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A non-equilibrium statistical domain nucleation model of polarization dynamics in less understood anti-ferroelectric 
systems is introduced. Predictions of the model have been successfully tested experimentally using an anti-ferroelectric 
Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3 polycrystalline ceramic. We determined the activation energy of the domain 
nucleation process for this particular anti-ferroelectric sample to be Wb = 1.07 eV and the critical volume of the polar 
nucleus V* = 98 × 10-27 m3, which corresponds to a linear length scale of 2.86 nm. 
 
 

1. Introduction  
 

Anti-ferroelectric materials were first predicted by Kittel in 1951 using Landau-Devonshire 
phenomenological theory [1] and shortly confirmed experimentally in PbZrO3 ceramics [2,3]. Anti-
ferroelectrics display a field induced transition from antipolar to polar dielectric and they have 
interesting properties such as the double hysteresis loop and large strains associated with it. These 
unique properties make anti-ferroelectric materials very attractive for technological applications 
involving high-energy super-capacitors [4-8], electro-caloric cooling [9], actuators [10], photovoltaic 
effects [11] and many other interesting dielectric phenomena. Very recently, experimental evidence 
of a novel 4-state non-volatile memory effect in anti-ferroelectrics has been reported [12]. A similar 
non-volatile memory effect, but fundamentally different to the previously reported one was 
published by Pesic et al. [13]. These simultaneous and independent studies concluded the possibility 
of utilizing anti-ferroelectric materials for non-volatile random access memory (RAM) chips called 
AFRAM [14]. The AFRAM memories bring considerable improvements to ferroelectric RAM, 
FRAM [15-19], while maintaining key features of FRAM such as low power consumption, ultra-fast 
data accesses times and read / write endurance of > 1012. These discoveries and proposed 
applications can only be turned into commercial products if the temperature, time and electric field 
dependence of the polarization dynamics in anti-ferroelectrics are fully understood. Unfortunately, 
anti-ferroelectrics are complex systems and, despite major scientific advances [20-23], there is no 
clear understanding of their polarization dynamics.   
The situation is rather different with ferroelectric materials, where the theories of polarization 
dynamics are well established and better understood. The wider consensus is that polarization 
reversal in ferroelectrics takes place via a nucleation of domains and the movement of domain walls, 
which subsequently expand and grow at the expense of the existing domains [24-29]. A simple 
phenomenological description of the polarization dynamics in ferroelectrics was given by 
Kolmogorov-Avrami-Ishibashi (KAI) domain nucleation-switching model [30-35] and subsequent 
variants of it [36-38]. KAI model assumes that the application of an electric field generates nuclei of 
reversed polarization and the polarization switching involves 4 steps: i) nucleation of domains; ii) 
rapid growth of nuclei along polarization direction; iii) sidewise growth of the domains; iv) 
coalescence of the domains until full polarization reversal is completed. Despite being able to 
successfully describe polarization kinetics of ferroelectric single crystals [30] and some epitaxial thin 
films [39], KAI model is very limited in applicability because of its failure to predict the relationship 
between the switching time to the applied electric field and temperature [36,40]. Various attempts to 
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modify the KAI model in order to increase its applicability were made by assuming a distribution of 
relaxation times [37], a nucleation limited switching model [36] and a statistical time dependent 
depolarization field [38]. However, just as the KAI model, these variants still lack the full analytical 
inclusion of electric field, time and temperature dependence of the reversed polarization and 
switching time. By assuming a domain nucleation mechanism of polarization switching and applying 
a non-equilibrium statistical model to describe the time dependent polarization reversal probability of 
nano-polar regions, with a critical volume V*, Vopsaroiu et al. [41] were able to fully solve these 
deficiencies [Phys. Rev. B, 82, 024109 (2010)] and fully reproduce the KAI equations. However, 
unlike the KAI model, this approach successfully accounted for the applied electric field, time and 
temperature contributions to produce comprehensive analytical relations for the reversed 
polarization, switching time, switching current and coercive field [41], but also domain wall velocity, 
Curie law in ferroelectrics [42] and lattice mismatch strain/stress effects [43]. Given that anti-
ferroelectrics consist of two equally and opposing ferroelectric sublattices, in this paper we examine 
the physics of polarization dynamics in anti-ferroelectric materials, using Vopsaroiu’s non-
equilibrium domain nucleation model applied to each ferroelectric sublattice.  
 

2. Anti-ferroelectric double hysteresis loop explained  
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Figure 1 shows a typical anti-ferroelectric double hysteresis loop. We shall refer to the two 
ferroelectric sublattices of the anti-ferroelectric as sublattice A and sublattice B. In this convention, 
at zero applied electric field, sublattice A has negative polarization PA = -Ps and sublattice B has 
positive polarization, PB = +Ps, where Ps is the absolute saturation polarization / spontaneous 
polarization of each sublattice. Hence, when the 
applied E field is zero, the anti-ferroelectric has 
zero polarization due to the self-cancelation of the 
macroscopic polarizations of the two consisting 
ferroelectric sublattices, P = PA + PB = 0, as seen in 
figure 1. This is also well represented schematically 
in figure 2.a), which shows the zero polarization 
state and the unit cells of the ferroelectric 
sublattices A and B, at equilibrium, and under no 
applied external field. The application of a large 
enough positive or negative external electric field 
results in switching of the anti-ferroelectric from 
antipolar to polar ferroelectric. Therefore, under the 
influence of an applied electric field, the anti-
ferroelectric displays a double hysteresis (see figure 
1), with each hysteresis loop representing the 
response of the induced ferroelectric phase with 

Figure 1. Typical anti-ferroelectric double hysteresis 
loop with the main parameters marked on it. 
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polarization in the direction of one of the two sublattices. Hence, a positive applied field, +E, would 
result in the reversal of the negative sublattice A, while leaving the positive sublattice B unaffected 
(see figure 2.d,e). Therefore, the hysteresis loop in the positive quadrant of figure 1 corresponds to 
the reversal of the negative sublattice A. Similarly, a negative applied field, -E, would result in the 
reversal of the positive sublattice B (figure 2.b,c) and the negative hysteresis loop in figure 1 
corresponds to the reversal of the positive sublattice B. In order to explain the polarization dynamics 
of anti-ferroelectrics and to formulate the theoretical model, we make the following notations on the 
double hysteresis loop: Ec(A) = E0 - Ec1(A) = Ec2(A) - E0 is the coercive field of the sublattice A; 

Ec(B) = -E0 - Ec1(B) = Ec2(B) - E0 is the coercive field of the sublattice B; +/-Es are the positive and 
negative saturation electric fields; +/-2Ps are the positive and negative saturation polarization values 
of the whole anti-ferroelectric sample; +/-Ps are the positive and negative saturation polarization 
values of each ferroelectric sublattice; +/-E0 are the activation fields at which the hysteresis loops are 
centred, and they are equivalent to E = 0 axis of the hysteresis loop of a ferroelectric material; +E0 
intersects the positive hysteresis loop of the sublattice A at points A0 and A1; -E0 intersects the 
negative hysteresis loop of the positive sublattice B at points B0 and B1; The meaning of A0, A1, B0 
and B1 is that of pseudo-remanent polarization states (see figure 1) that can be accessed only when 
the system is excited at the critical fields +/- E0. +PA0 and +PA1 are the upper and lower pseudo-
remanent polarization states of the sublattice A, and -PB0 and -PB1 are the upper and lower pseudo-
remanent polarization states of the sublattice B, respectively (figure 1 and 2). 

 
3. Theory  

Figure 2. Schematic diagram of the unit cells of a hypothetical anti-ferroelectric material consisting of ferroelectric 
sublattices A and B, respectively. a) Anti-ferroelectric in ground state at E = 0, P = 0; b) Reversal of the positive 
sublattice B under the action of negative E field, while A sublattice remains unchanged. At E field equal to the 
critical activation field, E = -E0, the free energy of the sublattice B shows two equally probable energy states 
corresponding to PB0 and PB1; c) At saturating negative field E = -Es, the sublattice B is fully reversed; d) Reversal 
of the negative sublattice A under the action of positive E field, while B sublattice remains unchanged. When E = 
+E0, the free energy of the sublattice A shows two equally probable energy states corresponding to PA0 and PA1; e) 
When E = +Es, the negative sublattice A is fully reversed into positive polarization;          
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Having the parameters of the double hysteresis loop defined, we now recall that polar ferroelectric 
materials display a single hysteresis loop and they can be described using Landau – Devonshire 
formalism in terms of their free energy expansion around the order parameter. The free energy 
function has two equilibrium minima corresponding to the two possible remanent polarization states 
of a ferroelectric system, separated by an energy barrier, Wb. At E = 0, the two possible states are 
equally probable and reversal from one state to another can only take place if an energy comparable 
to Wb is supplied to the system. An applied E field will distort the balance of probabilities and will 
promote the reversal into one of the two states, depending on the polarity of the applied E field. This 
is the correct description of the polarization reversal process at T = 0K. If T ≠ 0K, then an additional 
Boltzmann energy term, kBT, will contribute to the reversal process. In fact, at T ≠ 0K, there is a 
non-zero probability that reversal over Wb occurs even at E = 0, leading to spontaneous polarization 
reversal. The ferroelectric is essentially a non-equilibrium system in which nucleation polar sites 
undergo statistical transitions between the two physically permitted states on a continuous basis, and 
the occupation probabilities ℘1 and ℘2 of two possible states are also time dependent (throughout 
the paper “℘” refers to occupation probability and “P” refers to electric polarization). The time 
evolution of the probabilities when a non-equilibrium system goes through different possible states 
are described by the general Pauli-Master equation [44]:  
 

( )∑
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℘−℘=℘
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llmmml
l tata

dt
d )()( ,,          (1) 

 
where: 1 ≤ l,m ≤ Ω with l and m taking integer values and Ω is the number of possible states of the 
system compatible with the macro-state; ℘l(t) and ℘m(t) are the probabilities that the system is in 
the state l or m at the time t, respectively; al,m and am,l are the transition rates per unit time from the 
state m to state l and vice versa, respectively. For a system in contact with a temperature reservoir, T, 
the pseudo-symmetry relation between the transition rates is: 
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where Wm and Wl are the energies in the state m and l, respectively and ν0  is a constant equal to the 
total number of trials per second to overcome the energy barrier, taken as the frequency of the optical 
phonons in the crystal ∼1013 Hz [38]. Since ferroelectrics are systems with two energy minima states, 
the equation (1) has been solved for Ω = 2 (i.e. a two state system) for which l,m = 1,2 [41,42]. In 
the case of anti-ferroelectrics, the occurrence of the double hysteresis loop implies that there are two 
meta-stable equilibrium states for each ferroelectric sublattice, with a total of four meta-stable 
equilibrium states corresponding to points A0, A1, B0 and B1, respectively (figure 1). This 
corresponds to Ω = 4 in equation (1) while the polarization values of these four meta-stable states are 
PA0, PA1, PB0 and PB1 respectively, having the meaning of pseudo-remanent polarizations that occur 
at the critical activation fields +/-E0. Assuming non-interacting nucleation nano-polar sites within 
each ferroelectric sublattice, then we can apply Vopsaroiu’s non-equilibrium domain nucleation 
model to each ferroelectric sublattice, so that instead of Ω = 4 in equation (1) resulting in a system of 
4 differential equations, the problem can be solved as two independent systems of two differential 
equations, corresponding to ΩA = 2 and ΩB = 2, respectively. We now refer to figure 2 where the 
free energy of each sublattice at +/- E0 and +/-Es has been plotted as a function of the polarization of 
each sublattice. The energy of states A0 and A1 within sublattice A are:  
 
WA0 = -Wb + PA0⋅(E – E0)        (3)  



Article submitted to PRB                                                              25th of April 2017 
Confidential     

6 
 

WA1 = -Wb + PA1⋅(E – E0) 
 
It can be easily noticed that if the applied electric field E = +E0, then WA0 = WA1 = -Wb, as seen in 
figure 2.d. Similarly, the energy of states B0 and B1 within sublattice B are:  
 
WB0 = -Wb + PB0⋅(E + E0)        (4) 
WB1 = -Wb + PB1⋅(E + E0) 
 
Hence, if the applied electric field E = -E0, then WB0 = WB1 = -Wb, as seen in figure 2.b. Hence, at E 
= +/-E0, the two states A0, A1 and B0, B1 are equally probable. Let ℘A0(t) and ℘A1(t) be the 
probabilities that the sublattice A is at time t in state A0 and A1, and ℘B0(t) and ℘B1(t) are the 
probabilities that the sublattice B is at time t in state B0 and B1, respectively. Solving the Pauli – 
Master equation (1) for each sublattice requires identical approach with the exception that the 
hysteresis loop of the sublattice A is centred at +E0, and the energy of the states A0 and A1 are given 
by relations (3), while the sublattice B has an activation field –E0 and the energy of states B0 and B1 
are given by relations (4). In what follows we are restricting the analysis to sublattice A, bearing in 
mind that a similar treatment can be applied to sublattice B, by properly considering the energy states 
and the polarity of the activation field. Solutions of the Pauli – Master equation (1) for sublattice A 
are:  
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where ℘A0(∞) is the equilibrium probability of state A0 when t → ∞. Using (3) and the 
normalization condition ℘A0(t)+ ℘A1(t) = 1, ℘A0(∞) becomes:  
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tsw is the polarization switching time at an arbitrary applied E field, given by: 
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At the coercive field of the sublattice A, Ec(A) = E0 - Ec1(A) = Ec2(A) - E0 (see figure 1), the 
occupation probabilities of states A0 and A1 are equal because the polarization of the sublattice A is 
zero (PA = 0)  and the polarization of the whole anti-ferroelectric sample is P = PA + PB = +Ps (see 
figure 1 and 2). This implies that when E = Ec(A), then ℘A0(t) = ℘A1(t) and since ℘A0(t) + ℘A1(t) = 
1, we deduce that ℘A0(t) = ℘A1(t)= 0.5 at the coercive field. Using this condition in (5) and (8) and 
imposing ℘A0(∞) → 0 at E ≥ Ec(A), after some algebraic re-arrangement we obtain the coercive field 
of the sublattice A as: 
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V* is the volume of the polar embryo and it comes from the fact that the energies expressed in (2) – 
(8) are in fact energies per unit volume. Since the equations refer to the total energy, all energy terms 
must be multiplied with V*, which has been omitted for convenience. Similarly, the coercive field of 
the sublattice B is derived as:  
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The equations (9) and (10) describing the coercive field of sublattice A and B as a function of the 
applied electric field, temperature, time and activation energy barrier of the nucleation process, allow 
quick testing of the proposed model against experimental data extracted from polarization hysteresis 
loops.   
It is important to mention that in this approach there is no need to specify the form of the Landau – 
Devonshire free energy, as all contributions and interactions are captured in the energy barrier term, 
Wb. In fact, any additional energy terms could be specifically considered in the Landau – Devonshire 
free energy, including depolarizing energy [41] or interfacial stress/strain [43], without 
compromising this approach. However, it is widely accepted that the depolarizing fields are only 
significant in thin film structures and negligible in bulk [45], especially bulk anti-ferroelectrics, as in 
this study. Hence, the present approach neither requires the inclusion of these effects, nor are they 
relevant for the current study. In this non-equilibrium statistical approach we also do not specify the 
exact location of the nucleation sites, which could be at special sites where the presence of defects or 
residual anti-parallel domains could lower the activation energy barrier. Although beyond the scope 
of this work, in future studies, a more detailed approach could incorporate these effects as well as 
additional local fields, distribution of fields, distribution of volumes of the nucleation sites and other 
energy terms, in order to extract additional information from the measurements. 
 

4. Experiments and results    
 
To test the model a ceramic anti-ferroelectric sample Pb0.99Nb0.02[(Zr0.57Sn0.43)1-yTiy]0.98O3 with y = 
0.06 (code name PNZST 43/6/2) has been synthesized. Powders of PbO, ZrO2, SnO2, TiO2 and 
Nb2O5 with purity levels >99.9% were batched 
with an additional 5 wt.% PbO to compensate 
for PbO evaporation during calcination and 
sintering. Calcination was repeated twice at 935 
0C for 4 h for compositional homogeneity. The 
powder was milled for 7 h in ethanol with 
zirconia media, dried and pressed. After a final 
milling of 15 h, 40 g of dried PNZST 43/6/2 
powder with acrylic binder was pressed at 75 
MPa. Cold isostatic pressing was then applied to 
the green compact at 400 MPa. After the binder 
was burnt out at 450 0C, sintering was carried 
out at 1325 0C for 3 h. To further increase the 
density of the ceramic, hot isostatic pressing was 
carried out at 1150 0C and 200 MPa for 2 h in a 
20% O2, 80% Ar atmosphere. Transmission Figure 3. Polarization hysteresis loops as a function 

of temperature for PNZST 43/6/2 anti-ferroelectric 
sample.   
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Figure 5. Representative microstructure in the PNZST 
43/6/2 ceramic. (a) The anti-ferroelectric 90o domains. 
(b) The thin 180o domain slabs. The inset in (b) displays 
the corresponding selected area electron diffraction 
pattern. 

electron microscopy (TEM) was used to analyse the microstructure of the as-processed ceramic. 
TEM specimens were prepared via mechanical 
dimpling and an argon ion mill. Domain 
morphology and incommensurate modulations 
were imaged with a Phillips CM-30 TEM 
operating at 300 kV. Polarization hysteresis loops 
were acquired using an AiXact Piezo-test Analyser 
2000E which was equipped with a sample heating 
stage and temperature controller in order to 
perform sample measurements as a function of 
temperature. The sample used for the polarization 
measurement is a ceramic disk of 10 mm diameter 
and 500 μm thickness with metallic electrodes 
applied on each side of the ceramic disk. 
Hysteresis loops were acquired using a triangular 
field waveform of frequency 0.1 Hz and 1.8 kV 
amplitude with a pre-polarization pulse applied 
first. Due to the large applied voltages, 
measurements were only possible at low < 1 Hz 
frequencies. We observed no significant changes in 
the double hysteresis loops when measurements 
were taken at 0.05, 0.1, 0.2 and 0.5 Hz, 
respectively. The switching current range was 1 
mA for this particular sample and experimental conditions. Figure 3 shows the double hysteresis 
loops measured at room temperature and elevated temperatures ranging from 22o C to 60o C. 
Although our system allows testing up to 600o 
C, measurements at higher temperatures were 
not possible because of multiple cracks and 
physical sample damage emerging at 
temperatures above 60o C. From the double 
hysteresis loop at room temperature we extracted 
the following parameters of the PNZST 43/6/2 
anti-ferroelectric sample: 2Ps = 37.4 µC/cm2, PA 
= |PB| = Ps = 18.7 µC/cm2, +/-E0 = 16.6 kV/cm 
and +/-Es = 36 kV/cm. The electric coercive 
field was extracted by averaging the Ec(A) from 
relations: Ec(A) = E0 - Ec1(A) and Ec(A) = Ec2(A) 
- E0, for sublattice A. The same values, but with 
opposite sign, are obtained for the coercive field 
of the sublattice B. Figure 4 shows the 
dependence of the experimental Ec(A) values on 
the measurement temperature. The equation (9) 
predicts that the Ec(A) has a theoretical 
maximum value at T = 0K, and then it decreases 
linearly with a negative slope as the temperature 
increases. Remarkably, this is exactly what has 
been observed experimentally, which has 
enabled us to perform a theoretical fit to the 
experimental data using equation (9). The 
theoretical fit using the linear function Ec(A) = A - B⋅T, resulted in A = 47.11 kV/cm and B = 0.121 

Figure 4. Experimental and theoretical fit of the 
coercive field values of sublattice A as a function of 
temperature. The theoretical equation (9) has been 
used to fit the experimental data.  
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kV/cm⋅K fitting values. Combining (9) with the linear fitting results we obtain by identification
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The meaning of t is the fraction of the measurement time taken from the saturating applied electric 
field to the coercive field. Since the measurements are performed at 0.1 Hz, then the measurement 
time for the whole double hysteresis loop is 10 seconds, which is split in 5 seconds per sublattice 
hysteresis loop. Hence, the estimated time is t = 2.5 seconds. Taking ν0 = 1013 Hz, kb = 1.38×10-23 
J/K, 2Ps = 37.4 µC/cm2, and B = 0.121 kV/cm⋅K from the fitting, we determined the volume of the 
nucleation nano-polar region to be V*= 98×10-27 m3. This corresponds to a linear length scale of 2.86 
nm for the polar phase. Similarly, the intercept A = Wb/2Ps = 47.11 kV/cm allowed us to calculate 
the energy barrier Wb = 2Ps⋅A⋅V* = 1.07 eV. The meaning of this energy barrier is the activation 
energy of the polarization reversal of the ferroelectric sublattice at the activation +/-E0 field.    
The theoretically estimated critical size of the polar phase is in good agreement with the 
microstructure analysis of the PNZST 43/6/2 ceramic. Figure 5 displays the typical domain 
morphology and incommensurate modulations in a grain imaged along the [001] zone-axis. 
According to previous studies [46], the patches in Fig. 5(a) are anti-ferroelectric 90o domains. Within 
each 90o domain are the thin 180o domains, which appear as fringes in bright-field images. Figure 
5(b) shows these fringes across a 90o domain wall where vertical fringes are seen in the left part of 
the micrograph and horizontal fringes are seen in the lower-right part. The corresponding selected 
area diffraction pattern in the inset shows satellite diffraction spots with an incommensurate number 
of 7.20 [46]. This indicates a wavelength of 2.09 nm, consistent with the fringe spacing directly 
measured from the bright-field micrograph. According to our previous model for anti-ferroelectric 
domains [46], the average thickness of the 180o domain slabs is then around 1 nm. Therefore, the 
theoretically estimated critical size of ~2.8 nm is very reasonable. Once one or two slabs of 180o 
domains are reversed, the critical size is reached and the polar phase can grow further under applied 
electric field. The coexistence of anti-ferroelectric and ferroelectric domains are clearly identified in 
the TEM bright field micrographs of anti-ferroelectric PNZST 43/6/2.  
 
 

5. Conclusions   
 
A domain nucleation non-equilibrium statistical model has been applied to explain the polarization 
dynamics of anti-ferroelectric materials. A suitable anti-ferroelectric 
Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3 ceramic sample has been fabricated, which allowed 
experimental confirmation of the model’s theoretical predictions. The model and the experimental 
evidence suggest that polarization reversal in anti-ferroelectrics takes place via a domain nucleation 
process within each ferroelectric sublattice. The process is triggered in nucleation sites by forming 
nano-meter-sized polar phase. Using the theoretical model together with the experimental data, we 
calculated the average volume of the nucleation polar phase to be V*= 98×10-27 m3. This is 
equivalent to a linear length scale of 2.86 nm. We also determined that the energy barrier of the 
nucleation polar phase polarization reversal within each sublattice is Wb = 1.07 eV, at the activation 
field +/-E0. These results advance our understanding of anti-ferroelectrics, a class of increasingly 
important materials, and facilitate their adequate theoretical modelling, fabrication and applications 
design.        
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