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We investigate the quantum tunneling and Andreev reflection in a top-gated quantum anomalous
Hall insulator proximity-coupled with a superconductor junction. A quantized perfect crossed An-
dreev reflection with its coefficient being integer 1 is obtained and all other scattering processes (the
normal reflection, normal tunneling and local Andreev reflection) are completely suppressed, when
the topological superconductor phase with Chern number N = 1 is realized. This perfect crossed
Andreev reflection originates from the tunneling of the chiral Majorana edge states, and the phase
of tunneling amplitude only being 0 and π plays a decisive role. Furthermore, because of the chiral
characteristic of the Majorana edge states, the perfect crossed Andreev reflection is robust against
the disorder and can work in a wide range of system parameters.

PACS numbers: 73.63.-b, 74.45.+c, 73.20.-r

I. INTRODUCTION

With the expectation on the utilization of entangle-
ment effects in quantum communication and computa-
tion, quantum entanglement has been an extremely ac-
tive area attracting many researchers1–3. One of the most
key issues is searching for the methods of creating entan-
gled particles. A Cooper pair in the superconductor is a
pair of electrons bounding together in a certain manner,
which are both spin and momentum entangled. Thus
superconductor is deemed as natural sources for gener-
ating nonlocal Einstein-Podolsky-Rosen electron pairs4,5.
A Cooper pair can be spatially separated with the help
of the crossed Andreev reflection (CAR)6–10, a process of
converting an incoming electron from one terminal into
an outgoing hole at the other terminal. These spatially-
separated entangled electrons are the key building blocks
for its promising application in quantum communication
and quantum computing11–17. Therefore, many Cooper-
pair splitters by coupling a superconductor with quan-
tum dots9,18–21, carbon nanotubes22,23, Luttinger liquid
wires24, graphene25–27, etc,28 have been theoretically put
forward and experimentally implemented in part.

However, besides the CAR, there also exists local An-
dreev reflection (LAR)29, where the outgoing hole returns
back to the same terminal as the incoming electron. Since
the incoming electrons and outgoing holes in the LAR re-
side in the same terminals, the LAR is usually stronger
than CAR. Moreover, CAR is often completely masked
by another nonlocal process known as quantum tunnel-
ing, which does not involve Cooper pairs and is therefore
a parasitic process8,30. In the experiment, impurities and
disorders exist inevitably, which will cause the normal re-
flection and weaken the CAR. Therefore, the coefficient
of the CAR is usually very small. In order to obtain a
perfect CAR with its coefficient being 1, it is necessary
to propose a system where the LAR, normal tunneling
and the normal reflection are all completely suppressed

FIG. 1: (Color online) (a) Schematic diagram of a QAHI-
TSC-QAHI junction. Red solid and dotted arrows label the
propagating direction of the chiral edge states and Majorana
edge states. (b) Schematic diagram of the propagating route
for an electron incoming from the left terminal to the QAHI-
TSC-QAHI junction. Here the central TSC is at the N = 1
phase. Red solid (dotted) arrows label the chiral electron
(Majorana) edge states. The blue dotted arrows describe the
tunneling from Majorana edge state γ1 to γ3.

and then all incident electrons are converted into holes
in the other terminal.

Quantum anomalous Hall insulator (QAHI) is a spe-
cial kind of material where quantum Hall effects can be
realized in the absence of an external magnetic field, and
the unidirectionality of the chiral edge states promises
the absence of backscattering31–35. QAHI in proximity
to an s-wave superconductor can induce a topological su-
perconductor (TSC)36, which supports topologically pro-
tected chiral Majorana edge states37,38. In the past pro-
posed system based on the QAHI proximity-coupled with
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FIG. 2: (Color online) (a) Band structure of TSC nanoribbon
with µS = 1.5 and (b) the wave functions Ψi of Majorana edge
states versus the site i with the energy E = 0 for µS = 0 (b1),
µS = 0.6 (b2) and µS = 1.7 (b3). The superconductor gap
∆ = 0.35, m = −0.5 and ribbon width N = 100a.

a superconductor junction39, it has been found that the
LAR could be completely suppressed and CAR could be
considerably improved. But the normal tunneling pro-
cess exists, and the CAR is not perfect still.
In this paper, we investigate normal tunneling, LAR

and CAR in top-gated QAHI proximity-coupled with a
superconductor, as shown in Fig.1(a), in which the top-
gated voltage can moderate the transition of TSC phase
with Chern number from N = 2 to N = 1. We find
that in the TSC phase with N = 1, a quantized per-
fect CAR occurs in which the CAR coefficient shows a
plateau with its value being integer 1, and all other scat-
tering processes, e.g. LAR, normal tunneling and normal
reflection, are completely suppressed. This perfect CAR
originates from the tunneling of the chiral Majorana edge
states, and the phase of tunneling amplitude only being
0 and π plays a decisive role. Because of the chiral char-
acteristic of the Majorana edge states, the perfect CAR
is robust against the disorder and can survive in a wide
range of system parameters.
The rest of the paper is organized as follows. In Sec.

II, we present the model Hamiltonian of the QAHI-TSC-
QAHI junction and show the formulas of the tunneling
coefficient, LAR coefficient and CAR coefficient. In Sec.
III, we investigate the quantum perfect CAR effect. At
last, the results are summarized in Sec. IV.

II. MODEL AND METHOD

For definiteness, we consider the simplest QAHI model
Hamiltonian realized with low-energy states near the Γ
point

HQAHI(p) =

(

m+Bp2 + µL A(px − ipy)
A(px + ipy) −m−Bp2 + µL

)

, (1)

where A, B and m are material parameters, and µL is
the potential energy of the QAHI leads. The basis vec-
tor is (c↑(p), c↓(p))

T , where c↑(p) (c↓(p)) is the opera-

tor annihilating an electron of momentum p and spin ↑
(↓). The sign of m/B determines the topological proper-
ties of the system, and the QAHI is obtained by setting
m/B < 0. Since the tight-binding representation is used
in our calculations, the Hamiltonian can be mapped onto
a nearest neighbor tight-binding representation on a two
dimensional square lattice,

H =
∑

i

[ψ†
iT0ψi + (ψ†

iTxψi+δx̂ + ψ†
iTyψi+δŷ) + H.c.],

T0 = [m+ (4Bh̄2/a2)]σz + µLσ0,

Tx = −(Bh̄2/a2)σz − (iAh̄/2a)σx, (2)

Ty = −(Bh̄2/a2)σz − (iAh̄/2a)σy ,

where ψi = (ci↑, ci↓)
T and ci↑ (ci↓) is the annihilation

operator on site i with spin ↑ (↓). σ0 and σx,y,z are the
unit 2× 2 matrix and the Pauli matrix for spin, a is the
lattice length, and δx̂ (δŷ) is the unit vector along x (y)
direction. In our calculations, we set A = B = 1, the
lattice length a = 1 and h̄ = 1.
In proximity to an s-wave superconductor, a finite pair-

ing potential ∆ can be induced in QAHI. This gives us
the Bogoliubov-de Gennes (BdG) Hamiltonian

HBdG =
1

2

(

HQAHI(p) + µS i∆σy
−i∆∗σy −H∗

QAHI(−p)− µS

)

, (3)

where µS is potential energy varied by the top-gated volt-

age and the basis vector is (c↑(p), c↓(p), c
†
↑(−p), c

†
↓(p))

T .

For m < −
√

∆2 + µS
2, the TSC phase with N = 2

is obtained, which owns two chiral Majorana modes37.
Whereas the TSC phase with N = 1 is realized by set-

ting −
√

∆2 + µS
2 < m <

√

∆2 + µS
2, which supports

single Majorana edge state propagating at the edges of
the sample. To directly picture this edge state, we calcu-
late the energy dispersion of the TSC phase with N = 1
in Fig.2(a). One can see that a pair of chiral gapless edge
state mode traverses across the bulk band gap. The cor-
responding wave functions Ψi of edge states are shown in
Fig.2(b). One can see that wave functions Ψi are com-
pletely localized at the system boundary for µS = 0.0
and µS = 0.6. However wave functions Ψi oscillates
and its localization length is considerably increased while
|m| ≪ µS . The reason is that the system at |m| ≪ µS

is metal with high density of state for ∆ = 0. For

m >
√

∆2 + µS
2, the system is in normal superconduc-

tor phase of N = 0.
We now turn to analyze the scattering processes when

an incident electron with the energy E flows from the left
QAHI terminal into the central TSC region. By using the
non-equilibrium Green’s function technique40, we can ob-
tain the normal tunneling coefficient T , LAR coefficient
TLAR and CAR coefficient TCAR:

41–43

T (E) = Tr[ΓL
eeG

r
eeΓ

R
eeG

a
ee], (4)

TLAR(E) = Tr[ΓL
eeG

r
ehΓ

L
hhG

a
he], (5)

TCAR(E) = Tr[ΓL
eeG

r
ehΓ

R
hhG

a
he], (6)
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FIG. 3: (Color online) The normal tunneling, LAR and CAR
coefficients as a function of top-gated voltage µS where ∆ =
0.35 and the energy E = 0 of the incident electron. m = −0.5,
the length of the central TSC is L = 20a and ribbon width is
N = 80a (a), 100a (b) and 150a (c). In (d), N = 100a and
m = −0.8. The vertical dotted line in (a-d) is the boundary
of the TSC phases with N = 2 and N = 1.

where “e/h” represent “electron/hole” respectively, and
ΓL/R(E) = i[Σr

L/R − Σa
L/R] is the line-width function.

Gr(E) = [E−HBdG−Σr
L−Σr

R]
−1 is the retarded Green’s

function, where HBdG is the BdG Hamiltonian of the
central TSC region. Σr,a

L/R are the self-energies due to

the coupling between the left/right QAHI leads and the
central TSC region, and can be numerically calculated44.

III. NUMERICAL RESULTS AND ANALYSIS

In this section, we investigate the normal tunneling
coefficient T , LAR coefficient TLAR and CAR coefficient
TCAR. Fig.3 shows these coefficients as a function of µS ,
where the energy E = 0 of the incident electron is fixed.
From Fig.3 one can see that when µS is approximately
less than 0.35 both LAR coefficient TLAR and CAR coef-
ficient TCAR are zero and the normal tunneling coefficient
T shows a quantized plateau with value of integer 1. The
reason is that TSC phase of N = 2 is obtained by setting

m < −
√

∆2 + µS
2, in which there exist two branches of

chiral Majorana edge states in the central region and the
TSC is topologically equivalent to the QAHI with single
branch of chiral fermion edge state. Thus the edge cur-
rent is perfectly transmitted with the help of the edge
states37. When condition m2 < ∆2 + µS

2 is satisfied by
increasing µS >

√
m2 −∆2, the TSC phase transits from

N = 2 to N = 1 and there only exists a chiral Majorana
state on the edges of the central region. Notice that the
propagating directions of the chiral Majorana states for

the QAHI-TSC interface and the vacuum-TSC interface
are different. As shown in Fig.1, at the QAHI-TSC inter-
face, the Majorana edge states γ1 and γ3 propagate along
the clockwise direction. Whereas at the vacuum-TSC in-
terface, γ2 and γ4 are anticlockwise. In this case, the
incident electron from the left terminal will be separated
into two Majorana Fermions at the QAHI-TSC interface,

i.e. a1 =
√
2
2 (γ1+ iγ2), thus γ2 directly propagates to the

right terminal and γ1 returns back to the left terminal,

i.e. γ1 →
√
2
2 (b1 + b†1) and γ2 →

√
2

2i (b2 − b†2), where a1
(a2) is the incoming edge mode in the left (right) terminal
and b1 (b2) is the outgoing edge mode in the left (right)
terminal. So the four scattering processes, LAR, T, CAR
and normal reflection have equal probability with value
of 1/4 fraction37, which can be clearly seen in Fig.3 with
µS ∼ |m|.
Most importantly, with the increasing of µS , one can

see that normal tunneling and CAR show oscillations as
functions of µS and alternately display quantum plateau
with value of integer 1 at µS > 1. The plateau TCAR = 1
means the occurrence of the perfect CAR, and all other
processes, the normal tunneling, LAR and normal reflec-
tion are totally suppressed. Thus an electron incoming
from the left terminal is completely transformed into an
hole outgoing to the right terminal. In addition this per-
fect CAR is independent of the ribbon width as shown in
Fig.3(a)-(c), where the width of sample varies from 80a
to 150a.
The reason behind this observation is that there exist

the tunneling between Majorana edge modes γ1 and γ3
at certain system lengths. Thus the outgoing Majorana

state
√
2
2 (b1 + b†1) in the left terminal can be written as

(
√
2/2)(b1 + b†1) = rγ1 + teiϕγ3 (7)

where teiϕ is the tunneling amplitude between γ1 to γ3
satisfying r2 + t2 = 1. Notice that the phase ϕ can only
take the value 0 or π because the Majorana Fermion is
self-Hermitian particle. Similarly, the other three outgo-
ing Majorana edge states are:

(
√
2/2i)(b1 − b†1) = γ4, (8)

(
√
2/2)(b2 + b†2) = rγ3 + teiϕγ1, (9)

(
√
2/2i)(b2 − b†2) = γ2. (10)

This gives a scattering matrix:








b1
b†1
b2
b†2









=
1

2







r r t+ t−
r r t− t+
t+ t− r r
t− t+ r r















a1
a†1
a2
a†2









. (11)

where t± = teiϕ ± 1. So the normal reflection coefficient

R = r2

4 = 1−t2

4 , LAR coefficient TLAR = r2

4 = 1−t2

4 ,

normal tunneling coefficient T = |t+|2/4 and the CAR
coefficient TCAR = |t−|2/4.
The results of Fig. 3 can be further illustrated as fol-

low. For µS ∼ |m|, the Majorana edge state is localized
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FIG. 4: (color online) The normal reflection coefficient R and
LAR coefficient TLAR as a function of µS. The parameters
are the same as those in Fig.3(b).

at the boundary of the sample [see Fig.2(b)], in this case
the tunneling amplitude t between γ1 and γ3 is almost
zero, which leads to T = R = TLAR = TCAR = 1/4.
Whereas the wave functions of Majorana edge state Ψi

oscillates and its localization length is considerably in-
creased for µS ≫ |m| [see Fig.2(b)]. Thus for a short
central TSC region, it is inevitable that γ1 could arrive
at the right terminal by tunneling itself to γ3 and the
tunneling amplitude t can almost be 1. In this case, the
normal reflection and LAR are completely suppressed,
and the normal tunneling or CAR coefficient is 1, which
can be clearly seen in Fig.3. To be specific, in the Fig.1(b)
we show the propagating route of the carriers. When an
electron a1 incoming from the left terminal spreads to the
interface between QAHI and TSC, it will separate into
two Majorana Fermions γ1 and γ2. Here γ2 directly prop-
agates to the right terminal, and γ1 propagates along the
interface between QAHI and TSC. If the quantum tun-
neling does not take place between the Majorana edge
states γ1 and γ3, γ1 will be reflected back to the left ter-
minal once it arrives at the upper edge of the sample.
In fact, for a short central TSC region, it is inevitable
that γ1 could arrive at the right terminal by tunneling
it to γ3. Therefore the outgoing states in the right ter-
minal are γ2 and eiϕγ1. Note that here ϕ can only be 0
or π due to the Majorana Fermion being self-Hermitian
particle. For ϕ = 0, normal tunneling coefficient T is
1 and the CAR coefficient TCAR is 0. By contrast, for
ϕ = π, normal tunneling coefficient T is 0 and the CAR
coefficient TCAR is 1, i.e. the perfect CAR occurs and all
other processes (T, LAR and R) are totally suppressed.
Here we would like to emphasize that ϕ can only be 0 or
π is a decisive factor for the appearance of the plateaus
of TCAR and T .

In addition, from Eq.(11), we can see that the nor-
mal reflection and LAR coefficients are always equal

(R = TLAR = 1−t2

4 ) regardless of the system parameters
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FIG. 5: (color online) T , TLAR and TCAR as a function of
µS with µL = 0.1 (a), 0.2 (b), 0.4 (c) and 0.6 (d). Other
parameters are the same as those in Fig.3(b). The vertical
dotted line in (a-c) is the boundary of the TSC phases with
N = 2 and N = 1.

and teiϕ, which is also shown in the results of numeri-
cal calculations in Fig. 4. One can see that the normal
reflection and LAR coefficients are exactly the same, al-
though both R and TLAR change complicatedly with the
increase of µS . This is completely consistent with the
Eq.(11) and clearly indicates why the physical picture
for the quantum perfect CAR is reasonable. It is note-
worthy that the TSC phase is N = 2 whenever the µS

satisfies m < −
√

∆2 + µ2
S . In this case, the normal tun-

neling coefficient T always is 1, so R and TLAR remain
still equal to 0.

Next we investigate how the perfect CAR is affected
by the systemic parameters. Fig.3(a-c) show the normal
tunneling coefficient T , LAR coefficient TLAR and CAR
coefficient TCAR for the different width N . It can be
clearly seen that the CAR plateau with TCAR = 1 can
well keep with the change of width except for the very
narrow case. While the width is very narrow, there is
the coupling between the upper and lower Majorana edge
states, which can reduce TCAR. In addition, the perfect
CAR can well survive with the change of the parameter
m [see Fig.3(d)].

Fig.5 shows the normal tunneling coefficient T , CAR
coefficient TCAR and LAR coefficient TLAR versus the
potential energy µS for the different on-site energy µL

of the QAHI leads. The CAR plateaus with TCAR =
1 can well hold at the small µL as shown in Fig.5(a-
b). For a large µL, the Fermi level is close the bulk
states, which could trigger LAR and normal reflection
and weaken normal tunneling and CAR. In this case, T
and CAR show peaks with the values less than 1 [see
Fig.5(c) with µL = 0.4]. Finally for a very large µL, the
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FIG. 6: (color online) T , TLAR and TCAR as a function of µS

with the length of the central TSC region L = 30a (a), 40a
(b), 50a (c) and 60a (d). Other parameters are the same as
those in Fig.3(b).

Fermi level is in the bulk states of the QAHI, leading
to an anomalous large LAR coefficient and the vanishing
CAR as the general normal lead-superconductor system,
[see Fig.5(d)].

Furthermore, Fig.6 shows T , TCAR and TLAR for the
different length L of the central TSC region. One can
see that the plateaus of T and TCAR are broken with the
increase of distance between the two terminals. Even in
this case the larger µS is, the more robust the plateaus is.
For a long length L, the tunneling probability t between
the Majorana edge states γ1 and γ3 is not equal to 1,
thus both T and TCAR are not also quantized. As the
increasing L reaches a limit value, t tends towards zero
and four coefficients tend towards T = R = TLAR =
TCAR = 1/4.

In Fig.7 we plot T , TLAR and TCAR as functions of
the superconductor pairing potential ∆ at the different
potential energy µS . For the small µS , the normal tun-
neling shows a quantized plateau with value of integer
1 and the other three coefficients (R, TLAR and TCAR)
are zero [see Fig.7(a)], The reason is that the central re-
gion is in the TSC phase of N = 2 when the condition
m < −

√

∆2 + µ2
S is satisfied. Whereas form2 < ∆2+µ2

S,
the central region is in the TSC phase of N = 1. Now the
perfect CAR with TCAR = 1 can occur and all other scat-
tering processes are totally suppressed [see Fig.7(b) and
7(d)]. Thus the perfect CAR can exist in a wide range
of ∆. And the larger µS is, the wider the plateau value
of CAR coefficient is. In addition, the quantized normal
tunneling can also occur in m2 < ∆2 + µ2

S [see Fig.7(c)],
because of the alternate appearance of TCAR = 1 and
T = 1 with the change of µS .
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FIG. 7: (Color online) T , TLAR and TCAR as a function of
superconductor gap ∆ with µS = 0.2 (a), 1.2 (b), 1.4 (c) and
1.6 (d). Other parameters are the same as those in Fig.3(b).

Next we consider the inevitable impurity scattering in
the real samples. In Fig.8 we consider the Anderson dis-
order only existing in the central TSC region. One can
see that the perfect CAR plateaus are robust against the
disorder and the plateaus can be well kept while the dis-
order strength is W <∼ 2. In fact, the perfect CAR orig-
inates from the Majorana edge states. As soon as the
ribbon is wide enough, the coupling between the upper
and lower edge states is suppressed, then the perfect CAR
always occurs. On the other hand, when the disorder be-
comes stronger (eg. W = 3.0), the Majorana edge state
as well TSC phase are destroyed because of the impurity
scattering, then the quantized CAR plateau is destroyed
and the CAR coefficient shows the peaks.
Up to now, we have demonstrated that a quantized

perfect CAR occurs in the QAHI-N = 1 TSC-QAHI
system, in which two electrons from a Cooper pair at
TSC are split and certainly go to two different leads.
At last, we study the current in each terminal. By
solving the transmission coefficients, the current IL/R

from the left/right QAHI terminal can be obtained
straightforwardly41,42

Ii =
e

h̄

∫

dE

2π
[(fi+ − fS)TiS + (fi+ − fi−)TLAR

+ (fi+ − fī−)TCAR + (fi+ − fī+)T ], (12)

where i = L/R corresponds the left/right terminal,
ī = R for i = L whereas ī = L for i = R, fi±(E) =
1/{e[(E∓Vi)/kBT ] + 1} and fS(E) = 1/{eE/kBT + 1} are
Fermi distribution with the bias Vi and temperature T .
Here the bias of TSC terminal has been set to zero. While
|E| < ∆, the tunneling coefficient TiS from the QAHI ter-
minal to TSC is zero. By setting the right QAHI terminal
as a voltage probes with IR = 0, we have VR = −VL and
VR/IL tends infinite while the quantized perfect CAR oc-
curs. On the other hand, we have VR = VL when T = 1.
Thus with the change of µS , the TCAR and T alternately
are 1 (see Figs.3, 5 and 8), resulting in the alternately
bias of the right terminal with value of VL and −VL.
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FIG. 8: (Color online) T , TLAR and TCAR as a function of
µS , with the disorder strengths being W = 0.5 (a), 1.0 (b),
2.0 (c) and 3.0 (d). Other parameters are the same as those
in Fig.3(b). Here the curves are averaged over 1000 random
configurations.

IV. CONCLUSIONS

In summary, a quantized perfect crossed Andreev re-
flection is found in the QAHI-TSC-QAHI system when
TSC phase of N = 1 is realized. The coefficient of the
crossed Andreev reflection shows the plateaus with the
value being integer 1, and all other scattering processes,
the normal reflection, normal tunneling and local An-
dreev reflection, are completely suppressed. The quan-
tized perfect crossed Andreev reflection originates from
the chiral Majorana edge states and the tunneling be-
tween them, and it is robust against the disorder and
can work in wide range of system parameters.
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