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Under tensile loading the ideal strength of a solid is governed by mechanical instabilities corre-
sponding to failure in tension or shear, indicative of intrinsically brittle or ductile behavior, respec-
tively. Ideal-strength first-principles calculations are performed in this work on several hexagonal-
close-packed (hcp) and body-centered-cubic (bcc) metals. It is shown that some metals fail in
tension under uniaxial loading, whereas others fail in shear. The observed behavior is rationalized
with a simple analytical model based on second-order and third-order elastic constants. This for-
malism correctly predicts the failure mode of all but one of the metals studied in this work and
leads to fundamental new insights into why some classes of metals are intrinsically brittle or duc-
tile. Further, for the transition metals, filling of the d-bands is shown to correlate with the type
of mechanical instability encountered, thus providing new insights into the effect of alloying on the
intrinsic mechanical behavior of hcp and bcc metals.

I. INTRODUCTION

For any given loading condition, the ideal strength of a
crystalline solid forms an upper bound on the stress that
the material can sustain prior to reaching a mechanical
instability. The nature of the instability reached at this
stress level can provide insights into the intrinsic failure
mechanisms for a material. For example, under tensile
loading crack initiation requires that the local normal
stress perpendicular to the cleavage plane is equal to
or larger than the ideal tensile strength1–4. However,
when a material yields under tensile loading, it is
possible for it to fail through a shear instability5–9. The
tensile versus shear nature of the mechanical instability
realized under tensile loading is of considerable interest
as an indicator of whether a material will behave in an
intrinsically brittle or ductile manner. For cubic metals,
first-principles calculations of ideal strength under
tensile loading have revealed shear instabilities for the
ductile metals V and Nb, whereas more brittle materials
such as W and Mo have been shown to fail in tension6.
Similar studies in alloys10–13 have been undertaken
recently, yielding insights into the compositional effects
on deformation behavior and ductility. For example, it
has been shown that bcc-based Mo-alloys can be made
intrinsically more ductile (less brittle) by tuning the d
band filling through alloying6.

Fundamentally, the occurence of any elastic instability
under an external load depends on the variation of the
deformed (or apparent) elastic constants with strain
and the stress tensor acting on the material, as well as
the magnitude and direction of the applied load. Along
the load path, the various independent deformed elastic
constants vary differently as a function of the imposed
strain tensor and it is the detailed relations among them
that determine the type of elastic instability that occurs.

Elastic instabilities can be calculated by employing
Density Functional Theory (DFT), which has been a
common approach in the literature2,9,14–20. In such
studies, typically different amounts of strains are applied
to a unit cell and at each strain the internal coordinates
and lattice vectors perpendicular to the load are relaxed.
In addition, the stress tensor and deformed elastic
constants are calculated, from which elastic instabilities
can be calculated. This approach however is compu-
tationally expensive due to the necessity to calculate
deformed elastic constants at every imposed strain. In
addition, it provides limited insight into the underlying
mechanisms and physics that lead to elastic instabilities,
resulting in intrinscially ductile or brittle behavior.

In this work, in addition to comparing to traditional
ideal-strength calculations, an alternative approach is
pursued to study ideal deformation behavior, elastic
instabilities and intrinsic ductility. It is based on the ob-
servation that as a solid is deformed, its deformed elastic
constants vary. Rather than performing a direct DFT
calculation to obtain the deformed elastic constants,
instead the deformed elastic constants are obtained as
an expansion in terms of the applied strain tensor, in-
volving the standard (undeformed) second-order elastic
constants (SOEC’s) and the third-order elastic constants
(TOEC’s). Via this approach, analytical expressions are
obtained for the ideal failure type (shear vs. tensile), the
failure strain and the failure stress. In addition, the vari-
ation of the deformed elastic constants with strain can
be rationalized in terms of anharmonic effects, captured
by the TOEC’s. This formalism consequently leads to
an enhanced fundamental understanding of the ideal
deformation behavior and intrinsic ductility of solids in
terms of the variation of deformed elastic constants and
applied stress along a prescribed deformation path.
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The formalism presented in the paper relies on
knowledge of reliable SOEC’s and TOEC’s in partic-
ular. However, the accurate calculation of TOEC’s is
challenging due to their sensitivity to DFT parameters
and strain range. To address this issue, a robust and
general scheme is introduced to evaluate TOEC’s from
DFT calculations, which allows for a general way of
estimating intrinsic deformation behavior of materials
from basic elastic properties.

The outline of this paper is as follows. Sec. II presents
the formalism and methods that are developed as part
of this work. In particular, the Wallace formalism and
elastic instabilities are reviewed in Section IIA. Section
II C describes the relation between deformed elastic con-
stants, SOEC’s, TOEC’s and applied strains and Sec.
II B describes a practical calculation scheme for TOEC’s.
The details of the DFT calculations used in this work are
described in Sec. II D. Finally, Sec. III describes the re-
sults and discussion. Some of the detailed derivations of
the equations derived in this work are rather lengthy and
are presented in full in the Appendix.

II. METHODOLOGY

A. Wallace formalism and elastic instabilities

The elastic stability of a solid under zero stress is gov-
erned by the eigenvalues of its elastic-constant tensor;
specifically, all 6 eigenvalues of this tensor must be larger
than zero for the solid to be elastically stable. A gener-
alization of this concept was introduced by Wallace to
consider the elastic stability of solids under stress21. In
such cases, elastic stability is governed by the Wallace
tensor, defined as follows:

Bijkl = C′
ijkl+

1

2
(σilδjk + σjlδik + σikδjl + σjkδil − 2σijδkl)

(1)
where the term C′

ijkl represents the elastic constants

in the deformed configuration17,21,22, σij denotes
the applied stress acting on the solid, and δij is the
Kronecker-delta. Note that the Wallace tensor reduces
to the standard (undeformed) SOEC’s for a solid
under zero stress. The eigenvalues of the symmetrized
Wallace tensor govern the elastic stability of a solid
under stress23. In the present context, the symmetrized
Wallace tensor, B̄ is defined as B̄ = 1/2 (B + BT )
(with B given in Eq. 1), where the use of Voigt notation
is implied so that both B and B̄ reduce to 6×6 matrices.
In the remainder of this paper, the Wallace-tensor Bijkl

refers to the symmetrized Wallace tensor. We will
consider cubic and hexagonal crystals in the remainder
of this work, although the same formalism may be
readily applied to lower-symmetry materials.

The terms C′
ijkl and σ in Eq. 1 can be evaluated

directly from DFT calculations for every strain along
a deformation path, after which the eigenvalues and
eigenvectors of the Wallace tensor can be obtained to
study elastic instabilties. In this work elastic instabilities
are studied by computing the Wallace tensor (Eq. 1) as
a function of strain via higher-order elastic constants.
A similar approach has been used in the past to study
a small set of cubic materials and metallic glasses4,24.
The deformed elastic constants C′

ijkl and the stress σ
are calculated as described in subsequent sections, from
a knowledge of the SOEC’s, TOEC’s and applied strain
only.

Consider a uniaxial loading condition for a hexagonal
or cubic crystal. The load is applied along the [001]
axis for the cubic material and along the [0001] axis
for the hexagonal material, both generically referred
to as the c axis in this paper. For this loading con-
dition, with a Green-Lagrange strain ξ along the c
axis, the Cauchy stress tensor σ may be computed
according to formalism outlined in the Appendix. In
particular, Eqs. A1 - A9 detail the calculation of the
strain energy density in terms of SOEC’s and TOEC’s
and the general calculation of the stress tensor with
strain. Further, the Piola-Kirchhoff stress tensor is
obtained from the SOEC’s, TOEC’s and the imposed
strain ξ along c (allowing for Poisson contraction per-
pendicular to c). The derivation is somewhat lengthy
and is presented in the Appendix: Eqs. A10 - A15 for
cubic crystals and Eqs. A16 - A20 for hexagonal crystals.

The general derivation of the Wallace tensors starts
with Eq. 1 and then follows the lines of Eqs. B1 - B6
in the Appendix. In particular, Eqs. B7 and B8 in the
Appendix detail the Wallace tensor for cubic and hexago-
nal crystals under c-loading, respectively. This formalism
allows one to analytically calculate the ideal deforma-
tion behavior of materials based on just a knowledge of
the SOEC’s and TOEC’s. The formalism pertaining to
TOEC’s and their calculation is discussed in subsequent
sections.

B. Calculations of second-order and higher-order

elastic constants

The formalism outlined in Sec. II A requires the
knowledge of SOEC’s and TOEC’s, which are used to
calculate stresses and deformed elastic constants as a
function of strain. This section outlines the details of
those calculations.

The third-order elastic constants are defined as

Cijklmn = ρ0
∂3F

∂ηij∂ηkl∂ηmn

|η=0, (2)

where F is the Helmholtz free energy density (per unit
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mass), ηij , the Green-Lagrange strain, and ρ0, the den-
sity of the undeformed state. It should be noted that the
formalism considered in this paper is only being applied
to SOEC’s and TOEC’s calculated at absolute zero tem-
perature using DFT, hence the Helmholtz free energy is
identical to the total energy E, F = E.

If the TOECs contain minor and major symmetries
and thus can be written in Voigt notation, but no point
symmetry other than the identity, the sixth-order elas-
tic tensor will consist of 56 unique constants. These can
be evaluated efficiently using a 9-point finite difference
stencil, employing a maximum strain of ηmax = 0.05 for
both tension and compression. The value ηmax = 0.05
was chosen after extensive convergence testing and is
located near a local plateau of the TOECs as a func-
tion of strain25,26. In general, both the SOEC’s and

TOEC’s obtained from DFT do not precisely obey the de-
sired symmetry dictated by the underlying crystal point
group18,27–31. The correct symmetry is therefore restored
by performing an average over the pertinent point group
operations. This method is described in detail in the
Appendix.

C. Deformed elastic constants and stress tensor

The calculation of the Wallace tensor requires the de-
formed elastic constants on one hand and the stress ten-
sor acting on the structure on the other hand. Eqs. 3
denote the deformed elastic constants for cubic crystals
under c-loading. Eqs. 4 denote the deformed elastic con-
stants for hexagonal crystals under c-loading.

C′
11 = C11 + η(3C11 + C111 + C112 + C12) + ξ(−C11 + C112 + C12), (3a)

C′
12 = C12 + 2η(C112 + C12) + ξ(C123 − C12), (3b)

C′
13 = C12 + η(C112 + C123) + ξ(C112 + C12), (3c)

C′
33 = C11 + 2η(−C11 + C112 + 2C12) + ξ(4C11 + C111), (3d)

C′
44 = C44 + η

(

1

4
C11 +

3

4
C12 + C144 + C166

)

+ ξ

(

1

4
C11 +

1

4
C12 + C166 + C44

)

, (3e)

C′
66 = C66 + η

(

2C166 +
1

2
C11 +

1

2
C12 + 2C66

)

+ ξ

(

−C66 +
1

2
C12 + C144

)

(3f)

C′
11 = C11 + η(3C11 + C12 + C111 + C112) + ξ(−C11 + C113 + C13), (4a)

C′
12 = C12 + η(2C12 +

5

3
C112 +

1

3
C111 −

4

3
C166) + ξ(−C12 + C123), (4b)

C′
13 = C13 + η(C123 + C113) + ξ(C13 + C133), (4c)

C′
33 = C33 + η(2C13 − 2C33 + 2C133) + ξ(4C33 + C333), (4d)

C′
44 = C44 + η

(

1

4
C11 +

1

4
C12 +

1

2
C13 + C144 + C155

)

+ ξ

(

C44 + C355 +
1

4
C33 +

1

4
C13

)

, (4e)

C′
66 =

1

2
(C′

11 − C′
12) (4f)

In Eqs. 3 and 4, ξ is the strain along c and
η = η1 = η2 is the strain in the a-b plane, perpen-
dicular to the c-direction. The terms Cij represent
the standard second-order elastic constants (SOEC’s)
in the undeformed configuration and the terms Cijk

represent the third-order elastic constants (TOEC’s) in
the undeformed configuration. The load cases considered
in this work are uniaxial along c, which implies that ξ
and η are not independent. This corresponds physically
to a situation in which a load is applied along c and

all other crystal directions are allowed to relax to zero
stress (e.g. Poisson contraction). In fact for this load
case we can express η = η (ξ, Cij , Cijk). Consequently, η
in Eqs. 3 and 4 can be eliminated so that the deformed
elastic constants can be expressed as only functions of
the SOEC’s, TOEC’s and ξ.

The detailed derivations pertaining to the calculations
of TOEC’s and the deformed elastic constants are rather
lengthy and are presented in full in the Appendix. It
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should be noted that the choice for TOEC’s is not unique
in e.g. Eqs. 4 and combinations of other TOEC’s could
be used instead of those. For the case of hcp materials,
Eqs. 5 describe some of these relations between TOEC’s.
A complete overview is presented in Eqs. C13.

C′
111 = C222 − C661 + C662, (5a)

C′
112 = C222 − 2C661 − 2C662, (5b)

C′
123 = C223 − 2C366 (5c)

D. DFT calculations

For the elemental metals all calculations were per-
formed using the Vienna Ab Initio Simulation Package
(VASP)32,33. In these calculations use was made of
the Perdew-Burke-Ernzerhof generalized gradient func-
tional (PBE-GGA)34, and the projector augmented wave
(PAW) method35,36. An energy cutoff for the plane waves
of 700 eV was used, and smearing of the electronic oc-
cupancies was performed using the Methfessel-Paxton
scheme37, with a broadening of 0.05 eV. Integrations in
the Brillouin zone were carried out using Monkhorst-Pack
k-point sampling38 with a density chosen such that the
number of k-points in the first Brillouin zone times the
number of atoms in the cell equals approximately 30,000-
40,000. The employed PAW potentials for Sc, Ti, Y, Zr
and Hf include s and p semi-core states as valence elec-
trons. For the other elements, only the outermost s- and
d-states are used as valence. The maximum calculated
tensile stress σ33 that occurs along the deformation path
(similar to the ultimate tensile strength) is converged to
within approximately 2% with these DFT settings.

III. RESULTS AND DISCUSSION

In this section, the ideal deformation behaviors of 4
bcc metals (Mo, Nb, W and Ta) and 13 hcp metals (Be,
Mg, Os, Re, Ru, Ti, Y, Zn, Zr, Co, Tc, Sc and Hf) are
studied. Lattice stabilities are calculated as a function of
the strain ξ along the c axis, and the failure modes are
determined, employing only the SOEC’s and TOEC’s.
This results in a categorization of the elemental metals
into two classes: those that fail in shear (intrinsically
ductile) or in tension (intrinsically brittle) for this loading
condition.

A. Elastic instabilities and intrinsic ductility

Previously established relations between atomistic
(ideal) measures of ideal deformation behavior and true
(experimental) deformation behavior allow us to com-
pare the results obtained in this work to experimental
findings in the literature39. A direct comparison between
experimental and theoretical measures of ductility is

not straight-forward because elongation and reduction
of area depend critically on several factors, including
temperature, grain size, processing route (e.g. annealed
vs as-fabricated), impurity concentrations, and strain
rate. However, keeping these factors constant as much
as possible across various metals and alloys allows for
a qualitative comparison to be made. Table I shows
experimentally reported values of elongation for several
commericially pure metals subject to tension together
with computed ideal failure mode. Tables II and III
show the calculated elastic properties and failure modes
for the cubic and hcp metals considered in this work,
respectively.

Turning first to the cubic metals studied in this work,
it is found that Mo and W are intrinsically brittle
whereas Nb and Ta exhibit intrinsically ductile behavior.
This is consistent with i) experimental investigations
which show that Nb and Ta dogbone samples have
significantly higher elongations to fracture in tensile
tests than Mo and W, respectively40–43 and ii) evidence
of a significantly higher ductile-to-brittle-transition
temperature in Mo and W compared to Nb and Ta44–48.
Table I shows an interesting trend, namely commercially
pure W and Mo having significantly less tensile elonga-
tion (1-5 % and 10-15 %, respectively) than Ta and Nb
(70 % and 50 %, respectively). This corroborates the
findings in this work that Nb and Ta are intrinsically
ductile and exhibit ideal shear failure whereas Mo and W
are intrinscially brittle and fail in tension. These results
are further consistent with previous computational
studies in which direct ideal-strength calculations were
performed on several bcc metals8,49–51. Interestingly,
Mo & W and Nb & Ta are from the same columns in
the periodic table, underlining the role of d-band filling
in establishing the detailed deformation mechanisms of
transition metals6.

Table III shows the calculated SOEC’s, TOEC’s and
failure modes and strains for several transition metals
with the hcp structure, in addition to the non-transition
metals Be and Mg. For comparison, deformation
properties for these metals are calculated i) by the
formalism developed in this work using SOEC’s and
TOEC’s and ii) by explicit DFT calculations of the
Wallace tensor and elastic constants along the strain
path. The following 5 metals are found to fail in tension:
Be, Mg, Os, Re, Ru, whereas the following 8 fail in
a ductile shear mode: Ti, Y, Zn, Zr, Co, Tc, Sc, Hf.
Table I shows a compilation of reported experimental
elongations at break for high purity (≥ 99.98%) metals
at room temperature. Not all metals considered in this
work are included, but only those for which reliable and
consistently measured data could be found.

With the exception of Re, the metals that are pre-
dicted computationally to be intrinsically ductile exhibit
the largest elongations ranging from 15-72 %. On the
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other hand, the metals predicted to be intrinsically
brittle show elongations in the range 1-15 %, again with
the exception of Re. Although this anomalous behavior
of Re with predicted tensile failure but experimentally
measured high elongations is not fully understood, it
is known from previous work that Re has a strong
propensity for deformation twinning, which may help
explain its high degree of measured plasticity52,53.

It is found that the hcp metals from groups III and
IV (Sc, Y, Ti, Zr, Hf) fail in shear whereas those from
group VIII (Ru and Os) fail in a brittle tensile mode.
The formalism further shows that Tc fails in shear,
whereas Re fails in tension, despite these metals both
being from group VII and thus having the same d-band
filling. We note however, that the failure strains for
tension and shear for Re are very close (to within 1 %)
and hence, although Re fails in tension according to the
formalism, it is on the verge of shear failure. In fact, the
difference is likely within the error bars of the SOEC’s,
TOEC’s and DFT calculations. These results suggest
that d-band filling is a descriptor for rationalizing the
mechanical behavior across the transition metals for
both cubic and hcp materials.

The failure strains in the c-direction according to the
analytical model and direct DFT calculations are also
shown in Table III for the hcp metals. It can be seen
that the agreement is reasonable with typical discrepan-
cies ranging from 1 to 5 percent. This is excellent agree-
ment, given the simplicity of the model that relies only
on elastic constants and given the technical difficulties in
robustly calculating TOEC’s. We find that the precise
failure strain is rather sensitive to small changes in the
TOEC’s, however the type of failure mode (shear vs. ten-
sion) can be calculated rather robustly. The agreement
shown in Table III between the analytical model and di-
rect DFT calculations indicates that the use of non-linear
elasticity is a viable method for calculating ideal defor-
mation behavior.

B. Origins of shear and tensile failure

The failure mode of cubic and hcp materials under
loading along c is determined by a complex combination
of SOEC’s and TOEC’s. For cubic materials, the
eigenvalues of the Wallace tensor associated with shear
failures are given as C′

66, C
′
11 − C′

12 and C′
44 + σ33

2 . In
turn, these quantitities depend on the (undeformed)
SOEC’s, the TOEC’s, η and ξ as described by Eqs. 3
(a)-(f). ξ and η are related to each other by a rather
complicated function of SOEC’s and TOEC’s, but for
most materials this relation can be approximated for
small strains by the Poisson ratio ν, i.e. − η

ξ
≈ ν ≈ 0.30.

Referring to Eq. 3 (f) for C′
66, it is seen that intrin-

sically ductile behavior is favored by cubic materials

that have (i) low values for C44 = C55 = C66, (ii) large
(negative) values for C166 and large (negative) values for
the TOEC C144. For the eigenvalue C′

11 − C′
12 similar

observations hold, with (i) a small (absolute value)
for C11 − C12 favoring shear failure, along with (ii) a
large negative value for C112. Brittle tensile failure on
the other hand is associated with more complicated
eigenvalues (not shown here) and is favored by materials
with (i) large values for (undeformed elastic constants)
C11 = C33, and (ii) a large (negative) TOEC C111.

For hcp metals, the expressions for the eigenvalues of
the Wallace tensor are more complicated, but a similar
rationale holds true as for cubic materials. During
loading, the eigenvalues of the Wallace tensor vary as a
function of the imposed strain ξ, with the SOEC’s and
TOEC’s dictating the rate of decay of each eigenvalue
with strain. In general, brittle behavior is favored for
materials with relatively low values for C33 and TOEC’s
that result in relatively high softening of C33 with strain
along c. Eq. 4 (d) shows that a large negative value of
C333 in particular favors brittle behavior. In addition,
brittle behavior is favored for material with high shear
moduli (C44 , C55, C66) and TOEC’s that lead to a
low softening of the shear moduli with strain. It is the
delicate balance between these SOEC’s and TOEC’s
that determines the ultimate failure mechanism. For
example, the hcp metals Os and Ru have high moduli
C33 (818 and 636 GPa, respectively) but nonetheless
fail in tension along c since the TOEC C333 is a large
negative number and in addition the shear moduli C44

are high (255 and 184 GPa, respectively). Further, the
TOEC’s governing the softening of the shear moduli with
strain such as C366 are moderate in magnitude, which
avoids hitting a shear instability in these materials.
Ductile materials such as Nb on the other hand have
low (undeformed) shear moduli (C44 , C55, C66) which
already brings the material under zero load near a shear
instability. Loading along c decreases this modulus
further and - in conjunction with the other SOEC’s,
TOEC’s and the applied stress - leads to a quick shear
failure after a small amount of strain.

This view on failure mechanisms fits into the formal-
ism developed by Pugh58, which states that the ratio of
bulk (K) to shear (G) modulus, K/G, is a measure of
intrinsic ductility. Pugh’s ratio can be rationalized to
some extent. The ratio relates the competition between
brittle failure and shear failure in the material. For an
isotropic material it is supposed that the tendency for
shear failure varies inversely with G, while the tendency
for brittle failure should vary inversely with the elastic
constant, C11, for a material with a tensile load applied
along 〈100〉. This ratio written in terms of K and G is
C11

G
= K

G
+ 4

3 . However, it should be noted that Pugh’s
ratio does not include any notion of higher-order elastic-
ity, i.e. it does not consider the softening of the various
elastic moduli with strain.
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TABLE I. Experimentally reported values of elongation for several commericially pure metals subject to tension54–57, together
with computed ideal failure mode.

Metal Elongation (%) Failure mode
Titanium 40-72 Shear
Zirconium 35-40 Shear
Hafnium 35-43 Shear
Niobium 50 Shear
Tungsten 1-5 Tension
Tantalum 70 Shear
Molybdenum 10-15 Tension
Rhenium 25-28 Tension
Magnesium 2-15 Tension
Beryllium 1-5 Tension

TABLE II. Calculated SOEC’s, TOEC’s and ideal-failure characteristics for selected cubic metals and intermetallics. Failure
modes are characterized as either shear (S) or tension (T).

Mo Nb W Ta
SOEC’s (GPa)
C11 462 265 516 271
C12 171 126 215 168
C44 85 25 134 71
TOEC’s (GPa)
C111 -4688 -1812 -5613 -2567
C112 -974 -233 -967 -1116
C123 -37 -1221 -420 1024
C144 -447 -540 -848 -298
C155 -756 11 -816 -625
C456 -176 207 -571 40
Failure characteristics

Failure mode T S T S

TABLE III. Calculated SOEC’s, TOEC’s and ideal-failure characteristics for 13 hcp metals. Failure modes are characterized
as either shear (S) or tension (T).

Be Mg Os Re Ru Ti Y Zn Zr Co Tc Sc Hf
SOEC’s (GPa)
C11 333 65 724 626 567 178 79 156 148 346 500 101 188
C12 16 21 237 270 179 88 26 56 68 126 222 37 75
C23 5 23 228 219 170 84 20 44 70 122 186 28 74
C33 392 62 818 682 636 189 82 68 164 359 553 102 200
C44 171 19 255 163 184 42 26 42 27 62 135 31 54
TOEC’s (GPa)
C222 -2845 -809 -9395 -7746 -6690 -1725 -670 -3676 -1087 -4437 -5703 -852 -1767
C166 116 -104 -1992 -1364 -1156 -364 -163 -809 -267 -858 -1142 -204 -355
C266 -2132 -274 -1802 -1973 -1744 -341 -129 -429 -243 -1029 -1000 -185 -442
C223 707 187 -105 227 -461 61 -43 976 -64 -219 -978 -82 11
C366 397 65 -225 356 -203 -224 -120 141 -231 31 -682 -107 -246
C233 -838 -438 -3501 -2514 -2042 -607 -143 -2215 -317 -1191 -1555 -165 -436
C333 -2048 60 -5674 -4609 -5476 -876 -526 5489 -1239 -3478 -5325 -711 -1397
C155 -475 -105 -1912 -1128 -1281 -341 -82 -169 -151 -498 -1108 -122 -341
C255 -435 -91 -606 -809 -529 12 -50 -186 132 -261 -1039 -81 5
C355 -489 -103 -1500 -847 -1134 -96 -124 -134 -66 -644 -1607 -163 -156
Failure characteristics

ξ̄ (direct DFT) 0.13 0.22 0.15 0.19 0.15 0.24 0.20 0.12 0.16 0.15 0.18 0.22 0.14
ξ̄ (analytical) 0.17 0.25 0.19 0.23 0.19 0.27 0.27 0.13 0.13 0.17 0.23 0.27 0.16
Failure mode T T T T T S S S S S S S S



7

IV. SUMMARY AND CONCLUSIONS

A formalism is developed in this work to study the
ideal deformation behavior of single-crystal hcp and bcc
solids. This formalism can be used to compute failure
modes of materials and is a function only of elastic
constants and applied strain, in particular SOEC’s and
TOEC’s. It accounts for the anharmonicity of elastic
constants as a function of strain and employs the Wallace
tensor, its eigenvalues and eigenvalues to characterize
the failure mode of materials. In order to apply this
formalism, a practical and robust way of calculating
SOEC’s and in particular TOEC’s is developed and
described in this work.

The formalism is applied in this paper to 4 bcc transi-
tion metals (Nb, Ta, Mo and W) and 13 hcp metals (Be,
Mg, Os, Re, Ru, Ti, Y, Zn, Zr, Co, Tc, Sc and Hf). It is
found that Nb and Ta fail in shear and are consequently
intrinsically ductile whereas Mo and W fail in tension
and are intrinsically brittle. Among the hcp metals,
Mg, Be, Os, Ru and Re are found to be intrinsically
brittle, whereas Ti, Y, Zn, Zr, Co, Tc, Sc and Hf are
intrinsically ductile. Re is a special case in which the
shear and tensile failure modes occur near the same
strain along c, and hence the precise failure mechanism
cannot easily be determined. The formalism predicts
W, Mo, Be, Mg, Re and Os to be brittle, separating
those metals from more ductile metals such as Hf, Sc
and Ti. Based on available experimental data on several
commerically-pure transition metals, their appears to
exist an excellent correlation between intrinsic ductility
and tensile elongation.

It is further found that d-band filling appears to be an
important physical parameter in determining the defor-
mation behavior of transition metals (and alloys). Met-
als from groups III and IV with the hcp structure (Sc, Y,
Ti, Zr, Hf) fail in shear whereas those from group VIII
(Ru and Os) fail in a brittle tensile mode. Further, cu-
bic metals from group V fail in shear whereas those in
group VI fail in tension. This formalism provides new in-
sights into the origins of these differences in failure modes
and relates it to basic elastic properties, in particular the
SOEC’s and the degree to which the SOEC’s soften un-
der strain, which is described by the TOEC’s. Metals
with relatively high shear moduli tend to exhibit intrinsi-
cally brittle behavior, consistent with Pugh’s formalism,
however this is merely a rule of thumb and the detailed
answer depends on a complicated trade-off between the
SOEC’s and TOEC’s as discussed in this paper. Metals
with relatively low shear moduli on the other hand tend
to fail in shear, in particular if the shear modulus softens
significantly with an increase in the applied strain.
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Appendix A: Strain energy density: formalism and

results

1. General expressions

Consider the mapping between the reference and cur-
rent configuration of a continuum solid. In the refer-
ence configuration, a particle occupies a point p with
spatial coordinates X = X1e1 + X2e2 + X3e3, where
e1, e2, e3 is a Cartesian reference triad and X1, X2, X3

are the reference coordinates. Upon deformation of the
body, the point originally at X is translated by the dis-
placement vector u (X1, X2, X3) to its final coordinates
x (X1, X2, X3), see Eq. A1 .

x (X1, X2, X3) = u (X1, X2, X3)+X (X1, X2, X3) (A1)

Based on this description, a deformation gradient is
formulated as in Eq. A2. The Green-Lagrangianstrain
tensor η then follows from F as shown in Eq. A3, where
I denotes the identity matrix.

F =
∂xi

∂Xj

(A2)

η =
1

2

(

F TF − I
)

(A3)

With the notation now established, the strain energy
density E (per unit mass) can be expanded in terms of
the second-order elastic constants (SOEC’s), Cij , third-
order elastic constants (TOEC’s), Cijk , and the Green-
Lagrangianstrain, η, as in Eq. A4, where ρ0 represents
the mass density in the undeformed state and the terms
ηi represent the components of the tensor defined in Eq.
A3. The symmetry of the SOEC’s and TOEC’s will be
applied in the expansions, which simplifies the resulting
expressions considerably. Note that in Eq. A4, the Voigt
notation η11 7→ η1, η22 7→ η2, η33 7→ η3, η23 7→ η4/2,
η13 7→ η5/2, η12 7→ η6/2 has been applied.

ρ0E (η) =
1

2!

6
∑

i,j=1

Cijηiηj +
1

3!

6
∑

i,j,k=1

Cijkηiηjηk + . . .

(A4)



8

In this work, strain control is assumed and the crystals
are loaded uniaxially along the c-axis. All other de-
grees of freedom are allowed to relax to zero stress by
means of Poisson contraction. The imposed strain com-
ponents along c is denoted by ξ in this work and the
resulting equilibrium strain along the a and b directions
is η1 = η2 = η̄. The deformation gradient F and the cor-
responding Green-Lagrangianstrain tensor η that pertain
to this loading situation are presented in Eqs. A5 and
A6.

F =





√
2η̄ + 1 0 0
0

√
2η̄ + 1 0

0 0
√
2ξ + 1



 (A5)

η =





η̄ 0 0
0 η̄ 0
0 0 ξ



 (A6)

Further, we introduce the different measured of stress
that are used throughout this work. First, the second
Piola-Kirchhoff stress tensor S is defined in Eq. A7 as a
derivative of the strain energy density w.r.t. to Green-
Lagrangian strains.

Sij = ρ0
E

ηij
(A7)

Nanson’s equation is used to convert between S and
the Cauchy stress tensor σ according to Eq. A8, where
|F| denotes the determinant of F.

S = |F|F−1σF−T ↔ σ =
1

|F|FSF
T (A8)

For a loading direction where only σ33 (and S33) are
nonzero, and F given by Eq. A5, the relation between
σ33 and S33 is particularly simple, see Eq. A9.

σ33 =

√
2ξ + 1

2η̄ + 1
S33 (A9)

In the next sections, we derive explicit relations be-
tween strain, stress and elastic constants for cubic and
hexagonal crystals under a uniaxial stress along c.

2. Cubic crystal system

We consider a cubic material that is loaded along
the c-axis by a Green-Lagrangian strain denoted by
ξ. Initially, we allow for additional strains denoted by
η1, η2, η4, η5, η6. Consider an expansion of the strain en-
ergy density up to and including SOEC’s. When the
symmetry of the SOEC’s is invoked, the expression in
Eq. A10 is obtained.

ρ0E (η) = C11
η21
2

+ C11
η22
2

+ C33
ξ2

2
+ C44

η24
2

+ C44
η25
2

+ C44
η26
2

+ C12η1η2 + C12ξη2 + C12η1ξ (A10)

Eq. A10 generally suffices for small strains. For larger
strains, a higher-order expansion of the strain energy den-

sity involving TOEC’s is required, as shown in Eq. A11,
where the terms Pi are given in Eqs. A12.

ρ0E (η) = C11P1c + C44P2c + C12P3c + C111P4c + C112P5c + C123P6c + C144P7c + C155P8c + C456P9c (A11)
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P1c =
η21
2

+
η22
2

+
ξ2

2
, (A12a)

P2c =
η24
2

+
η25
2

+
η26
2
, (A12b)

P3c = η1η2 + η2ξ + η1ξ, (A12c)

P4c =
1

6

(

η31 + η32 + ξ3
)

, (A12d)

P5c =
1

2

(

η2η
2
1 + ξη21 + η22η1 + ξ2η1 + η2ξ

2 + η22ξ
)

, (A12e)

P6c = η1η2ξ, (A12f)

P7c =
1

2

(

η1η
2
4 + η2η

2
5 + ξη26

)

, (A12g)

P8c =
1

2

(

η2η
2
4 + ξη24 + η1η

2
5 + ξη25 + η1η

2
6 + η2η

2
6

)

, (A12h)

P9c = η4η5η6 (A12i)

In this work, we consider deformations of the type
shown in Eq. A5, resulting in a strain tensor as shown

in Eq. A6. This implies that η4 = η5 = η6 = 0 and
also η1 = η2. If we further invoke that η1 = η2 = η̄ and
η3 = ξ, Eq. A13 is obtained.

ρ0E (η) =

(

C111

3
+ C112

)

η̄3 + (C11 + C12 + C112ξ + C123ξ) η̄
2 +

(

C112ξ
2 + 2C12ξ

)

η̄ +
C111ξ

3

6
+

C11ξ
2

2
(A13)

The strains η̄ and ξ are clearly not independent and
in fact, we can write η̄ = η̄ (ξ).The value of η̄ can be
obtained by differentiating Eq. A13 with respect to η̄
and setting the resulting expression equal to zero. The

governing quadratic equation in η̄ is shown in Eq. A14.
The resulting expression for η̄ is rather long and is not
shown here.

3

(

C111

3
+ C112

)

η̄2 + 2 (C11 + C12 + C112ξ + C123ξ) η̄ + 2C12ξ + C112ξ
2 = 0 ⇒ η̄ = η̄ (ξ) (A14)

The component S33 of the second Piola-Kirchhoff
stress tensor can be obtained from Eq. A7 (upon the

insertion of η̄ and ξ) and is shown in Eq. A15. All other
components in S are zero and the same is true for σ.

S33 = (2C12 + 2C112ξ) η̄ + C11ξ + (C112 + C123ξ) η̄
2 +

C111ξ
2

2
(A15)

The Cauchy stress component σ33 can now be obtained
for every strain ξ as follows.

1. Consider an applied strain ξ

2. Compute the resulting strain (Poisson contraction)

η̄ from Eq. A14

3. Compute S33 from Eq. A15

4. Compute σ33 from Eq. A9
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3. Hexagonal crystal system

For the hexagonal crystal system, the formalism fol-
lows a similar path as for the cubic crystal system. The
various expressions are longer however, due to the lower
amount of symmetry present.
Consider an imposed strain ξ along the c-axis of a

hexagonal material, in addition to strains denoted by
η1, η2, η4, η5, η6. Consider first the expansion of Eq. A4,
retaining only terms up to and including the SOEC’s
(hence, ignoring the TOEC’s for now). This gives the
energy expression in Eq. A16, in which the symmetry of
the SOEC’s has been applied.

ρ0E (η) = C11
η21
2

+ C11
η22
2

+ C33
ξ2

2
+ C44

η24
2

+ C44
η25
2

+
1

2
(C11 − C12)

η26
2

+ C12η1η2 + C13η1ξ + C13η2ξ (A16)

For large strains, the expansion in Eq. A16 is not suf-
ficient and instead, TOEC’s have to be included as well.
The expansion of the strain energy up to the third order
in strain is given in Eq. A17, in which the terms P are

given in Eq. A18. Note that in Eq. A17, the symme-
try of the SOEC’s and TOEC’s has been incorporated to
simplify the resulting expression.

ρ0E (η) = C11P1 + C12P2 + C13P3 + C33P4 + C44P5 + C111P6 + C222P7 + C333P8+

C133P9 + C113P10 + C112P11 + C123P12 + C144P13 + C155P14 + C344P15 (A17)
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P1 =
η21
2

+
η22
2

+
η26
4
, (A18a)

P2 = −η26
4

+ η1η2, (A18b)

P3 = η1ξ + η2ξ, (A18c)

P4 =
ξ2

2
, (A18d)

P5 =
η24
2

+
η25
2
, (A18e)

P6 =
η31
6

+
η1η

2
2

2
− η1η

2
6

4
+

η2η
2
6

4
, (A18f)

P7 =
η32
6

− η1η
2
2

2
− η2η

2
6

8
+ 3

η1η
2
6

8
, (A18g)

P8 =
ξ3

6
, (A18h)

P9 =
η1ξ

2

2
+

η2ξ
2

2
, (A18i)

P10 =
ξη21
2

+
ξη22
2

+
ξη26
4

, (A18j)

P11 =
η21η2
2

+
η1η

2
2

2
− η26η1

8
− η26η2

8
, (A18k)

P12 = η1η2ξ −
ξη26
4

, (A18l)

P13 =
η1η

2
4

2
+

η2η
2
5

2
− η4η5η6

2
, (A18m)

P14 =
η2η

2
4

2
+

η1η
2
5

2
+

η4η5η6
2

, (A18n)

P15 =
ξη24
2

+
ξη25
2

(A18o)

Similar to the cubic materials, we now invoke the sym-
metry of the material and the specifics of the loading
condition to simplify the resulting expressions that re-
late stress, strain and elastic constants. As a hexagonal
material is loaded uniaxially along c by a strain ξ, it

contracts or expands in the basal plane by an amount
η1 = η2 = η̄. In addition, no shear strain can result from
this type of loading, hence η4 = η5 = η6 = 0. These con-
straints simplify Eq. A17 considerably, to the expression
shown in Eq. A19.

ρ0E (η) =

(

2C111

3
+ C112 −

C222

3

)

η̄3+(C11 + C12 + C113ξ + C123ξ) η̄
2+

(

C113ξ
2 + 2C23ξ

)

η̄+
C333

6
ξ3+

C33

2
ξ2 (A19)

The equilibrium strain in the basal plane due to the
application of ξ is obtained by a strain-energy minimiza-
tion of Eq. A19 with respect to η̄. This equation and
the resulting solution of the type η̄ = η̄ (ξ) are rather
long and are not shown here.

Similar to the case of a cubic crystal, the component
S33 of the second Piola-Kirchhoff stress tensor can be
obtained from Eq. A7 and is shown in Eq. A20. All
other components in S are zero and the same is true for
σ.

S33 = 2C23η̄ + C33ξ + (C113 + C123) η̄
2 +

C333

2
ξ2 + 2C133η̄ξ (A20)
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The Cauchy (true) stress component σ33 can now be
calculated for every strain ξ from Eq. A9. The detailed
procedure is summarized below.

1. Consider an applied strain ξ

2. Compute the resulting strain (Poisson contraction)
η̄ from Eq. A19

3. Compute S33 from Eq. A20

4. Compute σ33 from Eq. A9

Appendix B: Derivation of Wallace tensors

The Wallace tensor is defined in Eq. B1, where the
terms C′

ijkl represent the elastic constants in the de-
formed configuration and σij are the components of the
Cauchy (true) stress tensor. Further, δ is the Kronecker
delta function. The eigenvalues of the symmetrized
Wallace tensor govern the mechanical stability of a
solid under stress and its eigenvectors describe the type
of deformation (e.g. shear or tensile deformation modes).

For the loading situations considered in this work, the
Cauchy stress tensor can be written out as in Eq. B1.
Note that σ33 can be expressed as a function of only the
SOEC’s, TOEC’s and ξ (see Eq. B2). Similarly, C′

ijkl can

be expressed in terms of the SOEC’s, TOEC’s and ξ (see
Eq. B2). Hence, the formalism proposed in this work can
be used to express the mechanical stability of any solid
under uniaxial loading in terms of material constants and
the applied strain.

Bijkl = C′
ijkl +

1

2
(σilδjk + σjlδik + σikδjl + σjkδil − 2σijδkl) (B1)

σ = σ (Cijkl , Cijklmn, ξ) (B2)

C′
ijkl = C′

ijkl (Cijkl , Cijklmn , ξ) (B3)

σ =





0 0 0
0 0 0
0 0 σ33



 (B4)

B̄ij =
1

2
(Bij +Bji) (B5)

Note that the Wallace tensor as defined in Eq. B1
does not in general lead to a symmetric tensor. The
stability is in fact governed by the symmetrized Wal-
lace tensor, denoted by B̄, and defined in Eq. B2
(in Voigt notation). The simplicity of Eq. B4 al-
lows Eq. B1 to be written in a particularly sim-
ple form. Expressions are derived specifically for cu-
bic and hexagonal materials. Note that the term
1
2 (σilδjk + σjlδik + σikδjl + σjkδil − 2σijδkl) in the Wal-
lace tensor will be identical for cubic and hexagonal ma-
terials considered in this work, and the difference comes
in only in the symmetry of C′

ijkl . In Voigt notation,

the term 1
2 (σilδjk + σjlδik + σikδjl + σjkδil − 2σijδkl) is

shown in Eq. B6.
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1

2
(σilδjk + σjlδik + σikδjl + σjkδil − 2σijδkl) =















0 0 0 0 0 0
0 0 0 0 0 0

−σ33 −σ33 σ33 0 0 0
0 0 0 σ33

2 0 0
0 0 0 0 σ33

2 0
0 0 0 0 0 0















(B6)

1. Cubic crystal system

For cubic materials, 3 independent SOEC’s exist,
which are taken here to be C11, C12 and C44. Further,

6 independent TOEC’s exist, chosen here as C111, C112,
C123, C144, C155 and C456. Employing Eq. 1 and sub-
sequently symmetrizing according to Eq. B5 yields the
symmetrized Wallace tensor (in Voigt notation) as shown
in B7.

B̄ij =















C′
11 C′

12 C′
13 − σ33

2 0 0 0
C′

12 C′
11 C′

13 − σ33

2 0 0 0
C′

13 − σ33

2 C′
13 − σ33

2 C′
33 + σ33 0 0 0

0 0 0 C′
44 +

σ33

2 0 0
0 0 0 0 C′

44 +
σ33

2 0
0 0 0 0 0 C′

66















(B7)

2. Hexagonal crystal system

Similar to cubic materials, the Wallace tensor for
hexagonal materials can be expressed in terms of the
Cauchy stress component σ33 and the deformed elas-

tic constants, both of which can be derived from the
SOEC’s, TOEC’s and the applied strain ξ along the c-
axis. For this crystal system, we have 5 independent
SOEC’s, taken to be C11, C12, C13, C33 and C44. Em-
ploying Eq. 1 and subsequently symmetrizing according
to Eq. B5 yields the symmetrized Wallace tensor (in
Voigt notation) as shown in B8.

B̄ij =

















C′
11 C′

12 C′
13 − σ33

2 0 0 0
C′

12 C′
11 C′

13 − σ33

2 0 0 0
C′

13 − σ33

2 C′
13 − σ33

2 C′
33 + σ33 0 0 0

0 0 0 C′
44 +

σ33

2 0 0
0 0 0 0 C′

44 +
σ33

2 0

0 0 0 0 0
C′

11
−C′

12

2

















(B8)

Appendix C: Derivation of deformed elastic

constants

In this section, derivations are presented for the
deformed elastic constants and their dependence on
the undeformed elastic constants, the TOEC’s and the
strain state experienced by the material.

1. General considerations

A priori, we know that the tensor representing the
TOEC’s can have 63 = 216 possible unique elements.

This number, however, does not reflect Voigt symme-
try. We start by noting that the completely diagonal
elements, Ciiiiii, for example, have only one possibility.
Hence, this gives 6 unique elements. The next type of
entry has two identical indices, and 1 different index.
There are six ways to choose the repeated index, and 5
ways to choose the lone index. This implies that are 30
unique elements here as well. Each of these elements,
however, corresponds to 3 of the elements Cmnp for a
total of 90 elements of the general Voigt tensor.

The remaining elements all have unique n, m, p.
There are 6 ways to choose the first element, 5 ways to
choose the second, and 4 ways to choose the third, for a
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total of 120 ways to choose these. However, the choices
are repeated, so that there are only 20 possibilities. Each
of these 20 possibilities, however, can be represented six
times for a total of 120 elements in the form Cnmp.

Adding all these elements together yields
6 + 90 + 120 = 216, so we appear to have found
them all. The net result is that there are potentially
56 unique elements of the third order elastic constants
tensor. We can use this to simplify the rules that come
out of the generic analysis.

We propose the following structure for defining the
unique 56 elements that might appear in our tensor.
The Voigt diagonal elements will be given by the only
possibility. The tensor elements that have a repeated
index will have that repeated index appear in the first
two entries. The tensor elements that have three unique
indices will always be sorted so that the indices are in
increasing order.

In relating tensor components to each other, the fol-
lowing transformation relations are used extensively. For
generic second order tensors Lij (e.g. stress tensors,
thermal conductivity tensors), it is well-known that they
transform according to:

Lij = TikTjlLkl (C1)

By enumerating all possible transformations under the
elements of a crystallographic group, it is then possible to
obtain restrictions on the components of the tensor, e.g.
relations among components or certain components being
identically equal to zero. This is the basis of Neumann’s
principle. Similar transformation rules apply to tensors
of order 4 (e.g. SOEC’s) and order 6 (e.g. TOEC’s):

Cijkl = TimTjnTkoTlpCmnop (C2)

Cijklrs = TimTjnTkoTlpTrqTstCmnopqt (C3)

The deformed elastic constants can be obtained by con-
sidering a large deformation strain characterized by the
tensor η0, with a small symmetric deformation strain ten-
sor β applied on top of that. A point in the solid with no
applied strain is defined as X. X is mapped to a point
(x0) under a finite strain of η0 by the deformation gra-

dient F 0
jm =

∂x0

j

∂Xm
. In addition, X is mapped to a point

(x) in the combined finite and infinitesimal strain state,

denoted as η, by the deformation gradient Fjm =
∂xj

∂Xm
.

Because β is an infinitesimal strain,

xj = x0
j + βjmx0

m. (C4)
With these three strain states defined the deformed elas-
tic constants can be defined as,

C′
klmn = ρ(η0)

(

∂2E

∂βkl∂βmn

)

β′,η0

. (C5)

By substituting equation A4 into equation C5, the de-
formed elastic constants can be derived purely in terms
of the SOEC’s, TOEC’s, and η0, provided that the defor-
mation gradients can be written in terms of the applied
finite strain (see equations A5 and A6).

2. Cubic crystal system

Below is a list of the generators used in the cubic cal-
culations. They correspond to a four-fold rotation along
the [001] axis, a mirror plane operating on (010), and a
three-fold rotation along [111].

R4[001] =





0 1 0
−1 0 0
0 0 1



 (C6)

Rm(010) =





1 0 0
0 −1 0
0 0 1



 (C7)
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R3[111] =





0 1 0
0 0 1
1 0 0



 (C8)

The size of the resulting group is 48, and each of these
elements corresponds to a transformation matrix. We
now use the tensor transformation rules and consider
all possible transformations, imposed by the symmetry-
group operations. We use the equations for the tensor
transformations and consider all possible transforma-
tions, imposed by the symmetry-group operations.

Writing out the transformation equations for the
tensor of order 6, Cijklrs, and using all 48 elements of
the group we obtain a grand total of 48 · 36 = 34, 992

equations relating the components of this tensor.
Many of these equations are however not independent.
Mathematica is used to find the independent constraint
equations, of which there are 50 in total. This implies
that there are 56-50 = 6 independent TOEC’s. Here,
the following 6 independent TOEC’s are chosen (note
that this choice is not unique) in Voigt notation: C111,
C112, C123, C144, C166, C456.

The deformed elastic constants are finally obtained using
Eq. C5 and are given as follows:

C′
11 = C11 + η(3C11 + C111 + C112 + C12) + ξ(−C11 + C112 + C12), (C9a)

C′
12 = C12 + 2η(C112 + C12) + ξ(C123 − C12), (C9b)

C′
13 = C12 + η(C112 + C123) + ξ(C112 + C12), (C9c)

C′
33 = C11 + 2η(−C11 + C112 + 2C12) + ξ(4C11 + C111), (C9d)

C′
44 = C44 + η

(

1

4
C11 +

3

4
C12 + C144 + C166

)

+ ξ

(

1

4
C11 +

1

4
C12 + C166 + C44

)

, (C9e)

C′
66 = C66 + η

(

2C166 +
1

2
C11 +

1

2
C12 + 2C66

)

+ ξ

(

−C66 +
1

2
C12 + C144

)

(C9f)

3. Hexagonal crystal system

For the HCP system, the space group is P63/mmc
with a point group of 6/mmm. We choose the following
3 generators and multiply them all together to form a
group.

R1 =





1
2 −

√
3
2 0

√
3
2

1
2 0

0 0 1



 (C10)

R2 =





−1 0 0
0 1 0
0 0 1



 (C11)

R3 =





1 0 0
0 1 0
0 0 −1



 (C12)

It can easily be established that the length of the
resulting group is 24, as it should be. Each of these
elements corresponds to a transformation matrix. We
now use the tensor transformation rules and consider
all possible transformations, imposed by the symmetry-
group operations.

Writing out the transformation equations for the ten-
sor of order 6, Cijklrs, and using all 24 elements of the
group we obtain a grand total of 24 · 36 = 17, 496 equa-
tions relating the components of this tensor. Many of
these equations are however not independent. Mathe-
matica is used to find the independent constraint equa-
tions, of which there are 46 in total. This implies that
there are 56-46 = 10 independent TOEC’s. Here, the
following 10 independent TOEC’s are chosen (note that
this choice is not unique) in Voigt notation: C663, C662,
C661, C553, C552, C551, C333, C332, C222, C223. In addi-
tion, the following set of relations is found that can be
used to convert between the various choices of indepen-
dent TOEC’s:
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C111 = C222 − C661 + C662

C133 = C332

C113 = C223

C112 = C222 − 2C661 − 2C662

C123 = C222 − 2C663

C144 = C552

C155 = C551

C344 = C553

C654 =
1

2
(C551 − C552)

C344 = C553

(C13)

The deformed elastic constants are finally obtained using Eq. C5 and are given as follows:

C′
11 = C11 + η(3C11 + C12 + C111 + C112) + ξ(−C11 + C113 + C13), (C14a)

C′
12 = C12 + η(2C12 +

5

3
C112 +

1

3
C111 −

4

3
C166) + ξ(−C12 + C123), (C14b)

C′
13 = C13 + η(C123 + C113) + ξ(C13 + C133), (C14c)

C′
33 = C33 + η(2C13 − 2C33 + 2C133) + ξ(4C33 + C333), (C14d)

C′
44 = C44 + η

(

1

4
C11 +

1

4
C12 +

1

2
C13 + C144 + C155

)

+ ξ

(

C44 + C355 +
1

4
C33 +

1

4
C13

)

, (C14e)

C′
66 =

1

2
(C′

11 − C′
12) (C14f)

Appendix D: Details of calculating TOEC’s

1. General method

Below is an outline of the method used to calculate the
third-order elastic constants.
The third-order elastic constants are defined as

Cijklmn = ρ0
∂3E

∂ηij∂ηkl∂ηmn

|η=0. (D1)

If the TOEC contains Voigt symmetry, but no point sym-
metry other than the identity, the sixth-order elastic ten-
sor will consist of 56 unique constants. By evaluating the
second derivative of the stress components with respect
to η for 21 unique strain states defined in Eqs. D2.
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η1 =
(

η 0 0 0 0 0
)

, (D2a)

η2 =
(

0 η 0 0 0 0
)

, (D2b)

η3 =
(

0 0 η 0 0 0
)

, (D2c)

η4 =
(

0 0 0 2η 0 0
)

, (D2d)

η5 =
(

0 0 0 0 2η 0
)

, (D2e)

η6 =
(

0 0 0 0 0 2η
)

, (D2f)

η7 =
(

η η 0 0 0 0
)

, (D2g)

η9 =
(

η 0 η 0 0 0
)

, (D2h)

η10 =
(

η 0 0 2η 0 0
)

, (D2i)

η11 =
(

η 0 0 0 2η 0
)

, (D2j)

η12 =
(

η 0 0 0 0 2η
)

, (D2k)

η13 =
(

0 η 0 2η 0 0
)

, (D2l)

η14 =
(

0 η 0 0 2η 0
)

, (D2m)

η15 =
(

0 η 0 0 0 2η
)

, (D2n)

η16 =
(

0 0 η 2η 0 0
)

, (D2o)

η17 =
(

0 0 η 0 2η 0
)

, (D2p)

η18 =
(

0 0 η 0 0 2η
)

, (D2q)

η19 =
(

0 0 0 2η 2η 0
)

, (D2r)

η20 =
(

0 0 0 2η 0 2η
)

, (D2s)

η21 =
(

0 0 0 0 2η 2η
)

, (D2t)

(D2u)

results in a vector, τ , containing 126 terms that consist
of the 56 TOEC. Writing the TOEC as a 56× 1 array, ξ,

the 126× 56 matrix, A, can be defined as

Aik =
∂τi
∂ξk

. (D3)

Defining B to be the pseudoinverse of A the TOEC can
be written as

ξi = Bikτk. (D4)

The components of τ were evaluated numerically using
the finite difference method. A 9 point central difference
stencil about η = 0 was used to calculate the second
derivative of the 2nd Piola-Kirchhoff stress components.
While the maximum strain used in the finite difference
calculations is system dependent and determined from
convergence testing with respect to the TOEC, a maxi-
mum strain of ηmax = 0.05 has been shown to be appro-
priate for most systems studied.
In the calculation of the TOEC no considerations with

regards to symmetry are given. In the case where the
point group of the crystal is larger than the identity or
it is desired to approximate the closest tensor of a higher
symmetry (such as in the case of a solid solution), the
TOEC must be symmetrized as follows

Ĉijklmn =
1

nG

nG
∑

α=1

a
(α)
ip a

(α)
jq a

(α)
kr a

(α)
ls a

(α)
mt a

(α)
nv Cpqrstu,

(D5)
where nG is the number of elements in the group, and

a
(α)
ip , the transformation matrix associated with the αth

element of the group. Note that Einstein summation is
applied to all Latin subscripts.
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25 M.  Lopuszyński and J. A. Majewski, Physical Review B

76, 045202 (2007).
26 M. Lopuszynski and J. Majewski, Acta Physica Polonica-

Series A General Physics 112, 443 (2007).
27 M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine,

A. Gamst, M. Sluiter, C. K. Ande, S. van der Zwaag, J. J.
Plata, et al., Scientific Data 2 (2015).

28 M. De Jong, W. Chen, H. Geerlings, M. Asta, and K. A.
Persson, Scientific data 2 (2015).

29 C. M. Kube and M. de Jong, Journal of Applied Physics
120, 165105 (2016).

30 M. de Jong, W. Chen, R. Notestine, K. Persson, G. Ceder,
A. Jain, M. Asta, and A. Gamst, Scientific Reports 6

(2016).
31 A. Van de Walle, P. Tiwary, M. De Jong, D. Olmsted,

M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, and
Z.-K. Liu, Calphad 42, 13 (2013).

32 G. Kresse and J. Furthmüller,
Phys. Rev. B 54, 11169 (1996).

33 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
34 J. P. Perdew, K. Burke, and M. Ernzerhof,

Phys. Rev. Lett. 77, 3865 (1996).
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