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Atomistic effective Hamiltonian simulations are used to investigate electrocaloric (EC) effects in the lead-free
Ba(Zr0.5Ti0.5)O3 (BZT) relaxor ferroelectric. We find that the EC coefficient varies non-monotonically with
the field at any temperature, presenting a maximum that can be traced back to the behavior of BZT’s polar
nanoregions. We also introduce a simple Landau-based model that reproduces the EC behavior of BZT as a
function of field and temperature, and which is directly applicable to other compounds. Finally, we confirm that,
for low temperatures (i.e., in non-ergodic conditions), the usual indirect approach to measure the EC response
provides an estimate that differs quantitatively from a direct evaluation of the field-induced temperature change.

PACS numbers: 77.70.+a, 77.80.Jk, 77.22.Ej

I. INTRODUCTION

The electrocaloric (EC) effect characterizes the change in
temperature induced by a change in electric field1–6, with the
electrocaloric coefficient being defined as α = ∂T

∂E

∣

∣

S
, where

T is the temperature, E is the electric field and S is the entropy.
It has the potential to be an efficient solid-state refrigeration
for a broad range of applications6–9. Numerous studies have
been recently conducted via measurements, phenomenologies
and atomistic simulations (see, e.g., Refs.1,6,10–24 and refer-
ences therein) and have led to a better knowledge of elec-
trocaloric effects in typical ferroelectrics, such as BaTiO3,
LiNbO3, Pb(Zr0.4Ti0.6)O3, (Ba0.5Sr0.5)TiO3, as well as an-
tiferroelectrics such as La-doped Pb(Zr,Ti)O3. On the other
hand, fewer investigations about EC effects25–27 have been
performed in another class of ferroelectrics, namely the re-
laxor ferroelectrics. These intriguing materials exhibit un-
usual features, such as a frequency-dependent and broad di-
electric response versus temperature while remaining macro-
scopically paraelectric down to 0 K28. They also dis-
play several characteristic temperatures (i.e., the Tb Burns
temperature, the T ∗ temperature and the Tm temperature)
that are associated with a subtle change in some physical
properties29–34. For instance, in Ba(Zr0.5Ti0.5)O3 (BZT) re-
laxor ferroelectrics, simulations35 indicate that the Burns tem-
perature (below which the dielectric response does not obey
the Curie-Weiss law36) is Tb ≃ 450 K , T ∗ ≃ 240 K,
and Tm ≃ 130 K is the temperature at which the dielec-
tric response exhibits a peak, as also in-line with measure-
ments in BZT compounds33,34,37,38. The microscopic origin
of these features is commonly believed to be the existence
of the so-called polar nanoregions (PNRs) below the Burns
temperature39. Interestingly, studies devoted to EC effects in
relaxor ferroelectrics have resulted in original findings. One
example includes the failure of indirect methods (which are
based on thermodynamic equilibrium considerations) in the
relaxor ferroelectric PVDF-TrFE-CFE terpolymer to obtain

the real change in temperature induced by an electric field
for temperatures below which the broad dielectric constant
peaks, because of non-ergodicity25. Another example is the
non-monotonic behavior of the EC coefficient with the mag-
nitude of the electric field at the fixed critical point temper-
ature TCP in Pb(Mg,Nb)O3 (PMN), (Pb,La)(Zr,Ti)O3 and
Pb(Mg,Nb)O3–PbTiO3 relaxors27; especially intriguing is the
existence of a maximum of this coefficient at the specific
field ECP for this TCP temperature, with (TCP , ECP ) cor-
responding to the critical point at which the paraelectric-to-
ferroelectric transition changes its nature from first order to
second order. It is worthwhile to realize that these latter re-
sults were obtained for lead-based relaxor ferroelectrics while
there are also (environmentally-friendly) lead-free relaxor fer-
roelectrics, such as Ba(Zr1−xTix)O3, that are fundamentally
distinct. For instance, the difference in polarizability between
Ti and Zr ions in Ba(Zr0.5Ti0.5)O3 was found to be essential to
reproduce relaxor behavior via the formation of small Ti-rich
PNRs embedded in a paraelectric matrix35, while the relaxor
nature of lead-based PMN was predicted to rather originate
from a complex interplay between random electric fields, fer-
roelectric and antiferroelectric interactions – yielding much
larger PNRs touching each other at low temperatures40. An-
other striking difference between Ba(Zr0.5Ti0.5)O3 and PMN
is that a recent atomistic simulation did not find any trace of a
first-order paraelectric-to-ferroelectric phase transition when
subjecting Ba(Zr0.5Ti0.5)O3 to electric fields, that is, the po-
larization seems to always continuously evolve with the mag-
nitude of the dc electric field in this lead-free compound41.

One may therefore wonder about EC effects in lead-free re-
laxor ferroelectrics, even more when realizing that a recent
study done in Ba(Zr1−xTix)O3 with x = 0.20 reported a
giant α electrocaloric coefficient42,43 (note that this system
is different from Ba(Zr0.5Ti0.5)O3 in the sense that it pos-
sesses a polar ground state in addition to some relaxor fea-
tures). For instance, many questions remain to be addressed
in Ba(Zr0.5Ti0.5)O3: Do indirect and direct methods also pro-
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vide different results below a specific temperature? How does
α behave with the dc electric field for the different temperature
ranges in BZT, i.e. above Tb, between Tb and T ∗, between T ∗

and Tm, and below Tm? In particular, can α exhibit a maxi-
mum for some intermediate field at any of these temperature
ranges? If such maximum exists, what is its microscopic ori-
gin? Other natural questions to ask are if and how α depends
on temperature for fixed electric fields, and if it is possible to
reproduce and understand such (presently unknown) depen-
dency.

As we will see below, this manuscript provides an answer to
all these open questions, by conducting and analyzing atom-
istic simulations on Ba(Zr0.5Ti0.5)O3 ferroelectric relaxors.
This article is organized as follows. Section II provides de-
tails about the methods used here. Results are given, analyzed
and explained in Section III. Finally, Section IV concludes
this work.

II. METHODS

We use here a first-principles-based effective Hamilto-
nian (Heff ) approach that has been recently developed for
Ba(Zr0.5Ti0.5)O3 (BZT) solid solutions35,41,44–46. The to-
tal energy of the effective Hamiltonian used here con-
tains two main terms: Eint({ui}, {vi}, ηH , {σj}) =
Eave({ui}, {vi}, ηH) + Eloc({ui}, {vi}, {σj}), where
{ui} is the local soft mode in unit cell i (which is related to
the electric dipole of that cell and that is technically centered
on the Zr or Ti ions), {vi} are variables related to the inho-
mogeneous strain inside each cell, ηH is the homogeneous
strain tensor, and {σj} represents the atomic configuration
of the BZT solid solutions (i.e., how Zr and Ti ions are dis-
tributed within the B-sublattice of BZT). Eave contains five
energetic terms: (i) the local-mode self-energy; (ii) the long-
range dipole-dipole interaction; (iii) the energy due to short-
range interactions between local modes; (iv) the elastic en-
ergy; and (v) the energy representing the interaction between
local modes and strains47. Eloc describes how the actual dis-
tribution of Zr and Ti cations affects the energetics involv-
ing the local soft-modes ui and the local strain variables, and
therefore depends on the {σj} distribution35,41,44. One can
also add to Eint an energy given by the dot product between
polarization and electric field, in order to mimic the effect of
such field on physical properties.

This effective Hamiltonian successfully predicted the ex-
istence of three characteristic temperatures in BZT, namely
the Burns temperature (Tb ≃ 450 K) below which the di-
electric response does not follow anymore the Curie-Weiss
law36, the so-called T ∗ (that is close to ≃ 240 K), and the
Tm temperature at which the dielectric response can exhibit a
peak (Tm ≃ 130 K)35, as consistent with experimental find-
ings for BZT systems33,34,37,38. This atomistic scheme also
yields polar nanoregions inside which the Ti-centered dipoles
are aligned parallel to each other, with these PNRs being dy-
namic in nature between T ∗ and Tb while, below Tm, they
are static and all have a polarization pointing along one of
the eight 〈111〉 pseudo-cubic directions35. The polarizations

of these different PNRs cancel each other, as consistent with
the fact that BZT is macroscopically paraelectric down to 0
K33–35,37,38. This effective Hamiltonian was also successful
in reproducing the unusual dielectric relaxation known to oc-
cur in relaxor ferroelectrics46. Here, we implement this Heff

within Monte Carlo (MC) and Molecular Dynamics (MD)
simulations, in order to determine and understand EC effects
in BZT relaxors – as modeled by 14 × 14 × 14 supercells
(13720 atoms) in the MC computations and 32 × 32 × 32
(32768 atoms) in the MD simulations. Note that this differ-
ent choice of supercells between the MC and MD simulations
originates from the fact that the code we used for the MD
computations can handle larger supercells, and that the use of
32× 32× 32 supercells allows the temperature change in MD
simulations to be easily sorted out from the temperature fluc-
tuations. Note also that we numerically checked that the use
of 12 × 12 × 12, 14 × 14 × 14 and 16 × 16 × 16 supercells
provides similar results, which suggests that our Monte-Carlo
simulations are free from significant size effects. These super-
cells are periodic along the three Cartesian directions, and Zr
and Ti atoms are randomly distributed inside them. We also
average our physical results over 20 of these random config-
urations for both MC and MD simulations, in order to mimic
well disordered BZT solid solutions.

Let us now indicate how we practically compute, from these
simulations, the electrocaloric coefficient α = ∂T

∂E

∣

∣

S
. One ap-

proach we use here is based on the Maxwell thermodynamical
relationship ∂S

∂E

∣

∣

T
= ∂P

∂T

∣

∣

E
leading to the adiabatic tempera-

ture change

∆T = −

E2
ˆ

E1

T (E)

CE(T )

∂P

∂T

∣

∣

∣

∣

E

dE , (1)

where P is the macroscopic polarization and CE is the heat
capacity per unit volume under constant dc electric field. Such
latter equation therefore tells us that we can obtainα from MC
simulations by computing

α = −
T

CE

∂P

∂T

∣

∣

∣

∣

E

. (2)

This way of extracting α is coined MC-1 here.
For instance, Fig. 1(a) reports the polarization as a

function of temperature obtained from MC simulations on
Ba(Zr0.5Ti0.5)O3, for dc electric fields all applied along the
pseudo-cubic [001] direction and ranging between 2.0 × 107

and 3.0×108 V/m in magnitude. Values of ∂P
∂T

∣

∣

E
are then ob-

tained from cubic B-spline fits to these P (T ) curves, which
allows us to determine α via Eq. (2). Note that the heat
capacity at a given electric field E is calculated as: CE =

(N
〈Eint

2〉−〈Eint〉
2

T 2kB
+ 15

2 kB)/V , where N is the number of
sites in the supercell, Eint is the total internal energy pro-
vided by the effective Hamiltonian, 〈 〉 denotes the average
over the MC sweeps at every considered T temperature, kB is
the Boltzmann constant, and V is the volume of the unit cell.
The factor 15

2 in that formula reflects that there are five atoms
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in the unit cell of perovskites16. Moreover,CE is computed for
different temperatures and electric fields, implying that it can,
in principle, depend on T and E . However, we numerically
found that these dependencies are rather weak as consistent
with measurements42 and that CE is always very close to 2.18
MJ/K m3.

Interestingly, there is another way to obtain the EC coeffi-
cient from MC runs, that is by taking advantage of the cumu-
lant formula given in Ref.48:

α = −Z∗alatNT {
〈|u|Eint〉 − 〈|u|〉 〈Eint〉

〈

Eint
2
〉

− 〈Eint〉
2 }, (3)

where Z∗ is the Born effective charge, alat is the five-atom
lattice constant, N is the number of sites in the supercell, T is
the considered temperature, u is the supercell average of the
local mode, Eint is the total energy of the effective Hamilto-
nian, and 〈 〉 denotes the average over the MC sweeps at ev-
ery considered temperature. This method will be called MC-2
here. Technically, the computation of α via Eq. (3) is done for
a chosen combination of temperature and magnitude of a dc
electric field applied along the pseudo-cubic [001] direction,
which therefore allows us to determine the effect of temper-
ature and applied electric field on the EC coefficient. In the
following, we will also be interested in comparing the predic-
tions of MC-1 and MC-2, mostly because the MC-2 method is
less known than MC-1 while being computationally more ac-
curate (since, unlike MC-1, it does not rely on a fit of ∂P

∂T

∣

∣

E
).

Regarding the direct approach, we determine the elec-
trocaloric coefficient by using the ramping method of
Ref.18 within Molecular Dynamics. First, an Evans-Hoover
thermostat49,50 is used in the MD simulations in order to equi-
librate the system at an initial temperature T when no electric
field is applied. The electric field is then applied along the
pseudo-cubic [001] direction and ramped up (with time) from
zero to a specific value, Ef , and then ramped down from Ef to
zero. Practically, we chose the time dependence of the applied
field E(t) amplitude to be

E(t) =
Ef
2

(

tanh

(

t− tup

τ

)

− tanh

(

t− tdown

τ

))

, (4)

where tup and tdown denote the times when the field magnitude
reaches Ef/2 during ramping up and down, respectively. The
ramping up/down time frames thus correspond to

tup/down − τ/2 . t . tup/down + τ/2, (5)

with τ representing the time interval during which the field
on/off switching happens. The “hyperbolic tangent” time pro-
file is commonly used in linear response calculations and was
chosen to obtain a smooth time dependence of the external
field. Notably we observed no significant differences with
test calculations where the time dependence of the external
field was assumed linear as described in Ref.18. To test the
convergence of results with respect to τ , and the integration
time-step ∆t, the test runs were performed for values of τ

ranging from 20 ps to 200 ps and values of ∆t from 0.001 fs
to 4 fs. All the simulation were performed using the Omelyan
second order symplectic integration algorithm51. Based on
the convergence tests, the final chosen value of τ was of 188
ps with ∆t equal to 0.1 fs ensuring the energy conservation
for constant field simulation up to the maximum relative error
of 10−6. The inverse rate of the change of the applied field
was thus close to 188 fs · cm/kV for the applied field magni-
tude of 1000 kV/cm. For the chosen simulation parameters,
we find that the calculated field induced temperature change
upon ramping down ∆Tdown is equal in magnitude, but oppo-
site in sign, to the temperature change ∆Tup produced by the
switching on the external field for temperatures above Tm — a
result that is naturally expected for time-reversible processes.
However, for T < Tm, during the ramping down of the ap-
plied field the temperature first exhibited a drop which was
subsequently followed by an increase (note that this result was
also tested for convergence with respect to τ and ∆t). Such
behavior, broadly speaking, can be attributed to the loss of
ergodicity below Tm. The detailed investigation of the micro-
scopic mechanism responsible for this unusual behavior lies
beyond the scope of the current study and, for the purposes of
the present work, the EC temperature change ∆T was defined
to be equal to ∆Tup, and the α EC coefficient associated with
a specific field’s magnitude can then be obtained by taking the
derivative of ∆Tup with respect to Ef at this specific field’s
magnitude. Such results will be denoted as “MD” here52.

Note that data from MC-1 and MC-2 approaches can be
considered to be associated with the indirect method to obtain
EC effects, because they are based on thermodynamic equi-
librium. On the other hand, data obtained from MD com-
putations yield the direct EC effects, which may differ from
those obtained from the indirect way for systems adopting
non-ergodic behavior, as the one that relaxors are known to
exhibit below some specific temperature Tm at which the di-
electric response peaks53. Comparisons between our MC and
MD results should thus tell us the difference between the in-
direct and direct ways to extract EC effects in relaxors. Since
we are also interested in checking if and how this difference (if
any) depends on the investigated temperature region, we de-
cided to focus on four particular representative temperatures.
They are: (1) 500 K, which is above the predicted Burns tem-
perature (Tb ≃ 450 K) of BZT35,37; (2) 300 K, which is lo-
cated in-between our critical T ∗ ≃ 240 K33–35 and Tb; (3) 200
K, that is now between the computed Tm temperature of BZT
(Tm ≃ 130 K)35,38 and T ∗; and (4) 100 K, which is thus be-
low Tm (note that the Supplemental Material54 also shows our
results for the EC coefficient in BZT at 600 K).

III. RESULTS

A. EC coefficients

Figure 2 shows the electrocaloric coefficient as a function
of electric field, E , for these four different selected tempera-
tures, and as computed from the aforementioned MC-1, MC-
2 and MD methods. One can first clearly see that, for any of
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these temperatures, the (indirect) MC-1 and MC-2 approaches
provide nearly identical results. Similarly, α predicted by the
(direct) MD scheme agrees very well with those of MC-1 and
MC-2 for 200 K, 300 K and 500 K at any field, which demon-
strates that indirect methods based on Maxwell thermody-
namic relation can be safely used to estimate α above the Tm

temperature of relaxors. On the other hand, Fig. 2(a) clearly
reveals that the EC coefficient of the MD method significantly
differs from that predicted by MC-1 and MC-2 at 100 K, as a
result of non-ergodicity. In particular, at 100 K, the α deduced
from the indirect methods are smaller than that those directly
extracted, which is in agreement with previous reports25,53,60.
It is also interesting to realize that the EC coefficient of the
MD method gets closer to those of MC-1 and MC-2 at 100
K for the highest considered electric fields. This is because,
under high electric fields, BZT relaxors can be converted to a
normal ferroelectric and thus becomes ergodic41.

Moreover, the results of Fig. 2(d) also indicate that α at
500 K is vanishing at small fields and then increases with
E , until it very slightly decreases for our highest investigated
fields. Interestingly, our values of α for high fields at 500
K are of the order of 0.5 × 10−7 K m/V, that is similar to
the predicted one of 0.67 × 10−7 K m/V in a ferroelectric
phase of (Ba,Sr)TiO3

15. Figures 2(a), 2(b) and 2(c) also show
that, for temperatures below the Burns temperature, α adopts
a very clear maximum for an intermediate field (whose value
is dependent on temperature) within our investigated range
of electric fields. In other words, at temperatures of 300 K,
200 K or 100 K, the EC coefficient first increases with field
before noticeably decreasing. Such non-mononotic behav-
ior of α (starting with a vanishing value at small fields and
having a peak for an intermediate field before decreasing for
larger fields) was indeed measured, as well as reproduced
by the so-called phenomenological spherical random bond
random field model, in Pb(Mg,Nb)O3, (Pb,La)(Zr,Ti)O3 and
Pb(Mg,Nb)O3–PbTiO3 relaxors in Ref.27, but only for a spe-
cific temperature: namely, the critical temperature at which
the discontinuous electric-field-induced ferroelectric transi-
tion of these systems becomes continuous (for the value of
the electric field associated with the maximum of α). Our re-
sults displayed in Fig. 2 therefore generalize such finding by
indicating that, for any temperature, α of BZT can also ex-
hibit a maximum within the investigated field range. Further,
note also that BZT differs from the cases of Pb(Mg,Nb)O3,
(Pb,La)(Zr,Ti)O3 and Pb(Mg,Nb)O3–PbTiO3 in the sense that
the temperature behavior of the polarization displayed in Fig.
1(a) is always continuous for any investigated field. It is
worthwhile to know that the maximum of α at a certain field
was also predicted to occur in Ba0.5Sr0.5TiO3

16 and defect
doped BaTiO3

61, and that we also found this non-mononotic
behavior of α in the paraelectric phase of BaTiO3 (BTO) bulk
– as evidenced in the Supplemental Material54.

B. Analysis of the results via a Landau-like model

Let us now try to understand the main results of Fig. 2. For
that, we start from a simplest Landau free-energy potential

describing the behavior of a non-linear dielectric

F = F0(T ) + ∆F (T, P, E)

= F0(T ) +
1

2
a(T )P 2 +

1

4
bP 4 − EP,

(6)

where F0(T ) captures the basic temperature dependence of
the free energy of the materials, and the other terms account
for the variations that involve the development of a polariza-
tion or application of an electric field. Note that the temper-
ature dependence of the harmonic a(T ) parameter can be a
complex one in our BZT compound with various regimes, as
inferred from the temperature behavior of the dielectric re-
sponse under dc field and discussed in Ref.35: for T > Tb

we have a(T ) ∝ (T − T0), while for T < Tm we have
da(T )/dT ∼ 0, and for Tm < T < Tb we have a smooth
interpolation between these two regimes (note that (i) T0 is
extracted from the Curie-Weiss behavior of the dielectric re-
sponse above Tb and can be negative in relaxor ferroelectrics,
as predicted and experimentally found in Refs.35,37 ; and (ii)
that the aforementioned behaviors of a(T ) implies that it is in-
creasing with temperature above Tm). In the following equa-
tions we will work with a generic a(T ) > 0, noting that the
final results have to be interpreted depending on the T region
we are in. In particular, the phenomenological equations to
be derived here (namely, Eqs. (6)-(16)) can only be safely ap-
plied to temperatures above Tm. This is because these equa-
tions rely on thermodynamic equilibrium while BZT is non-
ergodic below Tm. Finally, the positive parameter b > 0 ac-
counts for the saturation of the dielectric response of the ma-
terial.

Let us now discuss the behavior of the EC coefficient as
predicted by this simple model. The entropy can be obtained
as

S = −
dF

dT
= −

dF0

dT
−

∂∆F

∂T
−

∂∆F

∂P

dP

dT
. (7)

Noting that at equilibrium we have ∂∆F/∂P = 0, we obtain:

S = −
dF0

dT
−

a′(T )

2
P 2, (8)

where a′ = da/dT . It is then straightforward to derive the
following expression for α:

α = −
T

CE

∂S

∂E

∣

∣

∣

∣

T

=
Ta′(T )

2CE

∂P 2

∂E

∣

∣

∣

∣

T

=
Ta′(T )

CE
Pχ,

(9)

where χ is the dielectric susceptibility.
Interestingly, the behavior of a dielectric for small electric

fields can be readily discussed from this expression. Indeed,
if P = 0 for E = 0, then we have P = χE , which leads
to α ∝ E , assuming that the dependence of the specific heat
CE on the electric field can be neglected. This prediction is
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fully consistent with the null value of α reported in Fig. 2 at
zero field for any temperature, and immediately implies that
∆T ∝ E2 – which shows that the EC effect is null in the limit
of small E .

To discuss the behavior of α for arbitrary electric-field val-
ues, we recall the equilibrium condition ∂F/∂P = 0 to obtain

a(T )P + bP 3 = E . (10)

Further, if we take the derivative with respect to the electric
field on both sides of this equation, we get

a(T )χ+ 3bP 2χ = 1, (11)

which leads to

α =
2T

CE

a′(T )P

a(T ) + 3bP 2
. (12)

This interesting expression implies that, in the limit of large
polarizations (or, equivalently, large electric fields), we have
α → 0. Hence, since we also know that α = 0 for E = P = 0,
it immediately follows that the EC coefficient will present at
least one extremum (maximum or minimum) at intermediate
values of the electric field, as also consistent with our numer-
ical results of Fig. 2. Of course, whether or not such an ex-
tremum is experimentally accessible will depend on the break-
down field of a particular material or sample; yet, at least one
extremum has to exist in principle. Note also that α will adopt
a maximum if a′(T ) is positive (which is the case of BZT)
while it will possess a minimum if a′(T ) is negative.

To find the electric field that makes α maximum, we have
to solve

dα

dE
= −

2a′(T )

CE
(χ2 + Pmχ

′) = 0, (13)

where χ′ = dχ/dE captures the non-linear dielectric response
of the material, and Pm is the value of the polarization for
which α is maximum. The non-linear response χ′ is related to
P and χ by

a(T )χ′ + 6bPχ2 + 3bP 2χ′ = 0, (14)

which we obtain by taking the field derivative of both sides of
Eq. (11). From the last two relations, one can show that the
condition to have an extremum of α reduces to

P 2
m =

a(T )

3b
, (15)

from which several conclusions can be immediately drawn.
First, for stiff materials – i.e., those with a(T ) ≫ 0 – the
extremum of α will occur at relatively large value of the po-
larization and applied electric field. Similarly, if the dielectric
response is very linear – i.e., for small b > 0 –, the extremum
of α will also tend to occur for large values of P and E . Fi-
nally, using a linear approximation for the polarization as a
function of field, P ∼ χE , we can write

E2
m ≈

a(T )

3bχ2
=

4a3(T )

3b
, (16)

which provides us with a useful (albeit approximate) expres-
sion for the electric field corresponding to α’s extremum. For
instance, it tells us that Em should increase with temperature
if a(T ) is enhanced with temperature (which is precisely the
case for BZT). This increase of Em with temperature is indeed
confirmed in Fig. 2 for temperatures above 200 K, and is also
consistent with the fact that, at 500 K, the maximum of α oc-
curs for electric fields being close to our highest investigated
values.

Moreover, the second line of Eq. (9) indicates that α =

βT ∂P 2

∂E

∣

∣

∣

T
, with β = a′(T )

2CE
. In other words, assuming that CE

is independent of temperature and electric field, and that a′(T )
is also a constant (which is, e.g., what Curie-Weiss law36 pro-
vides), this expression implies that the numerical data of the
MC-1 and MC-2 approaches for the EC coefficient should be
well fitted by the product of temperature and the derivative
of the square of the polarization with respect to electric field,
once rescaling this product by a constant62,63. Figure 2 indeed
tells us that this is the case for any temperature (especially at
and above 200 K, where we are in ergodic equilibrium con-
ditions), since these figures further display the results of such
fits by means of solid green curves. In other words, one can
safely use Eq. (9) to reproduce and understand the EC coeffi-
cients numerically obtained by the indirect methods for any
temperature and field (note that the Supplemental Material
also shows that Eq. (9) can be accurately used for the α coef-
ficient of typical ferroelectrics, such as BaTiO3, which further
emphasizes its generality). In particular, the second line of Eq.
(9) indicates that, for a given temperature, the non-monotonic
and unusual behavior of α with fields obtained by MC-1 and

MC-2 should be directly related to the dependence of ∂P 2

∂E

∣

∣

∣

T
with E . To check such interesting idea, Figs. 3(a)-3(d) report
the square of the macroscopic polarization as a function of
electric field applied along the [001] direction at 100 K, 200
K, 300 K and 500 K, respectively. The central inset of these
figures displays the derivative of this quantity with respect to

the field, and reveal that, indeed, ∂P 2

∂E

∣

∣

∣

T
has the same trend as

the indirect EC coefficient of Fig. 2. In particular, Figs. 3(a)-
3(d) reveal that α is very small for low fields at any tempera-
ture, simply because the square of the polarization is basically
independent of electric fields for small E64. Such strong con-

nection between α and ∂P 2

∂E

∣

∣

∣

T
is reinforced when realizing

that the field resulting in a maximum of the α coefficient of
the MC-1 and MC-2 methods at 100 K, 200 K, 300 K and 500

K is very close to the field at which ∂P 2

∂E

∣

∣

∣

T
is optimal at these

temperatures. It is also interesting to realize that the maximal
value of the α of the indirect methods increases by a factor of
about 3 when increasing the temperature from 100 K to 300

K, while the corresponding maximum of ∂P 2

∂E

∣

∣

∣

T
is quite sim-

ilar between 100 K and 300 K. Such feature can, in fact, be
understood by the fact that the second line of Eq. (9) indicates
that the EC coefficient is directly proportional to the temper-
ature. In other words, increasing the temperature increases α

in case of similar ∂P 2

∂E

∣

∣

∣

T
(note that Eq. (9) is also consis-
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tent with the computational finding of the enhancement of α
with temperature in the ferroelectric phases of (Ba,Sr)TiO3 in
Ref.15).

C. Microscopic insights

Let us now try to reveal the microscopic origins of the max-

imum of ∂P 2

∂E

∣

∣

∣

T
at 200 K and 300 K (which explains the max-

imum of the indirect and direct α of these temperatures) as
well as the peak of the α obtained by the MD simulations
at 100 K (recall that, for temperature below ≃ 130 K, BZT
is non-ergodic and thus can not be technically described by
Eq. (9)). For that, we focus on the field evolution of the
microscopic configurations of BZT at 100 K. Some insets of
Fig. 3(a) show dipolar snapshots within a given (x, z) plane
obtained from MC simulations at 100 K for different elec-
tric fields. They reveal that the microscopic dipolar pattern is
rather complex and sensitive to electric fields. For instance,
there are different polar nanoregions inside which the dipoles
centered on Ti ions align along one of the eight 〈111〉 pseu-
docubic directions (with this direction varying from one PNR
to another, e.g. from [111] to [111̄]), when no external field
is applied [see left bottom inset of Fig. 3(a)]. Increasing the
electric field then leads to the local dipoles of the PNRs ro-
tating towards the field’s direction, as well as the formation of
rather large PNRs having local dipoles lying along the applied
electric field direction [see bottom right inset of Fig. 3(a) for
a field of 1.2 × 108 V/m]. Finally, Fig. 3(a) further indicates
that increasing the field up to our considered maximum value
E = 3.0×108 V/m causes nearly all Ti-centered local dipoles
to align along the field’s direction, which can be seen as in-
dicative that BZT is converting from a relaxor behavior to a
normal ferroelectric [see the top right inset of Fig. 3(a)].

Interestingly, the aforementioned field-induced rearrange-
ment of the local dipoles for fields close to 1.2×108 V/m gen-
erates a maximal change of the entropy, as evidenced by the
fact that Fig. 4 reveals that the fields associated with maximal
values of α obtained by the direct approach at 100 K [see Fig.
2 (a)] are precisely the fields for which a specific microscopic
feature occurs: the number of dipoles pointing along 〈111〉
pseudocubic directions for which the z-component is positive
(i.e., which have a z component parallel to the applied electric
field) is maximal for these fields. This microscopic feature
was also numerically found (not shown here) for the fields as-
sociated with the maximum values of α at 200 K and 300 K
(note that BZT does not possess any PNR at 500 K because
this latter temperature is above the Burns temperature).

D. Resulting change in temperature

Let us now concentrate on the ∆T change in temperature,
associated with the EC coefficient and as computed from Eq.
(1), for the four studied temperatures of 100 K, 200 K, 300 K
and 500 K. Note that, unlike for 200 K, 300 K and 500 K, this
change in temperature will not be the “direct” one for 100 K

because the system is non-ergodic at this temperature, while
Eq. (1) assumes thermodynamic equilibrium. We neverthe-
less report in Fig. 1(b) the data for ∆T as a function of a
change in electric field, ∆E , at 100 K, along with those of 200
K, 300 K and 500 K, for the sake of comparison. Technically,
the ∆T of Eq. (1) is computed by integrating the α coefficient
calculated by the MC-1 indirect method (see Eq. (2)) from
E1 to E2, with ∆E being the difference between the magni-
tude of these two fields and always choosing E1 = 2.0 × 107

V/m while varying E2 when changing ∆E . Two main fea-
tures can be seen from Fig. 1(b): (i) for any temperature,
∆T is not linear with ∆E , as also observed near 310 K in the
Ba(Zr0.2Ti0.8)O3 material42 exhibiting relaxor behavior and
which is in contrast with, e.g., the cases of the ferroelectric
Pb(Zr0.95Ti0.05)O3, Pb(Zr0.4Ti0.6)O3, (Ba0.5Sr0.5)TiO3 and
Pb(Mg,Nb)O3-PbTiO3 systems reported in Refs.4,14,15,65; and
(ii) for any given electric field above ≃ 1.5× 108 V/m, ∆T is
enhanced when the considered initial temperature increases.
Item (i) originates from the fact that α strongly depends on
electric field and can even be non-mononotic with E in re-
laxor ferroelectrics (see Fig. 2). Item (ii) can be simply un-
derstood by realizing that Eq. (9) provides a dependence of
the EC coefficient on temperature. Note that we also numeri-
cally checked that our ∆T are not directly proportional to the
power 2/3 of the electric field, except for fields above 108 V/m
at 500 K, which contrasts with the prediction of Ref.23. Fur-
thermore, our MD predictions for ∆T at 100 K are also given
for comparison in Fig. 1(b), which demonstrates, once again,
that results from direct and indirect approaches differ below
Tm. One should also recall that atomic schemes, such as ef-
fective Hamiltonians, typically provide an overestimation by
one order of magnitude with respect to experiments for elec-
tric fields66 while they tend to yield correct values for the EC
coefficient (as shown in the Supplemental Material). Exper-
iments are thus called for to determine by which factors the
temperatures and fields of Fig. 1(b) would have to be rescaled
in BZT (if any).

IV. SUMMARY

In summary, we combined an atomistic effective Hamil-
tonian scheme with Monte-Carlo and Molecular Dynamics
techniques to investigate electrocaloric effects in the lead-free
BZT systems subject to electric fields of different magnitude
and all oriented along the pseudo-cubic [001] direction. It is
found that, for any temperature, α exhibits a non-monotonic
behavior with field that consists of small values at low fields,
followed by an increase up to a maximum before decreasing
for larger fields. Below the Burns temperature, this maxi-
mum of α is demonstrated to be correlated to a very spe-
cific microscopic feature, namely to the largest number of
dipoles being oriented along 〈111〉 directions having positive
z-component. Finally, equalities that are derived from a sim-
ple Landau model (including one relating α with the product
of temperature and the partial derivative of the square of polar-
ization) reproduce and further help to understand the anoma-
lous behavior of α with field and temperature in BZT, for
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any temperature above Tm (note that we also found that this
model can predict EC effects in typical ferroelectrics, such as
BaTiO3, as shown in the Supplemental Material). Our simu-
lations also confirm that indirect and direct approaches yield
similar results of the α EC coefficient for any temperature
above the Tm temperature but differ from each other for tem-
perature below Tm, because of the non-ergodicity adopted by
BZT at these low temperatures7,25.

We therefore hope that our study leads to a broader knowl-
edge of EC effects and relaxor ferroelectrics.
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(a) (b)

Figure 1: (Color online) Physical properties associated with the MC-1 method. Panel (a) shows the temperature dependency of the polarization
in BZT systems subject to different dc electric fields, all applied along the pseudo-cubic [001] direction but varying from 2.0×107 to 3.0×108

V/m in magnitude by steps of 2.0×107 V/m. Panel (b) shows the resulting change in temperature as a function of ∆E=E2-E1 for four selected
initial temperatures, as computed from Eq. (1) and choosing E1 = 2.0× 107 V/m. Note that Panel (b) also further reports the direct change in
temperature at 100 K as a function of Ef .



10

(a) (b)

(c) (d)

Figure 2: (Color online) Electrocaloric coefficient, α, as a function of the applied dc electric field E , as predicted for the different indirect and
direct approaches at 100 K, 200 K, 300 K and 500 K (Panels (a)-(d), respectively). The solid green line represent the fit of the MC-1 and MC-2

results by the second line of Eq. (9), i.e., α = βT ∂P2

∂E

∣

∣

∣

T
, where β is a constant and ∂P2

∂E

∣

∣

∣

T
is obtained from the data of Fig. 3. Error bars

(resulting from the use of 20 different disordered alloy configurations) are also shown for the MC-2 data.
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100 K

(a)
200 K

300 K 500 K

(b)

(c) (d)

Figure 3: (Color online) The square of the macroscopic polarization as a function of the applied dc electric field, at 100 K, 200 K, 300 K and
500 K (Panels (a)-(d), respectively). The red line represents a fit by 7th degree polynomials, which were then used to calculate the derivative
dP 2/dE that is shown in the corresponding central inset of each panel. The other insets of Panel (a) show the dipolar configurations in a given
(x, z) plane at 100 K, as obtained from MC simulations for different dc electric fields (0 V/m, 1.2 × 108 V/m and 3.0 × 108 V/m) applied
along the pseudo-cubic [001] direction. In these latter insets, the blue and green colors indicate that the local dipoles are centered on Ti and Zr
ions, respectively, and the red solid lines delimit the PNRs.
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Figure 4: (Color online) The ratio of dipoles that are pointing along 〈111〉 directions having a positive z component, as a function of the
magnitude of the electric field applied along the pseudo-cubic [001] direction at 100 K. Note that these 〈111〉 directions are thus away from
the [001] field’s direction.


