation mea-

sures based on one and two-point correlation functions. The system considered is the Heisenberg spin-1/2 chain

with exchange interaction J and random onsite disorder of strength h. As a representative pairwise correla-

tion measure obtained from one-point functions, we use global entanglement. Through its finite size scaling

analysis, we locate the MBL critical point at hc/J = 3.8. As for measures involving two-point functions, we

analyze pairwise geometric classical, quantum, and total correlations. Similarly to what happens for continuous

quantum phase transitions, it is the derivatives of these two-point correlation measures that identify the MBL

critical point, which is found to be in the range hc/J ∈ [3, 4]. Our approach relies on very simple measures that

do not require access to multipartite entanglement or large portions of the system.

I. INTRODUCTION

Concepts and tools from quantum information theory have

found applications in the development of new numerical

methods [1] and in fields as diverse as metrology [2], high

energy physics [3], and condensed matter physics [4, 5]. In

particular, the successful detection of quantum phase tran-

sitions via quantum correlation measures, including concur-

rence [6, 7], entanglement entropy [8], and quantum dis-

cord [9, 10], has motivated the use of these quantities in the-

oretical [11–19] and experimental [20, 21] studies of the tran-

sition to many-body localized phases.

The term “many-body localization” (MBL) usually refers

to spatial localization of interacting systems in the presence

of onsite disorder. In one-dimensional noninteracting quan-

tum systems, the inclusion of uncorrelated [22] or quasiperi-

odic [23] onsite disorder takes the system into an insulat-

ing phase. In interacting systems, the interplay between

interaction and disorder can cause the onset of quantum

chaos [24, 25], which greatly enhances delocalization. In

these chaotic quantum systems with many interacting parti-

cles, the eigenstates away from the edges of the spectrum ap-

proach random vectors, therefore enabling the emergence of

thermalization [26–29]. It is natural to wonder whether such

complex systems, capable of exhibiting statistical behavior

despite isolation, may still become spatially localized under

finite values of disorder strength.

The viability of MBL was discussed already in Refs. [22,

30, 31] and perturbative approaches were employed to show

that it indeed occurs at low temperatures [32, 33]. For highly

excited states, analytical [34, 35], numerical [11–13, 15–19,

36–66], and experimental [20, 21, 67, 68] studies also point

toward a positive answer. The numerical characterization of
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the transition to the MBL phase have included the analysis

of level statistics [11–13, 25, 37, 40, 57] and its dynamical

consequences [65], delocalization measures, such as Shannon

entropy and participation ratio [11–13, 39, 42, 64], transport

properties [61], as well as power-law decays of the survival

probability [50] and few-body observables [46, 49].

From the point of view of quantum information theory,

studies of MBL have taken several approaches, including the

analysis of entanglement spectrum [17] and entanglement dy-

namics [69, 70]. It has been shown, for instance, that deep

in the chaotic phase, multipartite entanglement is large [12],

while a shift to pairwise entanglement takes place in the vicin-

ity of the MBL transition [11–15]. In the localized phase, the

entanglement between two sites [39] and the quantum mu-

tual information between two traced-out regions [19] fall off

exponentially with their distance. As for the search for the

critical point, scaling analysis of total multipartite correla-

tions [18] and of the entanglement entropy [48, 53] have been

used. The latter has actually become the most popular method

to characterize the MBL transition. In the chaotic (thermal)

phase, for any bipartition of the chain, the scaling of the en-

tanglement entropy for the many-body eigenstates away from

the edges of the spectrum obeys a volume law, while in the

MBL phase, it exhibits an area law. In terms of dynamics,

for initial states corresponding to computational basis vec-

tors, as the system approaches the MBL phase, the entangle-

ment entropy [16, 38, 41] as well as the Shannon information

entropy [64] and the quantum mutual information [19] grow

logarithmically in time, which contrasts with the very fast in-

crease and quick saturation in the chaotic regime.

In the present work, instead of manipulating large parts of

the quantum system, as in the case of bipartite blocks, or

dealing with multipartite measures, we focus on the charac-

terization of the MBL critical point through pairwise corre-

lation measures that involve one or at most two-point corre-

lation functions. Specifically, we consider global entangle-

ment [71, 72] and pairwise geometric correlations beyond en-

tanglement, as defined in [73–75]. These simple pairwise cor-

relation measures are accessible through quantum tomogra-

phy, with one- and two-point functions readily provided by
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current experiments [76–78].

Global entanglement is based on one-point functions only.

It can be understood as an average pairwise correlation mea-

sure, where the pair consists of a single site and all the rest of

the system. By collapsing the global entanglement curves for

different system sizes onto a single scaling function, we are

able to precisely identify the critical point.

Pairwise correlation measures beyond entanglement were

first proposed in Refs. [79, 80]. In this scenario, to classify

and quantify physical correlations, one separates the states

into quantum and classical, rather than entangled and unen-

tangled. Classical states are defined as those left undisturbed

by a non-selective local measurement [81, 82], while the op-

posite holds for quantum states. Not all separable states are

classical, some exhibit quantum correlations [79, 80]. The lat-

ter are useful tools in the analysis of critical phenomena due to

their robustness at finite temperature [83] and their long-range

behavior in critical phases [84].

We investigate pairwise classical, quantum, and total cor-

relations at the MBL transition. To evaluate them, we take a

geometric approach, via the trace norm in state space [73–75].

The use of geometric correlations is convenient, because they

can be analytically derived for various classes of two-qubit

states. We show that, similarly to what happens for ordinary

continuous quantum phase transitions, it is the first derivative

of these two-point correlation measures that detects the criti-

cal point.

II. HEISENBERG SPIN-1/2 CHAINS IN A RANDOM

MAGNETIC FIELD

We consider a closed isotropic Heisenberg spin-1/2 chain

with N sites and random static magnetic fields in the z-

direction. The Hamiltonian is given by

H =

N
∑

k=1

[

J
(

Sx
kS

x
k+1 + Sy

kS
y
k+1

+ Sz
kS

z
k+1

)

+ hkS
z
k

]

,

(1)

where ~ = 1 and Sx,y,z
k = σx,y,z

k /2, with σx,y,z
k denoting

the Pauli operators on site k. The Zeeman splittings hk are

random numbers from a uniform distribution in the interval

[−h, h] and J is the exchange interaction. Borrowing the lan-

guage from quantum information theory, we refer to a spin-1/2

as a quantum bit (qubit).

The model conserves total magnetization in the z-direction,

Sz =
∑

k S
z
k , that is [H,Sz ] = 0. Our studies focus on the

largest subspace, Sz = 0, where localization is more demand-

ing. We exactly diagonalize the Hamiltonian matrix of this

block. Our analysis is carried out for 10% of the eigenstates

that belong to the middle of the energy spectrum, where they

tend to be more delocalized. We perform averages over these

states and over disorder configurations. For N = 10, 12, 14,

we average over 104 disorder realizations, while for N = 16
we use 103 configurations.

The Hamiltonian in Eq. (1) has two integrable limits, one

when the chain is clean, h/J=0, and the other for h/J >
hc/J , where hc/J is the MBL critical point. Previous works

have estimated hc/J ∼ 3.8 [18, 48, 53]. Between the two

integrable regions, for 0 < h/J < hc/J , the system shows

level repulsion and level spacing distributions that vary from

the Wigner-Dyson shape, typical of chaotic systems, to a

nearly Poisson distribution, which is usual in integrable mod-

els [11, 25]. ForN = 16, the best agreement with the Wigner-

Dyson distribution, indicating that the system is deep in the

chaotic regime, occurs for h/J ∼ 0.5 [64].

III. GLOBAL ENTANGLEMENT

Global entanglement,GE , was introduced in Ref. [71] as a

multipartite entanglement measure for pure composite states.

It vanishes if, and only if, the state is a tensor product of all

of its subsystems. As shown in Ref. [72], the measure can be

expressed in terms of an average over pairwise entanglement

between one site and the rest of the system. More specifically,

GE(|ψ〉) is obtained from the one-qubit reduced density op-

erators as

GE(|ψ〉) = 2− 2

N

N
∑

k=1

Tr
(

ρ2k
)

. (2)

If translation invariance is obeyed, Eq. (2) reduces to

GE(|ψ〉) = 2
[

1− Tr
(

ρ21
)]

, (3)

where ρ1 = ρk, ∀k. Equation (3) is the linear entropy for a

single spin of the system.

Note that GE does not require direct access to large por-

tions of the system. As provided by Eq. (3), global separa-

bility is locally manifested through one-point functions only,

with the rest of the system being traced out. General proper-

ties of GE in random localized states of disordered systems

were considered in Ref. [85]. The dependence of global en-

tanglement on the disorder strength was studied also in [13],

although the characterization of the MBL critical point was

not provided.

The analysis of the MBL transition via global entanglement

can be done directly with Eq. (3), because the average over

disorder realizations implies that all sites are equivalent. Our

results are shown in Fig. 1. As h/J increases and the system

approaches the MBL phase, the value of global entanglement

decreases, since more entanglement gets localized in smaller

subsystems, such as in pair of spins.

The crossing of the curves in the main panel of Fig. 1 indi-

cates the approximate value of the critical point, which is then

precisely obtained through a finite size scaling analysis. This

is done by choosing the scaling form

GE = Φ

[

Na

(

h− hc
J

)]

, (4)

where Φ is a function determined by the chi-square minimiza-

tion method. This function is employed in the scaling analysis

presented in the inset (a) of Fig. 1. We find that a = 0.5 and

hc/J = 3.8 ± 0.2. It is impressive that GE , which corre-

sponds to the linear entropy of a single spin, can determine
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the critical point in such excellent agreement with previous

studies [18, 48, 53].

In the inset (b) of Fig. 1, we show the behavior of GE deep

in the localized phase in a logarithmic scale. Note that it ex-

hibits a power-law decay, GE ∝ (h/J)−α, with exponent

roughly given by α = 1. This behavior closely resembles the

multipartite mutual information, as discussed in Ref. [18].
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FIG. 1: (Color online) Main panel: Global entanglement GE as a

function of the disorder strength h/J . Inset (a) shows the finite size

scaling analysis, with a = 0.5 and hc/J = 3.8 ± 0.2. Inset (b)

shows the power-law decay of GE in the localized phase. Inset (c)

shows the non-monotonic behavior of GE for small values of h/J .

We also notice that GE presents a non-monotonic behav-

ior for small values of h/J . This is shown in the inset (c)

of Fig. 1. The maximal value, GE = 1, occurs in the clean

integrable limit, as originally shown in Ref. [71]. As h/J in-

creases from zero, GE shows a minor dip, before reaching

very large values again in the chaotic regime. Analogously to

what happens to quantities that measure the integrable-chaos

transition [64], the dip shifts towards smaller h/J’s as the sys-

tem size increases. This suggests that, in addition to identify-

ing the MBL critical point, GE may be a general integrable-

chaos detector. Whether this non-monotonic behavior will

persist in the thermodynamic limit is a subject that requires

further investigation.

IV. GEOMETRIC CORRELATIONS FOR TWO-QUBIT

STATES

Pairwise correlations are analyzed in a bipartite Hilbert

space H = H1 ⊗ H2. The quantum states of the composite

system are described by density operators ρ ∈ B(H), where

B(H) is the set of bound, positive-semidefinite operators act-

ing on H with trace given by Tr ρ = 1. To distinguish classi-

cal from quantum correlation measures, we use the concept of

classicality in quantum information. A state is classical if it is

not disturbed under projective measurements [81]. Let us de-

note a set of local von Neumann measurements as {Πj
1⊗12},

where Πj
1 is a set of orthogonal projectors over the first sub-

system of the bipartition. After a non-selective measurement

M , the density operator ρ becomes

M(ρ) =
∑

j

[Πj
1 ⊗ 12] ρ [Π

j
1 ⊗ 12]. (5)

If there exists any measurement M such that M(ρ) = ρ, then

ρ describes a hybrid state, referred to as classical-quantum

state, which is classical with respect to the Hilbert space H1

and potentially quantum with respect to H2. Extension of this

definition for measurements over all subsystems and for mul-

tipartite states can be found in [82]. We emphasize that sep-

arable mixed states are not necessarily classical and may still

present quantum correlations. Therefore, non-classical states

are not necessarily quantum entangled.

We define pairwise correlation measures by adopting a ge-

ometric approach based on the general formalism introduced

in Refs. [86–88]. We consider correlations based on the trace

norm (Schatten 1-norm) and projective measurements operat-

ing over H1. The three kinds of correlations analyzed here are

pairwise geometric classical, quantum, and total.

The amount of quantum correlation is measured through the

geometric quantum discord, QG(ρ), defined as

QG(ρ) = min
{M}

Tr |ρ−M(ρ)| . (6)

The minimization is taken over all local measurementsM act-

ing on H1. Thus, QG(ρ) represents the distance between ρ
and the closest classical-quantum state obtained by measuring

ρ.

The amount of classical correlation CG(ρ) associated with

ρ is obtained from

CG(ρ) = max
{M̄}

Tr
∣

∣M̄(ρ)− M̄(πρ)
∣

∣ , (7)

with the maximization done over all local measurements M̄
acting on H1 and πρ = ρ1 ⊗ ρ2 = Tr2ρ ⊗ Tr1ρ. To avoid

ambiguities in the correlation measures for QG and CG, we

take M and M̄ as independent measurement sets [88]. The

classical correlation CG(ρ) relates to the maximum informa-

tion about the state that we can locally extract by measuring ρ.

It vanishes if and only if ρ is a tensor product of its marginals,

that is, if ρ is the completely uncorrelated state πρ.

For the total correlation, we simply take the trace distance

between ρ and πρ, which yields

TG(ρ) = Tr |ρ− πρ| . (8)

The total correlation as provided by Eq. (8) detects any kind of

correlation that makes ρ distinct from the trivial product state

πρ.

Here, we study the correlations between two spins only and

choose those that are nearest neighbors in the quantum spin

chain. To provide some intuition about the correlation mea-

sures considered in this work, let us begin by analyzing a

two-spin quantum system, with {|00〉, |01〉, |10〉, |11〉} denot-

ing the computational basis. A quantum state exhibits corre-

lation (either classical or quantum) if we can get information

about one spin by looking at the other. Let us analyze three
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following scenarios, supposing that we want to learn about the

second spin by looking at the first one.

(i) If the two-spin density operator is |00〉〈00|, for any local

measurement applied to the first spin, the second one is in the

state |0〉, so there is no correlation at all between the two spins.

(ii) Consider now the two-spin density operator

(1/2)(|00〉〈00| + |11〉〈11|). If we selectively measure

the first spin by adjusting the apparatus in the computational

basis, we can predict the value of the second spin with

certainty, although we cannot predict the value of the second

spin with certainty before measuring the first spin. In this

case, the state is fully classically correlated.

(iii) In the last example, the two-spin density operator is

(1/2)(|00〉〈00|+ | − 1〉〈−1|), with |−〉 = (1/
√
2)(|0〉 − |1〉).

For this state, there is no local measurement over the first spin

that reveals the value of the second spin with certainty on av-

erage. If we measure the first spin in the state |0〉, the second

spin is in a statistical mixture of |0〉 and |1〉. Equivalently,

there is no non-selective measurement of the form of Eq. (5)

that is capable of leaving the density operator undisturbed.

Thus, besides classical correlation, we also have quantum dis-

cord.

For a quantum chain with more than two spins, two-qubit

states are described by the reduced density operator ρ obtained

after tracing out all spins of the chain except the two selected

ones. For Hamiltonians that commute with the parity operator

⊗N
i=1S

z
i , as H in Eq. (1), the reduced density matrix written

in the computational basis has the form

ρ =







ρ11 0 0 ρ∗41
0 ρ22 ρ∗32 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44






, (9)

where the following constraints are assumed:
∑4

i=1
ρii = 1

(normalization condition), ρ11ρ44 ≥ |ρ41|2, and ρ22ρ33 ≥
|ρ32|2 (positive semidefiniteness). The nonzero elements ρij
appear only in the diagonal and anti-diagonal of the reduced

density matrix, which justifies the label “X-state”. For this

kind of two-qubit states, there are analytical expressions to

calculate the geometric correlations [89, 90]. Indeed, defining

the following auxiliary parameters

c1 = 2(ρ32 + ρ41), c2 = 2(ρ32 − ρ41),

c3 = 1− 2(ρ22 + ρ33), c4 = 2(ρ11 + ρ33)− 1,

c5 = 2(ρ11 + ρ22)− 1,

the geometric quantum discord is given by [89]

QG(ρ) =

√

ac− bd

a− b + c− d
, (10)

where a = max(c23, d+ c25), b = min(c, c23), c = max(c21, c
2
2)

and d = min(c21, c
2
2). The geometric classical and total corre-

lations are respectively written as [90]

CG(ρ) = cmax, (11)

TG(ρ) =
1

2
[cmax +max(cmax, cint + cmin)] , (12)

where cmax = max (|c1|, |c2|, |c3 − c4c5|),
cmin = min (|c1|, |c2|, |c3 − c4c5|), and cint =
int (|c1|, |c2|, |c3 − c4c5|) corresponds to the intermedi-

ate value.

The geometric quantum discord QG between two nearest-

neighboring spins is shown in the main panel of Fig. 2 as a

function of h/J for different chain sizes. The classical and

total correlations, CG and TG, are displayed in Figs. 3 (a) and

3 (b). The curves for the quantum, classical, and total cor-

relations exhibit a similar pattern. They are non-monotonic

and generalize the behavior of pairwise entanglement, as mea-

sured by concurrence [11, 15]. We identify the following three

regions, described below.
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FIG. 2: (Color online) Main panel: Geometric quantum discord QG

as function of the disorder strength h/J in a logarithmic scale. Inset

(a): first derivative Q′
G of the geometric quantum discord with re-

spect to h/J . Inset (b): the thermodynamic limit of the maximum of

Q′
G, which yields hc/J = 3.34 ± 0.03.
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FIG. 3: (Color online) Geometric classical CG (a) and total TG (b)

correlations as functions of h/J in logarithmic scale, as well as their

derivatives, C′
G (c) and T ′

G (d), with respect to h/J . The insets in

(c) and (d) exhibit the thermodynamic limit of the maxima of C′
G

and T ′
G, respectively, yielding hc/J = 3.43 ± 0.06 for CG and

hc/J = 3.45 ± 0.06 for TG.
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In the chaotic phase, 0 < h/J < 1, the correlations are

spread out in the system in a multipartite form [12]. This re-

sults in a small concentration of correlations between individ-

ual pairs of spins and explains the small values of QG, CG,

and TG.

As the disorder strength increases beyond the chaotic re-

gion, h/J > 1, one sees that QG, CG, and TG increase up

to a value of h/J that depends on the length of the system.

In the vicinity of the MBL transition, correlations are mostly

confined between individual pairs of spins, which gives rise to

the large values of the quantum, classical, and total pairwise

correlations.

After the transition to the MBL phase, further increasing

the disorder strength asymptotically decreases the correlation

measures due to the reduction of the effective role played by

the exchange interaction J . Like the global entanglement,

the correlations QG, CG and TG show a power-law decay

∝ (h/J)−β deep in the localized phase, with a universal expo-

nent roughly given by β = 0.7. For a finite system, pairwise

correlations tend to disappear in the limit of infinite disorder.

The qualitative behavior of the quantum, classical, and total

correlation measures discussed above suggests the existence

of a localized phase. The location of the critical point can now

be achieved by analyzing the first derivative of the correlation

measures with respect to the disorder strength h/J . This ap-

proach is inspired by the procedure used in studies of ordi-

nary quantum phase transitions (at zero temperature), either

via pairwise entanglement [6, 7] or via pairwise quantum dis-

cord [9, 10]. It is worth stressing that since quantum discord

reveals quantumness in separable mixed states, it manifests

its presence in scenarios beyond entanglement. For instance,

in contrast to entanglement, quantum discord can character-

ize quantum phase transitions also at finite temperatures, as it

actually occurs in experimental realizations [83]. Moreover,

quantum discord usually survives longer than entanglement

as a function of the distance between the spins. More specif-

ically, quantum discord exhibits power-law decay along the

chain in critical phases [84], whereas pairwise entanglement

(as measured, e.g., by concurrence) consistently shows short-

range behavior, vanishing for a few-distant sites even at the

critical point [6]. These robust properties of the quantum dis-

cord should be advantageous for the characterization of the

MBL transition at high temperatures and if distant spins are to

be considered in real setups.

As illustrated in the inset (a) of Fig. 2 and in Figs. 3 (c)

and 3 (d), the three correlation measures exhibit a maximum

in their derivatives, which occurs at a value of h/J denoted

by (h/J)max. The maxima of the derivatives of the correla-

tion measures obey a linear decay with 1/N , from where the

critical point can be obtained by extrapolating (h/J)max for

N → ∞.

The scaling analysis of (h/J)max, shown in the inset (b)

of Fig. 2 and in the insets of Figs. 3 (c) and 3 (d), leads to

hc/J ∈ [3, 4], which coincides with the range of values for

the critical point found in previous works. Table I provides the

values of the critical point extracted from each geometric cor-

relation measure and also from the global entanglement GE .

The critical values obtained with the four different quantities

Correlation measure hc/J

GE 3.8± 0.2
QG 3.34± 0.03
CG 3.43± 0.06
TG 3.45± 0.06

TABLE I: Critical point obtained via global entanglement in compar-

ison with quantum, classical, and total geometric correlations. Error

bars account only for fluctuations with respect to the number disorder

realizations.

are compatible with each other. This confirms that the picture

of delocalization of correlations in the thermal phase against

concentration of correlations in the vicinity of the MBL crit-

ical point holds for quantum, classical, and total correlations

between spin pairs. We notice that the error bars computed

here account only for fluctuations with respect to the number

disorder realizations. Other possible sources of uncertainty

are not taken into account.

V. CONCLUSIONS

We have described the transition to the MBL phase and lo-

cated its critical point with pairwise correlation measures that

involve one or at most two-point correlation functions. The

results converged by taking only a small fraction of the eigen-

states of the Hamiltonian. Our main findings are:

(i) The finite size scaling analysis of the global entangle-

ment led to the critical point hc/J = 3.8 ± 0.2, which coin-

cides with the result from previous works. This quantity, as

computed here, is the linear entropy of a single spin. It is im-

pressive that a simple one-point correlation function can be so

effective at identifying the critical point.

(ii) The geometric correlations between only two spins lo-

cated the critical point in the range of hc/J ∈ [3, 4], which is

also within acceptable values. The procedure used resembles

the one adopted in the analysis of ordinary quantum phase

transitions, where the critical point is revealed by the deriva-

tive of the correlation measures. The scaling analysis of the

derivatives of the quantum, classical, and total correlations

followed the universal linear scaling law, that is, the deriva-

tives are linear functions of 1/N . The critical point is obtained

by the extrapolation to the thermodynamic limit.

When compared with pairwise entanglement measures,

such as concurrence, quantum discord offers important advan-

tages. Its robust properties with respect to temperature and

distance between the spins turns the quantum discord into a

powerful criticality witness.

As a byproduct of our analysis, we found a non-monotonic

behavior of the global entanglement in the transition from the

clean integrable limit to the chaotic regime. A detailed char-

acterization of the onset of chaos in terms of pairwise correla-

tions is left as a plan for further studies. In the future, it might

also be interesting to explore the effectiveness of the one and

two-point correlation functions in the detection of the metal-

insulator transition in higher dimensions. Another aspect that

we intend to investigate is the changes that should be brought
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to the picture developed here when time-dependent Hamilto-

nians or the presence of decoherence are taken into account.
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