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We study localization and charge dynamics in a monochromatically driven one-dimensional An-
derson insulator focussing on the low-frequency, strong-driving regime. We study this problem
using a mapping of the Floquet Hamiltonian to a hopping problem with correlated disorder in one
higher harmonic-space dimension. We show that (i) resonances in this model correspond to adiabatic
Landau-Zener (LZ) transitions that occur due to level crossings between lattice sites over the course
of dynamics; (ii) the proliferation of these resonances leads to dynamics that appear diffusive over
a single drive cycle, but the system always remains localized; (iii) actual charge transport occurs
over many drive cycles due to slow dephasing between these LZ orbits and is logarithmic-in-time,
with a crucial role being played by far-off Mott-like resonances; and (iv) applying a spatially-varying
random phase to the drive tends to decrease localization, suggestive of weak-localization physics.
We derive the conditions for the strong driving regime, determining the parametric dependencies of
the size of Floquet eigenstates, and time-scales associated with the dynamics, and corroborate the
findings using both numerical scaling collapses and analytical arguments.

I. INTRODUCTION

The advent of new technologies to control and probe
artificial quantum matter in extremely isolated settings
has generated immense interest in the study of non-
equilibrium dynamics of quantum systems1–5. Much of
this interest has been directed at the study of quantum
quench protocols2,3,6,7. On the other hand, coherent pe-
riodic driving—naturally achieved using lasers in experi-
mental setups—has been primarily used to adiabatically
engineer novel Hamiltonians8–12. The reason for this is
that in the former case the energy pumped into the sys-
tem is bounded—one can then study associated questions
of re-equilibration, dynamical instabilities, novel corre-
lations, etc.—while for the latter it was until recently
believed13–16 that periodically driven systems eventually
heat up to infinite temperature, forming an incoherent
soup devoid of novel properties.

Recent work has shown that periodically driven sys-
tems can avoid heating up indefinitely, or take an in-
ordinately long time to do so, and exhibit interesting
physics entirely novel to them. These include the dis-
covery of long-lived prethermal states in driven quantum
systems17–20, the Floquet many-body-localized (MBL)
phase21–23, discrete time crystals24–27, re-entrant MBL
phases that emerge only due to driving28,29, integrable
Floquet phases30, and new topological phases31–35. Fur-
ther, experiments (including many notable ones in tra-
ditional condensed matter systems, see Refs.36–38) have
both corroborated some of these findings39–42 and pro-
vided examples43–46 of new dynamical phenomena in
strongly driven settings. Thus, periodic driving has
emerged as a new tool in understanding the non-
equilibrium properties of quantum matter.

While much progress has been made in establishing
the existence of localized (that naturally escape the heat
death) Floquet phases, much less is understood about
the precise nature of localization and dynamics in such

systems. Semi-analytic arguments exist that outline the
conditions wherein the Floquet-MBL phase should get
destabilized by a strong periodic drive23 or display non-
linear heating/dynamical regimes47, but a more quanti-
tative, and detailed analysis of the strong-driving regime
has not been carried out. A recent work48 provides con-
ditions on the stability of a weakly driven Anderson insu-
lator, but does not delve into the strong-driving regime.

In this work we treat the problem of periodically driv-
ing a disordered system on the simpler platform of a one-
dimensional Anderson insulator. Using methods first de-
veloped by J. Shirley49, this problem can be mapped on
to a quasi-one-dimensional single-particle hopping prob-
lem, in an additional harmonic-space dimension [besides
the real space dimension(s), see Fig. 2] which is effectively
limited to a width ∼ 1/ω. This provides both a better
analytical handle of the problem and allows for accurate
numerics to corroborate analytical expectations. It is
also suitable for treating the strong driving regime ac-
curately which stands in contrast to the high-frequency
Magnus expansion50.

In the weak-driving regime, wherein the coupling to the
drive is weak, or the drive-frequency is high, the system
remains localized on length scales of the static localiza-
tion length. As we show, in the higher-dimensional de-
scription of the problem, this regime corresponds to the
situation where only isolated resonances exist between
different lattice sites. The strong-driving regime is ob-
tained when these resonances proliferate. However, the
proliferation of these resonances does not lead to delo-
calization in the one-dimensional Anderson model—this
is clear from the quasi-one-dimensional character of the
Floquet-Hamiltonian description of the problem, and the
prevalence of localization in one dimension for arbitrarily
weak disorder51,52. Understanding the fate of localization
and dynamics in this regime is the main goal of this work.

First, we show that resonances in this higher-
dimensional model correspond to adiabatic Landau-Zener
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FIG. 1. A picture illustrating the physics of the strong driving
regime. Landau-Zener transitions proliferate, but the Floquet
eigenstates are still localized and form from closed circuits of
these LZ transitions. The size of these orbits is given by the
diffusive spread of charge on the timescale of a single drive
cycle. Actual charge transport over many drive cycles oc-
curs due to dephasing between Mott-like pairs of these orbits.
This occurs at time-scales exponentially large in the distance
moved.

(LZ) transitions—as the local potential is varied over
a drive cycle, level crossings between pairs of sites oc-
cur and only those pairs among these which involve adi-
abatic charge movement correspond to the resonances.
The typical length scale at which these resonances occur
is xad = ξ

2 log(W 2/Aω), where ξ is the static localization
length, W is the typical disorder strength (of the order of
the tunneling amplitude), A is the drive amplitude and
ω is the drive frequency. As mentioned above, the lo-
calization properties of the system are not altered until
such resonances proliferate; this occurs above a critical
amplitude Ac for which xad . xLZ, where xLZ ≈ W/A
is the length at which one certainly finds a level crossing
between sites in the disordered landscape of the Ander-
son model. We find clear numerical evidence showing
that this critical drive amplitude depends only logarith-
mically on the drive frequency, and linearly on the tun-
neling strength, as suggested by these expressions.

In the strong driving regime, we argue that Flo-
quet eigenstates are localized on a length ξF ∼
xad (xad/xLZ)

1/2
; this comes from the picture that Flo-

quet eigenstates are closed LZ ‘circuits’, wherein the
charge performs random walk in the space of LZ transi-
tions, eventually returning to the origin after a complete
drive cycle. Since the expected number of LZ in each
cycle is given by xad/xLZ, and each step is of the length
xad, the distance ‘diffused’ in one drive cycle gives the
size of the Floquet eigenstates. We find excellent scaling
collapse of the numerical data (see Fig. 4) that corrobo-
rates this picture. We provide a caricature of this physics
in Fig. 1.

A further important observation is the logarithmic
spread of charge over many drive cycles, measured stro-
boscopically [Fig. 5 (a)]. As we explain below, this loga-
rithmic spreading likely occurs due to dephasing between
Mott-like pairs53 of various LZ orbits (equivalently, Flo-
quet eigenstates) at a rate Γ(x) ∼ e−x/ξF τ(A,ω,W ),

where the exponential dependence in x comes from the
fact that the matrix element for a local position oper-
ator connecting different Floquet eigenstates distance x
apart decays exponentially (in x). Note also that the
logarithmic-in-time growth emerges most clearly after av-
eraging over many initial starting locations of the charge.
Moreover, even though the charge displacement saturates
at long times at a distance of the order of ξF , the full
probability distribution of the charge displacement [see
Fig. 6 (a)] has considerable weight at farther distances.
This again shows the influence of ‘rare’ long-distance
Mott pairs in the dynamics. The timescale τ(A,ω,W )
can be expressed in terms of ξF , and suitable Bessel func-

tions; it scales as τ(A,ω,W ) ∼
√

A
W 3/2ω1/2 , and we verify

this dependence via a scaling collapse [Fig. 5 (b)] of the
data.

We note that the picture of LZ orbits within the con-
fines of which the particle performs diffusive motion, but
is ultimately localized is reminiscent of weak-localization
physics. This picture is reinforced by the observation
that an application of the drive with a random, spatially-
varying phase enhances the size of these orbits without
changing the essential physics [Fig. 5 (c)]. We conclude
by a limited discussion of some aspects of the problem in
higher dimensions, and multi-harmonic drives.

II. MODEL AND OBSERVABLES

We study the one-dimensional Anderson model,

HAnderson =
∑
x εxf

†
xfx − tf†x+1fx − h.c. with lo-

cal energies εx drawn uniformly ∈ [−W/2,W/2], un-
der the application of a periodic drive that modulates
the local potential in a staggered manner: HDrive =
2
∑
x f
†
xfxAcos {ωt+ [π + δ(x)]x}. In what follows, we

set t = 1. Note that δ(x) = const. 6= 0 is special
as it lends a chirality to the drive which can dramati-
cally change the properties of the system for large δ; this
case will be discussed later. We assume for now that
δ(x) = 0 although our results apply equally to the case
when δ(x)� 1 and random.

The Floquet eigenfunctions are given by Bloch’s the-
orem by |ψα(t)〉 = e−iεαt |φα(t)〉, where |φα(t)〉 is a
periodic function of time, with period Tω = 2π/ω,
and εα is the quasi-energy defined modulo ω. |φα(t)〉
can be expanded in the basis of harmonics of ω, and
real-space coordinates, denoted by |n, x〉: |φα(t)〉 =∑
n,x φα(n, x) |n, x〉 einωt where the coefficients φα(n, x)

are given by eigen-solutions of the following Floquet
Hamiltonian HF (for a derivation see for example
Refs.48,49):

HF =
∑
n,x

A[eiπ+iδ(x)c†n,xcn+1,x + h.c.],

− t
∑
x

[c†n,xcn,x+1 + h.c.] +
∑
n,x

(εx + nω)c†n,xcn,x, (1)
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FIG. 2. The Floquet Hamiltonian. Hopping in the real space
direction occurs with the real parameter t = 1, while hopping
in the harmonic space direction occurs with an amplitude
proportional to the drive strength A, and a phase πx+ δ(x).
A drive with phase δ(x) 6= 0 shows up as an effective magnetic
field in the Floquet Hamiltonian.

where we will set t = 1. HF has an extremely sim-
ple physical interpretation in terms of the number n of
photons of the drive: each photon costs as energy ω,
and consequently, the local potential at any site (n, x) is
εx + nω. The drive A0e

iωt + A∗0e
−ωt doesn’t change the

position (since it couples to the local density) of the par-
ticle but can give or absorb a harmonic, with amplitude
A0 or A∗0, and shows up in terms such as c†n,xcn+1,x. The

operators c†n,x and cn,x retain the statistics of the original
particles in the Anderson system since the absorption of
any number of bosons does not change this. A drive with
a phase δ(x) shows up as an effective magnetic field in
the problem. These features are illustrated in Fig. 2.

The Hamiltonian has L (real-space dimension) unique
eigenfunctions which can be found by exact diagonaliza-
tion. All other eigenstates are constructed by transla-
tion in harmonic space, and a corresponding increase
in energy by appropriate multiples of ω. Thus, we di-
agonalize HF restricting the number of harmonics to
n ∈ [−N/2, N/2], where N ∼W/ω.

To compute the Floquet localization length ξF , we
use the transfer matrix method54,55. In this case, the
system is truly quasi-one-dimensional and so the trans-
fer matrix method can be used directly without resort-
ing to scaling assumptions. For completeness, we note

that transfer-matrix approach calculates the transmit-
tance between the left end (in real space) of this quasi-
1D strip to the right end using a recursive approach that
in particular, allows one to take L as large as one wishes
(in practice, until desired accuracy in computing ξF is
achieved); see Ref.54 for details. In terms of the re-
solvent matrix G(L) = (E − H)−1 connecting the N
harmonic-space sites at the left end of the sample to
those at the right end, the Floquet localization length
is given by ξ−1

F = limL→∞[2(L − 1)]−1ln Tr
[
GG†

]
. Fi-

nally, we note the following subtle point. The use of
this method for the dynamical problem we consider here
is predicated on the basis that the probability of find-
ing a particle at some site x depends only the magni-
tudes |φα(n, x)|2 (for all harmonics n). This turns out
to be true in a time-averaged sense: average occupa-
tion of a particle at site x over a drive cycle is given by∣∣φ̄α(x)

∣∣2 = 1
T

∫ T
0
|〈x| ψα〉|2 =

∑
n |φα(n, x)|2. As we will

show, the phase information between these coefficients is
crucial to obtaining the dynamics.

One can compute the dynamics of charge as follows.
We denote by |ψα〉 as one of the L unique eigenfunc-
tions of HF , and |ψα+mω〉 as the translation of the this
wave-function by m harmonics. The completeness rela-
tions read 〈ψα+mω| ψβ+m′ω〉 = δmm′δαβ . Assuming the
system starts in an initial state |x0, n = 0〉, the wave-
function at time t = 0, is given by |ψx0

〉 (t = 0) =∑
m,α 〈ψα−mω| x0, 0〉 =

∑
α,m φ

∗
α(x0,m) |ψα−mω〉. At

time t, |ψx0
(t)〉 =

∑
α,m φ

∗
α(x0,m)eimωt−iεαt |ψα−mω〉.

Now, the probability P (xt|x0) to find the parti-
cle at site xt at time t is given by P (xt|x0) =∣∣∑

n

〈
xt,−n

∣∣ e−inωt ∣∣ψx0(t)
〉∣∣2. This finally yields

P (xt|x0) =

∣∣∣∣∣∑
α

e−iεαtO∗α(x0, t)Oα(xt, t)

∣∣∣∣∣
2

,

Oα(x, t) =
∑
n

φα(x, n)e−inωt. (2)

For stroboscopic measurements, t = lT , the expression is
simplified further as all internal exponents e±inωt evalu-
ate to 1. Using completeness relations one can show that∑
xt
P (xt|x0) = 1 for all times. Combined with that fact

that P (xt|x0) > 0 for all xt, shows that P (xt|x0) is indeed
a probability distribution, as expected. From this distri-
bution, one can surmise the rms distance ∆x(t) travel by

the charge in time t, as
√∑

xt
(xt − x0)2P (xt|x0). We

further note that, reassuringly, the precise choice of har-
monic configuration of the initial state [in this case, oc-
cupation of only n = 0 harmonic in |ψx0

(t = 0)〉] does not
alter the result for this probability distribution.
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FIG. 3. Floquet localization lengths ξF calculated using the transfer matrix method for different drive settings (frequency ω,
amplitude A) and disorder strengths (a) W = 2, (b) W = 1, and (c) W = 0.5. The shaded regions describe the critical drive
amplitude at which the system should occur the strong driving regime, as per the picture of proliferation of resonances in the
Floquet Hamiltonian.

FIG. 4. Scaling collapse of the Floquet localization length
ξF shown in Fig. 3 according to the scaling ξF,th =

c(ω,W )xad (xad/xLZ)1/2. c(ω,W ) is determined by the con-
ditions xad(Ac) = xLZ(Ac), and ξF,th(Ac) = ξ, where ξ is the
static localization length. The vertical dashed lines delineate
(approximately, ignoring logarithmic frequency dependence)
the critical amplitude A = Ac above which the strong driving
regime holds for the different disorder strengths W = 0.5, 1, 2.

III. NUMERICAL RESULTS

We first present the results for the Floquet localization
length. The calculations have been performed using the
transfer-matrix approach, using lengths L ∼ 80, 000 and
a harmonic-space width of about 200 − 800 harmonics,
with increasingly larger widths used until convergence
is obtained. Fig. 3 shows the Floquet localization length
for a number of drive amplitudes A ∈ [10−4, 1]W and fre-
quencies ω ∈ [10−3, 1]W , and different disorder strengths
W = 0.5, 1, 2. We see that the Floquet localization length
does not deviate significantly from the static localiza-
tion length below a critical drive amplitude Ac. Ac is
seen to depend weakly on the drive frequency, but varies

rapidly with the disorder strength W . In the strong driv-
ing regime, that is, for A > Ac, the Floquet localization
length grows rapidly with increasing drive amplitude, but
the growth itself depends weakly on the drive frequency.
At drive amplitudes A ∼ W , the Floquet localization
length decreases again to values of the order of the static
localization length (or lower). This likely occurs in a
manner similar to that discussed in Refs.28,29 where tun-
neling is strongly suppressed by the drive; we do not
investigate this regime in detail and instead focus on the
regime of strong driving where both drive amplitude and
frequency are smaller than the single-particle bandwidth
∼ W . In this regime, a scaling collapse can be obtained
for the Floquet localization length, as show in Fig. 4. The
dominant behavior of ξF ∼

√
A, ln(ω), will be explained

in detail later.

We next discuss the time-dependent charge spread.
Fig. 5 (a) shows the rms distance traveled by the charge
as a function of time for some drive parameters. These
results have been obtained by exact diagonalization of
the Floquet Hamiltonian, for system sizes L ≤ 1200,
and harmonic-space width N ≈ 4W/ω ≤ 800; conver-
gence occurs for L � ξF indicating the role of long-
distance Floquet eigenstates in charge spreading. The
Hilbert space dimension, L×N , of the matrix encoding
HF can thus reach ∼ 106 in our simulations, which is
prohibitively large for performing exact diagonalization.
We use built-in sparce-matrix routines in MATLAB to
extract the unique L eigenfunctions in the energy inter-
val ∈ [−ω/2, ω/2]. Convergence is obtained for N = N0

such that for any N > N0, the algorithm finds precisely
L eigenfunctions in the above energy interval.

Note that the averaging procedure is important for ob-
tained a pure logarithmic growth and has some analogy
to rare region physics in quenched disorder settings56,57.
We perform averaging over all initial starting sites for
a given disorder realization and over 10 disorder realiza-
tions. An initial rapid spread up to a distance ∼ ξ occurs
ballistically within a single drive cycle, followed by a slow
logarithmic-in-time spread over many hundreds of drive
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FIG. 5. Dynamics in a driven Anderson Insulator. (a) Logarithmic growth of rms distance ∆x in time t shown for the case
ω = 0.02, W = 1. The logarithmic occurs beyond the single drive cycle time, Tω = 100π in this case. (b) Scaling collapse
of logarithmic-in-time dynamics by rescaling length and time axes: ∆x′ = ∆x/ξF and t′ = t

√
W 3Tω/A. The collapse is

performed for W = 1, and multiple drive frequencies and amplitudes (corresponding to the strong driving regime). Note that
the departure from the logarithmic group at small times t′ is associated with the real-time dynamics for times t . Tω. (c) Weak
localization of LZ orbits: application of a random spatially-varying drive phase results in larger LZ orbits. The application of
a non-random phase with a fixed spatial gradient develops topological properties and shows diffusive dynamics instead (while
still being localized on a much larger scale not capture in this finite-size simulation).

cycles, ultimately saturating at a distance of ∼ ξF . Fig. 5
(b) shows the scaling collapse of slow logarithmic spread
in terms of the following variables: x′ = x/xrms(t = ∞)
and t′ = t/τ , where τ = A√

ωW 3/2 . Note that only data

from W = 1 was used in the scaling collapse. Fig. 6 (a)
shows the full probability distribution P (xt|x0 = 0) for
various times (exponentially spaced). The distribution
is always peaked at the origin, indicating localization,
while the exponential envelope grows broader exponen-
tially slowly in time. Note that the probability distri-
bution is non-zero at scales � ξF , which illustrates the
importance of faraway resonances in the spread of charge.

We also investigate changes in the dynamics due to
a drive with random spatially-varying phase, the results
of which are shown in Fig. 5 (c); as the randomness is
increased, charge-spread continues be logarithmically in
time, but the infinite-time displacement is greater. Thus,
we see that phase coherence in the driven plays an im-
portant role in determining the size of the Floquet eigen-
states, which is suggestive of weak-localization behavior.
In Fig. 5 (c), we also provide an example of the case
when the phase of the drive varies linearly in space, that
is δ(x) ∼ qx, q 6= 0, π. This case is markedly differently
from the random phase case, as charge spread now occurs
diffusively (∆x ∼

√
t). As apparent from Fig. 2, this case

corresponds to the situation where the Floquet Hamilto-
nian has a constant magnetic field. Given the finite size
of the system in the harmonic-space direction, the sys-
tem develops edge states. The charge can scatter from
one edge to another due to disorder, and hence spreads
diffusively.

IV. RESONANCES IN THE FLOQUET
HAMILTONIAN

We now explain the above findings by first analyzing
the resonance structure in the Floquet Hamiltonian, and
subsequently providing the physical picture of these reso-
nances in terms of adiabatic LZ transitions and dephasing
between various spatially separated Floquet eigenstates.

To begin with, we consider the toy model

H = −∆

2
σx −

ε0
2
σz −

A

2
σz
(
eiωt + e−iωt

)
. (3)

The Pauli-spin operators operate on the two real-space
sites in this toy model. If ∆ = 0, the eigenfunctions ξL,k
and ξR,k′ for the left L and right R sites, are given by58,59

ξL,k =



.

.

.
J2(A/ω)
J1(A/ω)
J0(A/ω)
J1(A/ω)
J2(A/ω)

.

.


ξR,k′ =



.

.

.
J2(−A/ω)
J1(−A/ω)
J0(−A/ω)
J1(−A/ω)
J2(−A/ω)

.

.


(4)

where J0(A/ω) is the kth and k′th component of the left
and right eigenfunctions, whose energies are ε0/2 + kω
and −ε0/2 + k′ω, respectively. Here Jn is the nth Bessel
function of the first kind. First, this implies that the
width of wave-functions in harmonic space is given by
A/ω, as one may expect: the drive at any site can change
the energy at most by A. Next, if we turn on hopping
between these sites, and consider only resonant terms,
the effective Hamiltonian governing the mixing of these
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FIG. 6. (a) The full distribution P (xt|x0 = 0) is plotted

at times t = 2[1,2,3,4,5,6,7,8,9] Tω, for W = 1, ω = 0.02,
and A = 0.2. The probability distribution changes its slope
logarithmically-in-time, which naturally gives rise to the log-
arithmic charge spread. Note that the disitrbution has weight
at length scales much greater than ξF ≈ 75 in this case, and
illustrates the role of far-off resonances in the charge spread.
(b) A characteristic Floquet eigenstate in real-space x and
harmonic space n; we see that real-space clusters are sepa-
rated in harmonic space by ∼ 2A/ω ≈ 20, as discussed in the
main text. (c) The position of maximum probability 〈x〉max is
plotted in this eigenstate over one time period Tω and shows
large LZ hops.

left and right site eigenstates is given by

Heff. =

(
−ε0/2 ∆Jn0

(2A/ω)
∆Jn0

(2A/ω) ε0/2− n0ω

)
(5)

where we assume ε0 ≈ n0ω, and we used the re-
lation

∑
n Jn(x)Jm−n(x) = Jm(2x). Assuming stan-

dard Anderson-model phenomenology applies, that is,
∆ ∼ We−x/ξ, where x represents the distance between
the L and R sites, the condition for a resonance between
these states becomes: ω . We−x/ξJn0

(A/ω). Assum-
ing we are in the strong driving regime, where A � ω

(recall that Ac depends only logarithmically on ω, and
thus, for ω � W , Ac > ω), the resonance condition is:

x < xad = ξ
2 ln
(
W 2

Aω

)
, and n0 < A/ω.

The second condition amounts to requiring that the
energy difference between the two sites, ε0, is surmount-
able by the the change in local potential ∼ A due to the
drive. Now, the probability for the second condition to
be fulfilled between any two sites is p = 1/xLZ = A/W .
Concomitantly, within a radius ∼ xLZ from the chosen
site, we are certain to fulfill the second condition for a
potential resonance. Finally, for the resonances to ‘pro-
liferate’, the necessary condition is xLZ < xad. One can
easily check that this occurs for a critical drive ampli-
tude, A > Ac where Ac scales as ∼ W , ln(ω), as seen in
the numerics.

The resonance structure discussed here is easily seen in
eigenfunctions found numerically. A characteristic eigen-
function for ω = 0.02, A = 0.2 has been plotted in
Fig. 6 (b), where one clearly sees harmonic-space spread
of n ∼ 2A/ω = 20 of the eigenfunction at any on site.
One also sees how clusters of real-space size ∼ 40 emerge
at the length xad which in this case is a factor of 2 smaller
than ξF ∼ 75. The dynamics of the charge in a sin-
gle time period Tω in this eigenstate has been plotted in
Fig. 6 (c) and shows clearly the LZ hopping.

The above picture also brings out the quasi-1D na-
ture of the problem. Thus, we again have an Anderson
problem with renormalized hopping energies, which are
disordered, and on-site energy mismatches of the order of
ω. Thus, we expect these resonances to interfere and lo-
calize. To make further predictions regarding the size of
these Floquet eigenstates, and the dynamics, we consider
a more intuitive picture of these resonances, in terms of
adiabatic LZ transitions.

V. LZ ORBITS, EXPONENTIALLY SLOW
DEPHASING, AND WEAK LOCALIZATION.

The role of LZ transitions in the heating, dynam-
ics, and ultimate breakdown of the many-body-localized
phase has already been considered in Refs.23,47. The res-
onances discussed above are also connected to LZ tran-
sitions in this single-particle situation. The probability
of an adiabatic LZ transition between two sites during

the course of the drive cycle is Pad = 1− e−∆2/Aω, where
∆ = We−x/ξ; we see that Pad & 1/2 for x < xad, as
defined above. Moreover, a LZ crossing only occurs if
the on-site energies are at most separated by energy A.
This again implies that the probability of finding a level
crossing with a chosen site within a distance xLZ = W/A
is near unity.

We can now use this picture to better describe the
dynamics of the problem and understand the structure
of Floquet eigenstates. We note that, as the local po-
tential is varied, the first adiabatic LZ transition is en-
countered when the local potential changes by an amount
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A′ ≈ W/xad, and involves a transfer distance of xad.
There are thus ≈ A/A′ = xad/xLZ such resonances in a
given drive cycle. Thus, if the particle has a probability
of hopping left or right, with roughly equal probability, it

will end up traveling a distance ξF ∼ xad (xad/xLZ)
1/2

in
a drive cycle. We denote ξF,th = c(ω,W )ξF , where we set
c(ω,W ) such that ξF,th(Ac) = ξ at A = Ac(ω,W ), and
the subscript in ξF,th indicates that this is our theoreti-
cal expectation. Fig. 4 shows that, in the strong driving
regime, there is good agreement between ξF found nu-
merically and ξF,th.

When measured stroboscopically, at times t = 2πl/ω,
charge motion occurs only due to hopping of the charge
between these LZ orbits (which are themselves closed).
Examining Eq. (5), we note that the time-scale at which
this occurs is given by τ−1

0 ∼ We−x/ξF Jn(A/ω), where
n is arbitrary and x & ξF is the distance between the
centers of these orbits. The exponential decay is due to
the locality of the Floquet eigenstates and the operator
x̂ at any given site. These couplings lead to effective
Mott-like pairs53 between the LZ orbits which dephase
at time scale τ0, resulting in charge 1/ξF to hop a dis-
tance x. The time it takes to transfer a unit of charge (a
distance x), is thus t(x) = τ0ξF ; inverting this results in

x(t) ∼ ξF ln

(
const.t

√
ωW 3

A2

)
where the const. contains

logarithmic dependencies on all parameters which we ne-
glect. Fig. 5 (b) confirms the scaling predicted in this
relation.

We note that individual instances of charge motion
from a given initial position do not show the ideal loga-
rithmic behavior: this is because such dephasing occurs
between widely separated LZ orbits, at distances x� ξF ,
and there are discrepancies between the spatial arrang-
ment of different Floquet eigenstates in any given disor-
der realization. The role of long-distance hopping is clear
from the fact that probability distribution P (xt|x0) has
non-zero weight at the longest scales ∼ L in the system,
see Fig. 6 (a). We also note that, this logarithmic-in-time
behavior must saturate eventually at a maximal distance
∼ ξF ; at infinite time, the particle has an exponentially
small probability, in x, of being distance x afar from the
origin, and this leads to all moments of P (xt|x0) being
finite at infinite time.

The localization of Floquet eigenstates is clearly sen-
sitive to the phase accumulated by the charge over the
course of the complete drive cycle. One can check this
by adding a random phase δ(x) at each site, as in
Eq. (1). As is clear from Fig. 2 This induces a flux
Φ(x) = δ(x) − δ(x + 1) in the plaquettes at site x in
the harmonic-space representation of the problem, and
thus serves the role of a random magnetic field. As is
characteristic of weak localization in two dimensions60,
we see that this tends to increase the localization length
of the Floquet eigenstates, while preserving all other fea-
tures of the dynamics. A more drastic change occurs

for δ(x) = const.. The Floquet Hamiltonian now cor-
responds to the Quantum Hall/Hofstadter61 system and
the energy gradient of ω in the harmonic space direction
results in currents flowing in opposite directions along
the ends of the harmonic-space ‘edges’. Due to disorder,
charge can scatter between these edge states, and as a
result, spreads diffusively.

VI. DISCUSSION AND CONCLUSIONS

In this work, we studied the strongly monochromat-
ically driven Anderson model in one space dimension
by examining the associated Floquet Hamiltonian in one
higher harmonic-space dimension. We showed that res-
onances in this Hamiltonian correspond to adiabatic LZ
transitions in the dynamical problem, and provided con-
ditions for the proliferation of these resonances. In this
strong driving regime, Floquet eigenstates can be un-
derstood as closed LZ orbits (of characteristic size and
hops as discussed in the main text). Dephasing between
faraway orbits forming Mott-like pairs occurs at expo-
nentially slow time-scales and gives rise to logarithmic-
in-time charge spread. The orbits themselves are con-
structed by interference effects which are consequently
affected by randomizing the local phase of the drive. A
more systematic study of the dynamics in the presence
of random drive phases is left for future work.

We note that our arguments likely apply as is to Ander-
son insulators in two dimensions. However, the presence
of a mobility edge in three dimensions and greater52 is
likely to destroy the localization effects we study here. A
more numerically accessible test of the effect of a mobility
edge would lie in studying the one-dimensional Aubrey-
Andre model62 and its generalizations63. We note in
passing that multiple incommensurate-frequency drives
can be studied as higher dimensional (one dimension for
each drive) analogues of the problem we have considered
here. By analogy with known results from the Anderson
model in d-dimensions, we expect the system to become
delocalized upon the application of three drive frequen-
cies; this is surprising since two incommensurate frequen-
cies are enough to form a ‘bath’ that is dense in frequency
space. It is also worth asking whether logarithmic-in-
time behavior seen in the energy spread, as seen16 at
the intersection of the Floquet-ergodic and Floquet-MBL
phases occurs via a phase locking of LZ transitions be-
tween many-body eigenstates in a manner similar to the
real-space LZ orbits found here.
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