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The effect of disorder on lattice vibrational modes has been a topic of interest for several decades.
In this work, we employ a Green’s function based approach, namely the dynamical cluster ap-
proximation (DCA), to investigate phonons in mass disordered systems. Detailed benchmarks with
previous exact calculations are used to validate the method in a wide parameter space. An extension
of the method, namely the typical medium DCA (TMDCA), is used to study Anderson localization
of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce
localized modes beyond the bandwidth of the host system, while heavier impurities lead to a partial
localization of the low frequency acoustic modes. For a uniform (box) distribution of masses, the
physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility
edge separating extended and localized modes, obtained through the TMDCA, agrees well with re-
sults from the transfer matrix method. A re-entrance behavior of the mobility edge with increasing
disorder is found that is similar to, but somewhat more pronounced than, the behavior in disor-
dered electronic systems. Our work establishes a new computational approach, which recovers the
thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations
in disordered lattice systems.

I. INTRODUCTION

Anderson localization (AL)1, though over five decades
old, generates sustained interest due to its importance
in diverse phenomena such as metal-insulator transi-
tions, quantum Hall effect, mesoscopic fluctuations in
small conductors and quantum chaos. Being a wave
phenomenon in disordered systems, AL is, naturally,
not limited to electronic systems and has been found in
many other systems like electromagnetic waves2,3, acous-
tic waves4, and spin waves5. Thus, the physics of AL is
of direct relevance to various applications such as optical
fiber design6, molecular spintronics and even in biological
systems7.

A theoretical understanding of AL remains a challeng-
ing research topic though it has been pursued extensively
over the years. In this context, several computational
techniques including exact diagonalization (ED), trans-
fer matrix method, kernel polynomial method,8–17 and
renormalization group method18–20 have been developed
and applied. A majority of these studies deal, how-
ever, with electronic systems, and less attention has been
paid to other relevant elementary excitations, such as
phonons, despite being accessible to experiment and hav-
ing various applications like in high-performance thermo-
electric materials design.

The present work aims to apply a recently developed
framework, namely the typical medium dynamical clus-

ter approximation (TMDCA), to investigate the AL of
phonons in mass disordered alloys. In this section, we
briefly introduce the problem and review the relevant
work on phonon localization before delving into the for-
malism in the next section.

A random substitution of ions in a crystal lattice cre-
ates local disturbances, the extent of which depends on
both the size and chemical nature of the impurity ions.
As a result, real space perturbations of a given unit cell
can propagate to neighboring unit cells and be extended
over a characteristic length scale ξ. If this length scale is
comparable to the system size, the normal modes of the
disordered system are termed extended, and adiabatic
continuity can be expected to connect the disordered sys-
tem with the clean case. However, it may happen that, at
and beyond some critical value of the disorder strength,
some or all of these modes remain confined over a finite
localization length, implying a real space localization of
such modes.

This kind of disorder-induced confinement of lattice
waves indicates localization of phonons. If impurities are
heavier than host atoms, the phonon spectrum will be,
in general, shifted towards low-frequency regions. Lighter
impurities, on the other hand, can lead to more interest-
ing effects. New states corresponding to the vibration
of guest atoms can appear in frequency regions where
no levels of the host crystal were present. Hence new
impurity bands isolated from the host-dominated spec-
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tra may be observed in the phonon spectrum. Thus, a
small amount of disorder in lattice vibrations can change
the physical properties of the material. For example, the
introduction of impurities can dramatically reduce the
thermal conductivity21–25, which is a key factor in the
design of high-performance thermoelectric materials.

Several experimental studies have been devoted to un-
derstanding the AL of phonons and the effect of iso-
topic disorder26–29. Recently, Howie et al.30 found di-
rect experimental evidence of phonon localization in a
dense Hydrogen-deuterium binary alloy. Sarpkaya et
al.31 observe that wave functions corresponding to acous-
tic phonons are strongly spatially localized in copolymer-
wrapped carbon nanotubes. The first observation of
localization of sound was made by Hu et al in a ran-
dom three dimensional elastic network32. Very recently,
Mendoza et al.33 observed a strong effect of the AL of
phonons on the thermal conductivity in GaAs/AlAs su-
perlattices. A low temperature plateau in the thermal
conductivity of disordered materials such as glasses34 and
high-temperature superconductors35 has been attributed
to the AL of phonons. These experimental observations
have not yet received a comprehensive theoretical treat-
ment.

Extensive theoretical attempts to investigate isotopic
disorder exist and some even predate Anderson’s work
on localization. Most of these may be classified as
either Green’s function based approaches or computa-
tional methods. The former include perturbative, semi-
analytical approaches36–51 and continuum field theory
based approaches52,53. Early perturbative methods uti-
lized either the impurity concentration, or the devia-
tion from a mean mass as a small parameter. Later
approaches were based on the coherent potential ap-
proximation (CPA) and the average T-matrix approxi-
mation (ATA). More recently, Ghosh et al.51 developed
the itinerant coherent-potential approximation (ICPA)
which satisfies translational invariance, unitarity, and an-
alyticity of physical properties. The ICPA has two ad-
ditional advantages. First, it can capture the physics of
multi-site correlations. Second, it can incorporate both
mass and spring disorder simultaneously. In this connec-
tion, the ICPA is one of the most successful extensions
of the CPA to predict the vibrational density of states of
realistic binary alloy systems. Nevertheless, the ICPA is
not able to capture the AL of phonons.

Approximate theories such as the CPA or the ATA may
be used to get a qualitative insight. However, these are
often based on uncontrolled approximations, and their
region of validity is always in question. This is where
numerically exact methods such as exact diagonalization
(ED)54,55 and transfer matrix method (TMM)56 prove
their mettle and provide very useful benchmarks for ap-
proximate theories. Recently, Monthus and Garel57 use
ED for relatively large system sizes to investigate the
localization of phonons in mass-disordered systems. Us-
ing finite size-scaling methods for the low-frequency part
of the spectrum, they show that the single-parameter

scaling theory of localization, originally developed for
electronic systems applies to phononic systems as well.
Pinski et al.56 employ the TMM to obtain the mobility
edge as a function of mass and spring disorder in three-
dimensional systems. They find a close correspondence
between the electronic and phonon systems. The main
drawback of ED and TMM is that their computational
expense scales exponentially with system size.

Despite extensive investigations over decades, a
method that fulfills all of the following set of requirements
has not yet been developed: (1) The method should sys-
tematically approach the thermodynamic limit. (2) It
should reproduce exact diagonalization results for both
the main vibrational spectrum and the impurity modes.
(3) It should be applicable over the full alloy regime, i.e.,
for all defect concentrations. (4) It should be able to han-
dle both mass (diagonal) and spring (off-diagonal) disor-
der on an equal footing. (5) It should capture the AL of
phonons, including the dependence of the mobility edge
on the disorder. (6) It should be relatively computation-
ally inexpensive in order to be useful for investigations
of phonon localization in real materials, which necessar-
ily involve multiple branches, and mass as well as spring
disorder.

The lack of a single method satisfying all the crite-
ria mentioned above for phononic systems motivates us
to adapt the dynamical cluster approximation (DCA)
and the typical medium DCA (TMDCA) for disordered
phononic systems to capture the Anderson localization of
phonons since these methods have been shown to work
extraordinarily well in electronic systems58–61 .

The main difficulty inhibiting the development of such
a method for the study of Anderson localization of
phonons lies in finding a single particle order param-
eter to characterize the Anderson transition in disor-
dered phononic systems. Recently, a typical medium
theory (TMT)62 for electronic systems proposes the lo-
cal density of states (LDOS) as an appropriate quan-
tity to look at for the study of Anderson localization
of electrons. The local density of states, defined as
ρl(ω) =

∑
n δ(ω − ωn)|ψn(l)|2, changes from continuous

to discrete upon the system transiting from an itinerant
to a localized state. On the insulating side of the transi-
tion, the spectrum consists of delta functions. Here, the
typical value of the LDOS vanishes, whereas the glob-
ally averaged density of states (ADOS) does not, nor is
it critical at the Anderson transition. Hence, the TMT
adopts the typically averaged DOS (TDOS), as an order
parameter for the study of the Anderson localization of
electrons. In spite of the success of the TMT in describ-
ing localized electron states, it suffers shortcomings due
to its single-site character. For example, the TMT does
not provide a proper description of the critical behavior of
the Anderson localization transition in three dimensions
for disordered electronic systems since it is not able to
capture the effects of non-local coherent back-scattering.

Recently, an extension of the TMT that includes non-
local dynamical correlations, called the typical medium
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dynamical cluster approximation(TMDCA),59 has been
developed for disordered electronic systems. It incorpo-
rates the typical medium within the dynamical cluster
approximation (DCA) scheme. The TMDCA possesses
all features of a successful cluster theory such as the
systematic incorporation of non-local correlations, and
it captures the critical behavior of the Anderson local-
ization transition including the correct value of critical
disorder strength and re-entrant behavior of the mobility
edge.

The present TMDCA method for electronic systems
utilizes the fact that the LDOS is a continuum in the
metallic state; whereas it is composed of a set of delta-
functions in an insulator, so that the typical value of the
LDOS, averaged over disorder locations, is zero. This
same idea is equally applicable to phonons or the local-
ization of any propagating waves. So, we can consider
that the typical value of the LDOS remains a valid order
parameter for phononic systems. Based on this concept,
we establish a TMDCA formalism for the study of An-
derson localization of phonons.

We end this introduction with two questions: (1) (a)
How well do the DCA and the TMDCA formalisms do
when compared with exact methods like ED and TMM?
(b) To what extent are the requirements of a successful
method, that are mentioned above, fulfilled by the DCA
and the TMDCA? (2) What new insights into the local-
ization of phonons does the calculation of typical den-
sity of states give? These questions will be addressed at
the appropriate places in the manuscript. In the present
work, we have focused on diagonal mass-disorder. Thus,
the issues of spring disorder and anharmonicity have not
been considered and are reserved for future studies. In
the following section, we describe a model for a mass dis-
ordered lattice within the harmonic approximation and
the formalism employed to solve the model.

II. METHOD

The Hamiltonian for the ionic degrees of freedom of a
disordered lattice in the harmonic approximation can be
written in terms of momentum (p) and displacement (u)
operators, as

H =
∑
αil

p2iα(l)

2Mi(l)
+

1

2

∑
αβll′ij

Φαβij (l, l′)uiα(l)ujβ(l′) , (1)

where piα(l) and uiα(l) represents, respectively, the mo-
mentum and the displacement (from the equilibrium po-
sition) of a site i belonging to the unit cell l along the
Cartesian coordinate α = (x, y, z) direction. The index i
runs from 1 to Ncell where the latter denotes the number
of atoms in the basis. We assume that the force-constant
tensor, Φ, is a function of |Ri(l)−Rj(l

′)|, where Ri(l)
is the position of ion i in unit cell l.

The retarded displacement-displacement Green’s func-

tions,

iDij
αβ(l, l′, t) = 〈〈uiα(l, t);ujβ(l′, 0) 〉〉 (2)

corresponding to the above Hamiltonian can be obtained
using their frequency dependent counterparts given by
(see Appendix A for details) the solution of the following
coupled linear equations:

Mi(l)ω
2Dij

αβ(l, l′, ω) = δαβδll′δij

+
∑
γ,l′′j′

Φαγij′ (l, l
′′)Dj′j

γβ (l′′, l′, ω) .

(3)

With a single composite index, λ = (α, l, i), we can write
the above equation in a matrix representation and obtain
a formal solution for the Green’s function (Eq. 2) as

M0D̂(ω) =
[
ω21− Φ̂M−10 − ω2V̂

]−1
, (4)

where M0 includes the masses of the ions in the unit
cell of the clean lattice with respect to which the mass
’disorder potential’, V̂ , is given as(

V̂
)
λ,λ′

=
(
1−MλM

−1
0λ′

)
δλ,λ′ . (5)

Note that the masses have been assigned a Cartesian in-
dex purely for notational convenience, i.e. the mass of
the ith atom in the lth unit cell does not, naturally, de-
pend on α, the direction.

In this work, we consider an isotropic simple cubic lat-
tice with a monoatomic basis (M0λ = M0) and a spring
constant tensor Φ truncated at nearest-neighbors:

Φαβ(l, l′) = δαβ(ΦDδl,l′ + ΦnnδRl′ ,Rl+~δ
) , (6)

where ΦD and Φnn are the diagonal, and the nearest

neighbor component of the tensor, respectively, and ~δ is
a vector connecting a site to its nearest neighbors.

We consider two kinds of mass disorder in Eq. 5,
namely (1) binary isotopic disorder, where the random
masses Mλ are either Mimp or M0 with concentrations c
and (1 − c) , respectively, and (2) a uniform (box) dis-
order, where (1 −Mλ/M0) ∈ [−V, V ] with equal prob-
ability for any value in that interval and 0 < V ≤ 1
representing the strength of disorder . Binary isotopic
disorder is a special case of binary disorder, since the
latter may involve substitutions that may induce spring
disorder in addition to mass disorder. Most experimental
studies involve disorder in a binary alloy. Hence, we per-
form calculations for this disorder distribution. However,
a comprehensive validation of the numerical schemes re-
quires us to compare our results with the available results
for the box distribution. Thus, the two distributions are
needed to complete our study.

In the absence of mass disorder, i.e V̂ = 0, correspond-
ing to a clean, monoatomic lattice, all ionic masses are
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identical, hence Mi(l) = M0 and i = 1 for all l lattice
sites. In such a case, the system is translationally invari-
ant, hence transforming to k-space using

M0D
(0)
αβ (l, l′, ω) =

∑
k

D
(0)
αβ (k, ω)eik·(Rl−Rl′ ) ,

Eq. 3 simplifies to

D̄(0)(k, ω) =
[
ω21− F̄ (k)

]−1
(7)

where the ‘bar’ represents a matrix in the Cartesian basis
(e.g. 3 × 3 in three dimensions), and F̄ (k) is related to

Φ̂ through

(F̄ (k))αβ =
∑
l′

Φαβ(l, l′)

M0
eik·(Rl−Rl′ ) .

Thus, with the specific form for Φ given by Eq. 6, the
Green’s function in the clean limit reduces to

D̄(0)(k, ω) =
(
ω2 − ω2

k

)−1
1, (8)

where the dispersion is given by

ω2
k = ω2

0

(
sin2 kx

2
+ sin2 ky

2
+ sin2 kz

2

)
, (9)

with ω0 =
√

4γ/M0 = 1 being our unit of energy and γ =
−ΦD = 6Φnn; the latter equality stems from sum rules
that need to be satisfied by the spring constant tensor.
The choice of ω0 = 1 implies that the bandwidth of the
non-interacting spectrum is

√
3. Since all the branches

have identical dispersion, we will drop the branch index
(α) henceforth in this work. Thus, Eq. (4) may be written
as a Dyson equation:

D̂−1(ω) =
(
D̂(0)(ω)

)−1
− ω2V̂ . (10)

The connection to disordered electronic systems can
now be made. The non-interacting electronic Green’s
function in a clean lattice is given by G(0)(k, ω) =
(ω+−εk)−1, where εk = −2t(cos(kx)+cos(ky)+cos(kz))
is the electronic dispersion in a cubic lattice with nearest-
neighbor hopping t. By noting that the phonon disper-
sion (Eq. (9)) can be mapped to the electronic dispersion
through ω2

k = 6γ/M0+γεk/(M0t), the similarity between

G(0) and D(0) (Eq. (8)) becomes immediately clear.

A major difference between the localization of phonons
and electrons emerges from the form of the Dyson equa-
tion. In the electronic case, V̂ represents site-disorder

and the Dyson equation reads Ĝ−1(ω) =
(
Ĝ(0)(ω)

)−1
−

V̂ , while in the phonon case, the perturbation term is
ω2V̂ (Eq. (10)), which creates a significant difference in
the localization of phonons vs electrons. For example, lo-
calizing low energy acoustic modes should be almost im-
possible because the modulating factor of ω2 implies that

the disorder potential becomes vanishingly small at low
energies, hence leaving the acoustic modes almost unper-
turbed. The implication for high-frequency modes is also
clear: the disorder potential increases without bound;
hence high-frequency modes are expected to get localized
even for relatively weak disorder. Further differences will
be pointed out in the results section.

There are several methods to solve the Dyson equation
(Eq. (10)). Diagrammatic methods employing an infi-
nite resummation of a certain class of diagrams are one
choice63. The CPA, which reduces the lattice problem to
an effective single-site problem, is another. Alternatively,
one can choose a finite system with periodic boundary
conditions and solve for the Green’s function exactly.
Each of these methods has specific advantages and dis-
advantages. For example, the diagrammatic methods are
often uncontrolled approximations and may violate sum
rules and/or yield unphysical spectra.

Finite system calculations, though exact, suffer from
a large computational expense. Hence, a method is
needed that is computationally feasible, systematically
approaches the thermodynamic limit and is fully causal.
The dynamical cluster approximation (DCA) is one such
method. It has been applied very successfully to inves-
tigate a variety of fermionic and bosonic models. In
this work, we extend the DCA to study phonons in
mass-disordered systems. We now describe the DCA for
phonons in some detail below.

A. Dynamical cluster approximation (DCA) for
phonons

Jarrell et al.64 introduced the DCA as an extension
of the dynamical mean field approximation (DMFA)
through the inclusion of non-local spatial correlations.
DCA systematically incorporates non-local correlations
by mapping the original lattice problem onto a periodic
cluster of size Nc ∼ Ldc where Lc is the linear size of
the cluster and d is the dimension of the lattice. The
periodic cluster is embedded into a self-consistent effec-
tive medium which is characterized by a non-local hy-
bridization function Γ(K, ω). The effective medium is
constructed via algebraic averaging over disorder config-
urations. Hence, spatial correlations up to a range ξ ' Lc
are taken into account accurately, while the longer length
scale physics is treated at the mean-field level. In this for-
mulation, it is assumed that the momentum dependence
of the hybridization function is weak. An algorithm that
implements the DCA for solving Eq. (10) for phonons is
given below:

1. The computational scheme begins with an initial guess
for the hybridization function Γold(K, ω). Such a guess
can be obtained either through a previous calculation or
through a coarse-graining of the non-disordered Green’s
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function (Eq. (8)):

Γold(K, ω) = ω2− ω̄2
K−

∑
k̃

D(0)(K + k̃, ω)

−1 , (11)

where k̃ runs over the momenta of the cell centered at
the cluster momentum K, and ω̄2

K is the coarse-grained
dispersion given by

ω̄2
K =

Nc
N

∑
k̃

ω2
K+k̃

, (12)

where ω2
k is given in Eq. (9).

2. The hybridization function is used to calculate the
cluster excluded Green’s function D(K, ω) as

D(K, ω) =
1

ω2 − ω̄2
K − Γold(K, ω)

. (13)

3. The cluster excluded Green’s function in momentum
space is Fourier transformed to real space:

M0D(l, l′, ω) =
∑
K

D(K, ω) exp (iK · (Rl −Rl′)) . (14)

4. Next, we generate a large number of configurations
of the disorder potential (V̂ ) for a given distribution,
namely binary isotopic or box disorder.
5. For each disorder configuration V̂ , the mass-weighted
Dyson equation is used to compute the cluster Green’s
function, given by

Dc(l, l′, ω) =√
1− (V̂ )l

[
(D̂(ω))−1 − ω2V̂

]−1
ll′

√
1− (V̂ )l′ , (15)

which is then averaged over all disorder configurations:

Dc
DCA(l, l′, ω) =

〈
Dc(l, l′, ω)

〉
(16)

where 〈...〉 denotes an algebraic average. As explained in
Appendix B, the mass-weighting is essential in order to
ensure a proper normalization of the spectral functions in
the presence of disorder. In practice, we have generated
about 600-1000 disorder configurations for each simula-
tion, and have verified the robustness of our results with
respect to the number of configurations.
6. The average cluster Green’s function obtained in
Eq. (16) is Fourier transformed to momentum space, and
then used to compute the coarse-grained lattice Green
function:

DCG(K, ω) =

Nc
N

∑
k̃

[
(Dc

DCA(K, ω))
−1

+ Γold(K, ω)− ω2
K+k̃

+ ω̄2
K

]−1
.

(17)

The disorder averaged spectral function, termed the
ADOS may be defined as

ADOS(ω2) = − 2ω

Ncπ
Im
∑
K

Dc
DCA(K, ω) . (18)

7. A new hybridization function is found through

Γnew(K, ω) = Γold(K, ω) +

ξ
[
(DCG(K, ω))

−1 − (Dc
DCA(K, ω))

−1
]

(19)

where ξ is a linear mixing parameter used for improving
the convergence.

Self-consistency is achieved when ||Γnew(K, ω) −
Γold(K, ω)|| reaches numerical tolerance (in practice,
about 0.005). We have checked that such a condition is
sufficient to obtain converged Green’s functions and self-
energies. If the self-consistency condition is satisfied, the
iterations end, else we impose Γold = Γnew and go back
to step-2. In practice, we add a small imaginary broad-
ening factor (ω → ω + ιη; η ∼ 10−3) to real frequencies
for accelerating convergence.

Though the DCA possesses several advantages over the
CPA, both are unable to capture the Anderson localiza-
tion. The arithmetic averaging used for computing the
cluster Green’s function (Eq. (16)) in step-5 leads to this
inability. The typical medium DCA developed for elec-
tronic systems has been demonstrated to capture Ander-
son localization. We describe the extension of DCA to
TMDCA for phonons below.

B. Typical Medium Dynamical Cluster
Approximation (TMDCA) for phonons

As mentioned above, the DCA employs algebraic aver-
aging over disorder configurations, while in the TMDCA,
the effective medium is constructed via geometric aver-
aging. The ansatz for computing the typical density of
states remains the same as in the electronic case, namely:

ρctyp(K, ω) = exp

(
1

Nc

Nc∑
l=1

〈ln ρc(l, ω)〉

)

×
〈

ρc(K, ω)
1
Nc

∑
l ρ
c(l, ω)

〉
(20)

where

ρc(l, ω) = −2ω

π
ImDc(l, l, ω)

ρc(K, ω) = −2ω

π
ImDc(K, ω)

are the local and momentum dependent spectral func-
tions respectively, computed from the unaveraged cluster
Green function Dc(l, l′, ω) (Eq. (15)).

The disorder-averaged typical Green’s function can be
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calculated from the typical density of states (Eq. (20)),
using the Hilbert transform as

Dc
typ(K, ω) = P

∫
dω′

ρctyp(K, ω′)

ω2 − ω′2
− i π

2ω
ρctyp(ω) , (21)

and the corresponding typical density of states, termed
the TDOS is given by

TDOS(ω2) = − 2ω

Ncπ
Im
∑
K

Dc
typ(K, ω) . (22)

The TMDCA implementation is almost identical to
that of the DCA, except that the typical Green’s func-
tion is obtained by combining Eqs. (15), (20) and (21)
and in Eqs. (17) and (19), the Dc

DCA is replaced by Dc
typ.

The flowchart of the algorithm is presented in Fig. 1.
Apart from the typical Green’s function, Dc

typ, an average

FIG. 1. Self-consistency loop of the TMDCA for phonons.

Green’s function, denoted by Dave
typ can also be computed

within the TMDCA using Eq. (16) in the final iteration
of the TMDCA self-consistency cycle. An interpretation
of such a Green’s function is that it yields the physical
density of states, while the typical density of states acts
as an order parameter for the Anderson localization tran-
sition.

The rest of the paper is organized as follows: We will
validate the DCA and TMDCA against exact diagonal-
ization and transfer matrix method respectively in sec-
tion III. Subsequently in section IV, the typical density
of states, computed through TMDCA, is used to discuss
the physics of phonon localization. Conclusions are pre-
sented in the final section.

FIG. 2. (Color online) Comparison of the density of states ob-
tained from the DCA and exact diagonalization (ED) meth-
ods for a binary isotopic alloy system in three dimensions at
a fixed mass ratio (V = 0.5) and various values of concentra-
tion (c). The left panel shows the DCA results for increasing
impurity concentration c (from top to bottom). Each panel
illustrates the evolution of the spectrum with increasing clus-
ter size. The right panel shows a comparison of the Nc = 125
DCA result with ED (data from Ref. 55 ) for the same pa-
rameters. The agreement between the DCA and ED is seen
to be excellent, whereas there is strong disagreement between
Nc = 1 results and ED results.

III. BENCHMARKING DCA AND TMDCA

The first step to establish any new method is to bench-
mark it against previous exact results. This will be the
objective of this section. The DCA and TMDCA bench-
marks are established separately in subsections III A and
III B respectively.

A. Dynamical Cluster Approximation

Fig. 2 shows a direct comparison of the density of states
obtained from the DCA with results from exact diagonal-
ization (ED)55 for a binary isotopic alloy system in three
dimensions at various values of disorder potential (V )
and concentrations (c). The disorder averaged density
of states can be obtained from the DCA cluster Green’s
function Dc

DCA (Eq. (16)) and is given by Eq. (18).



7

The DCA calculations have been performed for a
simple-cubic lattice with different cluster sizes, namely
Nc = 1, 8, 64, 125. In the ED calculations55, the DOS
was calculated for a 6 × 6 × 25 randomly disordered
simple-cubic lattice. The left panels of Fig. 2 show
the evolution of the spectrum with increasing (from top
to bottom) concentration (c) of light impurities (with
Mimp = Mhost/2, hence V = 0.5). The two-peaked
structure of the spectrum, seen for all concentrations,
is reflective of the binary mass distribution. The spec-
tral weight of the higher frequency band is seen to grow
with increasing c, while the low-frequency band shrinks.
For c & 0.5, the system may be viewed as the dual of the
original system, i.e., a binary alloy with a lighter host
and heavier impurities. The transfer of spectral weight is
natural since lighter impurities should have higher char-
acteristic frequencies.

The DCA for a single-site cluster (Nc = 1) reduces to
the CPA. The left panels of Fig. 2 also shows that results
from the CPA are quite different from those at higher
Nc, thus emphasizing the need to incorporate non-local
dynamical correlations. Nevertheless, we note that the
CPA roughly captures the overall shape. There are two
problems, however. At the lowest frequencies, the CPA
spectral function exhibits a gap, while the DCA spectra
(for higher Nc = 64, 125) do not. In fact, even the Nc = 8
spectrum is gapped, albeit with a smaller gap as com-
pared to the CPA. The reason for this spurious gapped
behavior is that the correct sum rules are obeyed only in
the thermodynamic limit. The second problem is that in
the high-frequency region, the CPA spectrum comprises
an almost separated impurity band with a cusp-like non-
analytic feature. This feature is again in contrast with
results of higher Nc, which shows that the spectrum is
continuous and broad. Moreover, we observe that results
for Nc = 64 and Nc = 125 are hardly different for all
concentrations, suggesting that the convergence with re-
spect to increasing in cluster size is achieved for a cluster
as small as 4× 4× 4.

The right panels of Fig. 2 show a direct comparison of
results using the DCA at the highest Nc = 125 of the cor-
responding left panel with ED results55. In general, the
computational expense in ED depends on many factors;
like the number of frequencies, the length of the lattice
and also on the number of atoms in a cross section of the
lattice. We consider ED results from Ref 55, where they
use a 6 × 6 × 25 lattice and a Strum sequence method.
Clearly, the agreement between the ED and DCA, even
considering the fine structure of the ED results, is rather
good. Thus, the DCA is not only far less expensive than
the ED but is also able to yield a smooth and continuous
spectrum. Furthermore, the DCA converges to the ex-
act, thermodynamic limit result far more rapidly than the
ED, which achieves convergence for much larger system
sizes (6× 6× 25). Thus, our DCA scheme can efficiently
calculate the average vibrational spectra in three dimen-
sions for arbitrary values of impurity concentrations and
disorder potential.

Since the DCA is non-perturbative, it is applica-
ble over the entire alloy regime, c ∈ [0, 1], which has
been a significant limitation of perturbative theories of
alloys41,42,46. A cluster approach developed by Myles and
Dow66 also incorporates non-local correlations. However,
this method is limited by a restriction on the combined
choice of concentration (c) and cluster size (Nc), which
have to obey the relation, cNc=integer, akin to supercell-
based calculations. The DCA does not suffer from this
restriction, which makes it possible to access any impu-
rity concentration for a given cluster size. Another draw-
back of Myles’ cluster method as compared to the DCA is
that the effective medium is described within the CPA.
As a result, the bandwidth of the local impurity mode
obtained from Myles’ calculations is too narrow.

The excellent benchmark obtained thus far implies
that the DCA scheme for phonons with increasing clus-
ter size (Nc) can efficiently predict vibrational spectra for
disordered systems. Nevertheless, the DCA is not able
to capture Anderson localization59,64 of phonons. In or-
der to incorporate the physics of localization, we utilize
the TMDCA method, described in section II. The follow-
ing sub-section describes the validation of the TMDCA
through a direct comparison with the transfer matrix
method.

FIG. 3. A comparison of the mobility edges (ωM ) in the
phonon spectrum in three dimensions for a box-distribution,
obtained from the transfer matrix method56 against TMDCA.
Results from the latter for the larger clusters agree excellently
with the TMM results.
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B. Typical Medium Dynamical Cluster
Approximation

A striking feature of disordered systems in three di-
mensions is the existence, in the density of states, of a
mobility edge67, which is defined as the energy separat-
ing localized and itinerant states. Experimental measure-
ments of the mobility edge are feasible as demonstrated
for ultracold atoms in a disordered potential created by
laser speckles68. Within the TMDCA, the mobility edge
is determined using the band-edges of the typical density
of states (TDOS), since the latter is non-zero only for
extended states. For a box disorder distribution, defined
as PV (Vl) = Θ(V − |Vl|)/2V where Vl = (1 −Ml/M0)
and 0 < V ≤ 1, where l is the site index, and V is the
width of the distribution that represents the strength of
disorder, the mobility edge determined using TMDCA is
compared against exact transfer matrix method results
in Fig. 3. The agreement between results from the TMM
(black circles) and the TMDCA for Nc = 64 (green di-
amonds) and 125 (blue triangles) is excellent. Such a
result is not surprising, since the TMDCA, for three-
dimensional electronic disordered systems, agrees very
well with the kernel polynomial method and the transfer
matrix method59.

For V & 0.5, the TMM results and likewise those from
TMDCA exhibit a re-entrant transition with increas-
ing disorder, in parallel with the behavior in disordered
electronic systems59. However, an important difference
is that beyond a critical disorder, all the states in the
electronic system become localized; while in the phonon
case, a finite fraction of the low-frequency states remain
extended. In analogy with the electronic case, the re-
entrance transition seen in the TMDCA results in Fig. 3
has the following explanation: Very low disorder induces
states outside the band-edge that merge with the contin-
uum through hybridization. At intermediate levels of dis-
order, isolated localized modes (analogous to deep trap
states) appear beyond the band-edge, which nevertheless
hybridize with each other and the extended states on the
band-edge, and thus transform into extended states. We
note that such a hybridization requires inter-site correla-
tions, that are missing from a single site theory (Nc = 1)
such as the TMT, and hence a blue shift of the mobil-
ity edge (seen in the TMDCA results of Fig. 3) is not
captured by the single-site theory. However, with in-
creasing disorder, states at the band edges begin to get
localized, and hence the mobility edge undergoes a re-
entrance crossover.

The failure of single-site theories (Nc = 1, red squares
in Fig. 3), as evidenced by the significant disagreement
with TMM results involves two factors: (i) The TMM
mobility edge initially blue shifts with increasing disor-
der, while the Nc = 1 result red shifts monotonically.
(ii) The TMM as well as the TMDCA results for higher
disorder strengths (V & 0.5), clearly show a re-entrant
transition, which the single-site theory completely misses.
Likely, this is due to the fact that the Nc = 1 calcula-

tion is a single-site theory and hence does not incorpo-
rate non-local coherent back-scattering effects; although
it does include strong localization effects induced by deep
trapped states.

With these results for the DCA and TMDCA, the ques-
tion 1(a) posed at the end of the introduction is fully
answered. Both DCA and TMDCA do yield excellent
agreement when compared to exact methods. Now, we
move to a discussion of results on the Anderson localiza-
tion of phonons.

IV. RESULTS FROM TMDCA

In disordered electronic systems the typical density of
states, given by Eq. (22), may be used as an order param-
eter for the Anderson localization transition59,62. While
the physical observable is still the arithmetically aver-
aged density of states (ADOS(ω)), the TDOS(ω) yields
a mobility edge that separates localized and extended
states. Within the TMDCA, the ADOS(ω) is computed
from Dave

typ(K, ω), which, as explained in Section II, car-
ries information about the typical medium within which
the cluster is embedded. The hybridization function con-
necting the cluster with the host is known58 to decay as a
function of increasing cluster size as ∼ 1/N2

c . Hence, the
ADOS(ω) computed within TMDCA must coincide with
the corresponding quantity computed within the DCA in
the thermodynamic limit. In practice, we find that even
at Nc = 64, the two are almost identical. This is shown
in Fig. 7 of Appendix C. In what follows, we will discuss
results for the average and the typical density of states,
computed through TMDCA for box and binary disorder
distributions.

A. Box disorder

We restrict our discussion of TMDCA results to three-
dimensional systems and focus first on box disorder. In
Fig. 4, the ADOS (black) and TDOS (red) are shown
for a range of disorder strengths (V ) and cluster sizes
Nc = 1, 64 and 125 for a uniform (box) distribution. As
may be expected, the typical DOS is almost the same
as the ADOS for low disorder (V . 0.4). However, for
higher V , localization sets in at higher frequencies. The
ADOS develops long tails, but the TDOS is non-zero
over a much smaller frequency interval, indicating that
all tail modes are Anderson localized. Moreover, the in-
tegrated spectral weight in the TDOS decreases steadily.
The TDOS shown in Fig. 4 has been used to extract the
mobility edges that were compared against TMM results
in Fig. 3. Note that, for higher V (& 0.8) and Nc = 1, the
spectra exhibit a second mobility edge at low frequencies
implying that long wavelength acoustic modes become
localized. However, this result is again an artifact of the
single-site approximation because higher Nc results show
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FIG. 4. The evolution of the ADOS and TDOS, obtained from
the TMDCA, as a function of the square of the frequency (ω2)
at various disorder strengths V chosen from a box distribu-
tion in three dimensions with cluster sizes Nc = 1, 64 and
125. At low disorder (V ), the shape of the TDOS is similar
to ADOS. As V increases, the spectral weight in the TDOS
decreases monotonically, while the ADOS, being normalized,
develops long, slowly decaying tails that comprise localized
phonon modes. The tiny arrows denote mobility edges (ωM ),
that have been used for benchmarking against TMM results
in Fig. 3.

that long wavelength acoustic modes do not localize at
all, even when V → 1.

B. Binary isotopic disorder

For a binary, isotopic distribution, the evolution of
ADOS and TDOS, obtained within the TMDCA for clus-
ter sizes Nc = 1, Nc = 64 and Nc = 125, with increas-
ing impurity concentration c and fixed disorder potential
V = 0.7, is shown in Fig. 5. Fig. 5 displays a transfer
of spectral weight from low to high frequencies, and a
modest dip in the typical spectral weight around c = 0.5.

We find that the ADOS shown in Fig. 5 is almost the
same than the one found within the DCA (see Fig. 2).
The main difference is that the ADOS found within the
TMDCA is very spiky as compared to the corresponding
quantity in the DCA. Interestingly, the impurity modes
yield a non-zero ADOS beyond the band-edge of the host
band, but the TDOS is almost zero for low concentrations

FIG. 5. The ADOS and TDOS calculated using the TMDCA
with cluster sizes Nc = 1, 64 and 125 at various values of
impurity concentration c with fixed disorder potential V = 0.7
for binary isotopic mass distribution in three dimensions.

(c . 0.2). The vanishing of the TDOS indicates the local-
ization of the impurity-induced high-frequency modes for
such concentrations. As the concentration increases, the
low and high-frequency bands merge, and the TDOS is
non-zero over the entire bandwidth. Nevertheless, as the
concentration c→ 1, the ADOS clearly shows a remnant
of the host modes, but the TDOS is quite small in the
same frequency range implying that most of those modes
are localized. The leftmost panel, for Nc = 1, shows that
for c → 1, the host modes are completely localized, and
a low-frequency mobility edge emerges. However, results
for larger cluster sizes of Nc = 64 and 125 show that
such a result is an artifact of ignoring non-local dynami-
cal correlations.

Far more dramatic changes occur for fixed concentra-
tion, c, and increasing disorder potential, V , as shown in
Fig. 6. At low V (. 0.4), the ADOS and TDOS do not
differ much, which is expected since the TMDCA reduces
to DCA in the low disorder limit59. The good agree-
ment between ADOS and TDOS also indicates that most
modes remain propagating even if half of the host atoms
are replaced with lighter atoms of mass, Mimp & 0.6M0.
However, for higher V , the TDOS is sharply suppressed
and is seen almost to vanish for V → 1, thus suggest-
ing that almost all modes get localized in this parameter
regime. Nevertheless, a complete localization seems to
be possible only when V = 1, or when Mimp = 0, which
corresponds to vacancies, for which a proper treatment
involves the inclusion of spring disorder.
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FIG. 6. The ADOS and TDOS calculated using the TMDCA
with cluster sizes Nc = 1, 64 and 125 at various values of
disorder potential V with impurity concentration c = 0.5 for
binary, isotopic mass distribution in three dimensions.

Therefore, localization of the impurity modes in the
high-frequency region may be achieved with experi-
mentally feasible disorder parameters. However, low-
frequency phonons are almost impossible to localize,
which is consistent with the argument made in Section II.
Howie et al.30 study Hydrogen-Deuterium mixtures for
three concentration ratios, namely 0.6 : 0.4, 0.55 : 0.45,
and 0.5 : 0.5 using Raman spectroscopy. They observe
that the Hydrogen-Deuterium mixture goes into a new
phase IV, which may be modeled as an ideal binary iso-
topic alloy. In this alloy, with a mass-factor of 2 and
varying the concentration ratio, they find six localized
modes located in the high-frequency region, while four
low-frequency modes are found to be delocalized. Our
model study using the TMDCA can capture this localiza-
tion effect qualitatively. It will, naturally, be interesting
to explore the phenomenon of acoustic phonon localiza-
tion using more realistic parameters in the presence of
both mass and spring disorder. Such a study is under-
way.

The results shown in this section allow us to answer the
second question posed at the end of the introduction. Al-
though the ADOS shows the physically observable exact
spectrum of the disordered phonon system, a clear identi-
fication of localized and extended states cannot be made
based only on the ADOS. Through a direct comparison

of the TDOS with the ADOS, such an identification be-
comes straightforward. Thus, the TDOS gives great in-
sight into which modes are propagative and which ones
are not; that can be further used for developing strategies
for e.g decreasing thermal conductivity in thermoelectric
materials.

V. CONCLUSIONS

We have developed the DCA and TMDCA formalisms
for investigating the effects of disorder on the phonon
spectrum. Though the DCA exhibits several advantages
over the CPA by including important non-local spatial
correlations, it suffers from its inability to capture An-
derson localization. Such a failure is due to the arith-
metic averaging over disorder configurations. Based on
this understanding, we develop the TMDCA, where a
typical averaging ansatz replaces the arithmetic averag-
ing step. Using the TMDCA for a binary and a box
distribution of mass disorder, we explore several aspects
of Anderson localization in phononic systems. In particu-
lar, a comparison of the mobility edge computed through
the TMDCA with that from the transfer matrix method
yields an excellent agreement including the capture of the
re-entrance transition of the mobility edge.

We also find that for a binary isotopic alloy, low con-
centrations of light impurities introduces high frequency
modes, which are Anderson localized. While at high
concentrations, the lower frequency modes are localized.
Maximum localization over the entire spectrum is ob-
served for equal concentrations of light and heavy atoms.
Another finding is that a larger difference between the
isotope masses introduces stronger localization effects
than the ones due to an increasing in the concentration
of impurities.

Addressing the question 1(b) posed at the end of the
introduction, the DCA and the TMDCA methods do ful-
fill several essential characteristics required for a success-
ful cluster theory. They converge systematically to the
thermodynamic limit, and with far lower computational
expense than exact methods such as ED and TMM. The
excellent benchmarks obtained show that not only do the
methods work in the full parameter regime, and over all
frequencies, the TMDCA is also capable of describing
AL of phonons highly accurately. The equation for the
Green’s function, namely Eq. (3), is valid for mass and
spring disorder, as well as for multiple branches. Thus,
in principle, these methods should be able to go beyond
mass disorder, and our preliminary results do support
this conjecture. Since these methods are computationally
relatively inexpensive, it should be possible to incorpo-
rate material-specific information. In combination with
first principle approaches for phonons, the TMDCA can
be an efficient tool for studying Anderson localization in
real materials. However, for doing so, the present for-
malism should be extended to incorporate multiple non-
degenerate branches and also to the inclusion of spring
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disorder in addition to mass disorder. Since the current
formulation adopts the Green’s function approach, it can
be easily extended to layered geometries, thus allowing
for investigations of phonon engineering in superlattice
structures, heterostructures, thin films and interfaces.
Some of these directions are presently in progress.
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Appendix A: Displacement-displacement Green’s
functions

The Green’s functions and their spectral representa-
tion for disordered lattice vibrations have been exten-
sively discussed in the literature. However, for complete-
ness, we re-derive some of those results here.

The Hamiltonian for a mass disordered lattice within
the harmonic approximation is written down as

H =
∑
αil

p2iα(l)

2Mi(l)
+

1

2

∑
αβll′ij

Φαβij (l, l′)uiα(l)ujβ(l′) , (A1)

where the symbols and indices are described in Section II.
The retarded displacement-displacement Green’s func-
tions, represented by,

iDij
αβ(l, l′, t) = 〈〈uiα(l, t);ujβ(l′, 0) 〉〉 , (A2)

may be found through the equation of motion formalism.
Using the Heisenberg equation of motion, we get

i
∂

∂t
〈〈uiα(l, t);ujβ(l′, 0)〉〉 = iδ(t)〈[uiα(l, t), ujβ(l′, 0)]〉

+ 〈〈[uiα(l, t),H];ujβ(l′, 0)〉〉. (A3)

Now, since [uiα(l, t),H] = ipiα(l)/Mi(l), Eq. (A3) can be
written as

∂

∂t
〈〈uiα(l, t);ujβ(l′, 0)〉〉 = 0+〈〈piα(l, t)

M(i)(l)
;ujβ(l′, 0)〉〉. (A4)

A similar consideration for the momentum-displacement

Green’s function, 〈〈piα(l, t);ujβ(l′, 0)〉〉, yields

i
∂

∂t
〈〈piα(l, t)

Mi(l)
;ujβ(l′, 0)〉〉 = iδ(t)〈

[
piα(l)

Mi(l)
, ujβ(l′)

]
〉

+ 〈〈
[
piα(l, t)

Mi(l)
,H
]

;ujβ(l′, 0)〉〉 . (A5)

Since[
piα(l, t)

Mi(l)
,H
]

= −i
∑
γ,l′′j′

Φγ,αj′,i(l
′′, l)

Mi(l)
uj

′

γ (l′′, t) , (A6)

Eq. (A5) reduces to

i
∂

∂t
〈〈piα(l, t)

Mi(l)
;ujβ(l′, 0)〉〉 = −i 1

Mi(l)
iδ(t)δijδ(l, l

′)δαβ

− i 1

Mi(l)

∑
γ,l′′j′

Φγ,αj′i (l′′, l)〈〈uj
′

γ (l′′, t);uβ(l′, 0)〉〉 . (A7)

Taking derivative with respect to time on both sides of
Eq. (A4) and using Eq. (A7), we get

∂2

∂t2
〈〈u(i)α (l, t)u

(j)
β (l′, 0)〉〉 = − 1

Mi(l)
iδ(t)δijδαβδ(l, l

′)

− 1

Mi(l)

∑
γ,l′′j′

Φγ,αj′i (l′′, l)〈〈uj
′

γ (l′′, t);ujβ(l′, 0)〉〉 . (A8)

Using the definition of Green’s function (Eq. (A2)), we
can re-write Eq. (A8) as

Mi(l)
∂2

∂t2
Dij
αβ(l, l′, t) = −δ(t)δαβδll′δij

−
∑
γ,l′′j′

Φγαj′i(l
′′, l)Dj′j

γβ (l′′, l′, t) . (A9)

Transforming to frequency space and using the symme-
try relations of the force-constant matrix (Φγαj′i = Φαγij′ ),

finally, Eq. (A9) can be written as

Mi(l)ω
2Dij

αβ(l, l′, ω) = δαβδll′δij

+
∑
γ,l′′j′

Φαγij′ (l, l
′′)Dj′j

γβ (l′′, l′, ω) .

(A10)

Appendix B: Normalization condition in
mass-disordered systems

To obtain the normalization condition for the Green’s
function in the presence of mass-disorder, we expand the
displacement (u) and momentum (p) in terms of normal
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modes as follows38,

u(l, t) =
1√

2M(l)

∑
s

B(s)(l)

√
1

ωs
×[

bs exp(−iωst) + b†s exp(iωst)

]
(B1)

p(l, t) =
1

i

√
M(l)

2

∑
s

B(s)(l)
√
ωs ×[

bs exp(−iωst)− b†s exp(iωst)] (B2)

Here, bs and b†s are the phonon destruction and cre-
ation operators for the sth normal mode, respectively.
Hence, they follows commutation algebra for bosons i.e[
bs, b

†
s′

]
= δss′ . The normal modes Bs(l) are defined by

a quantum number s, which take 3p values for a three
dimensional system with p ions in the basis. The normal
modes satisfy orthonormality and completeness relations,
namely ∑

l

B(s)(l)B(s′)(l) = δss′∑
s

B(s)(l)B(s)(l′) = δll′ . (B3)

Inverting Eq. (B2) to get the phonon creation (bs) and
annihilation operators (b†s) in terms of displacement and
momentum operators in frequency space, we get (using
Eqs. B3),

bs =
∑
l

Bs(l)
1√

2M(l)ωs

(
M(l)ωsu(l, ω) + ip(l, ω)

)
(B4)

b†s =
∑
l

Bs(l)
1√

2M(l)ωs

(
M(l)ωsu(l, ω)− ip(l, ω)

)
.

(B5)

Using the definition of displacement-displacement
Green’s function as given in Eq. (A2), we get

iD(l, l′, ω) = i
1√

M(l)M(l′)

∑
s

Bs(l)Bs(l′)
1

(ω+)
2 − ω2

s

.

(B6)
Thus, the normalization condition in mass-disordered
systems is

− Im

π

∫ ∞
0

dω (2ω+)
√
M(l)D(l, l′, ω)

√
M(l′) = δll′ .

(B7)
Appendix C: Physical density of states from the

DCA and the TMDCA

In Fig. 7, we show results for the arithmetically aver-
aged phonon spectra computed within the DCA (black)

and TMDCA (red) for a binary, isotopic mass distribu-
tion with fixed concentration c = 0.5, and various mass
ratios (Mimp/M0).

The main message here is that the physical density of
states must not be dependent on the hybridization of the
cluster provided that the cluster is large enough. And
it is seen clearly in Fig. 7 that the ADOS from DCA
and TMDCA are identical for all disorder potentials for
larger clusters, i,e Nc = 64 and 125. For Nc = 1, the two
differ significantly at higher disorders, which is expected
as mentioned above. However, ADOS is same for low
disorder for all the cluster sizes Nc = 1, Nc = 64 and
Nc = 125, showing that TMDCA yields the same results
as DCA at low disorder. Also, observe that the ADOS
is the same for cluster sizes Nc = 64 and Nc = 125,
which ensures the convergence of the results as cluster
size increases.

FIG. 7. The evolution of the ADOS calculated using the DCA
(black curves) and TMDCA (red dashed curves) for cluster
sizes of Nc = 1, 64 and 125 at various values of disorder po-
tential V with fixed impurity concentration c = 0.5 for a
binary, isotopic distribution of masses in three dimensions.
The ADOS obtained from the DCA and TMDCA differ sig-
nificantly from each other for cluster size Nc=1, whereas for
higher cluster size (Nc=64 and Nc = 125), the two are com-
pletely identical to each other for all disorder potentials. This
result indicates that at higher cluster size, ADOS is indepen-
dent of hybridization function Γ(K, ω), and equivalently the
disorder averaging procedure.
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