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Abstract11

We present the results of classical molecular dynamics simulations to assess the relative contributions to12

interfacial thermal conductance from inelastic phonon processes at the interface and in the adjacent bulk13

materials. The simulated system is the prototypical interface between argon and “heavy argon” crystals,14

which enables comparison with many past computational studies. We run simulations interchanging the15

Lennard-Jones potential with its harmonic approximation to test the effect of anharmonicity on conductance.16

The results confirm that the presence of anharmonicity is correlated with increasing thermal conductance17

with temperature, which supports conclusions from prior experimental and theoretical work. However, in18

the model Ar/heavy-Ar system, anharmonic effects at the interface itself contribute a surprisingly small part19

of the total thermal conductance. The larger fraction of the thermal conductance at high temperatures arises20

from anharmonic effects away from the interface. These observations are supported by comparisons of the21

spectral energy density, which suggest that bulk anharmonic processes increase interfacial conductance by22

thermalizing energy from modes with low transmission to modes with high transmission.23
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I. INTRODUCTION24

The contribution of inelastic phonon processes to the thermal conductance at solid/solid inter-25

faces is a topic of enduring interest. At interfaces between metal films and dielectric substrates26

whose phonon spectra are extremely mismatched—e.g., Pb/diamond—experimentally measured27

values can far exceed the phonon radiation limit,1–4 which represents the upper limit of conduc-28

tance when accounting only for elastic (i.e., frequency-preserving) phonon transmission. The29

measured values also increase monotonically with temperature, in common with calculations of30

conductance from molecular dynamics (MD) simulations which naturally include anharmonic ef-31

fects.5–7 These observations strongly suggest that inelastic scattering (i.e., energy transfer among32

modes of different frequency) contribute a large fraction of conductance at high temperature. Since33

inelastic processes arise from anharmonicity of interatomic forces, the contribution is also ex-34

pected to grow as temperature (and hence atomic displacement) increases, making it relevant to35

thermal engineering in applications with high operating temperatures such as high-power electron-36

ics.8–10
37

The seminal models for predicting conductance, the acoustic mismatch model11,12 and dif-38

fuse mismatch model (DMM),13,14 only account for elastic transmission processes. Only elastic39

processes are expected in a system with harmonic interatomic forces or, alternatively, in an an-40

harmonic system under small displacements. Under this assumption, the DMM provides a first41

approximation for estimating the conductance. Based on comparison with experimental data, the42

DMM appears to generally overestimate the conductance between vibrationally well-matched ma-43

terials and underestimate the conductance between mismatched materials.15 The degree of match-44

ing is often summarized in the ratio of Debye temperatures, θD, and the transition between these45

two regimes is observed empirically when θD of the substrate is ∼3–4 times that of the film.15
46

For example, lead and diamond have an extraordinarily high mismatch in vibrational spectra: the47

highest-frequency phonons in Pb are ∼2.2 THz, while those in diamond are ∼39.2 THz.16,17 The48

expected conductance due only to elastic phonon transmission is correspondingly low, on the or-49

der of 2 MW m−2 K−1. However, this underestimates experimental measurements by a full order50

of magnitude, with reported values ranging roughly 20–60 MW m−2 K−1.2–4
51

Several modifications to the DMM have been proposed to account for inelastic transmission52

processes in predictions of conductance.18–22 For example, Hopkins and coworkers proposed two53

modifications to the DMM: the higher harmonic inelastic model (HHIM)20 and the anharmonic54
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inelastic model (AIM)21 which provide expressions for the transmissivities corresponding to n-55

phonon processes: ω1 +ω2 + · · ·+ωn−1↔ ωn, where ω denotes phonon frequency. By compar-56

ison an elastic (2-phonon) process would be denoted ω → ω . The HHIM only allows processes57

that combine phonons of equal frequency (ω1 = · · · = ωn−1), while the AIM allows the combi-58

nation of phonons of arbitrary frequency. Duda and coworkers also proposed a modification to59

the DMM that incorporates bulk-like scattering near the interface rather than at the interface itself,60

which they used to predict an increasing conductance with temperature in the classical limit.22 De-61

spite making different assumptions about the details of inelastic processes, these models improve62

agreement with conductance measurements to similar degrees, making it difficult to determine63

their relative validity.64

Several recent works have elucidated the details of inelastic processes and their contributions65

to thermal conductance. The theoretical and computational work by Sääskilahti et al.7 showed that66

frequency-doubling and -halving processes dominate the inelastic contribution to conductance in67

MD simulations, lending support to the assumptions of the HHIM. However, Hohensee et al.468

observed experimentally that the conductance of metal/diamond interfaces depends only weakly69

on pressure, from which they inferred that inelastic processes involving two metal phonons of70

equal frequency cannot be the dominant contribution to the conductance. Both works observed that71

their conclusions may be reconciled by careful consideration of the inelastic processes in the bulk-72

like regions near the interface. This precise question was investigated in Refs. 23 and 24. Using73

MD, Wu and Luo23 simulated the conductance between one crystal with a monatomic basis and74

another crystal with a diatomic basis. They observed that increasing an anharmonic force constant75

in the diatomic lattice increased the total conductance dramatically due to increased coupling76

between acoustic and optical modes. By contrast, increasing an anharmonic force constant of the77

interfacial interaction had no effect on the conductance. This is broadly consistent with our results,78

but differs with our observation that the interfacial contribution is significant (though smaller than79

the bulk contribution). Furthermore, the present results expand on how the relative contributions80

change with temperature. A related difference is that size effects were observed, which did not81

affect their qualitative conclusions but precluded the quantitative comparison of the contributions82

from elastic, bulk inelastic, and interfacial inelastic processes. Nevertheless, we observe the same83

general mechanism that Wuo and Luo identified: inelastic processes contribute to conductance84

via the bulk thermalization of modes with low transmissivity. In a different work, Murakami et85

al.24 made related conclusions from MD simulations of PbTe/PbS and Si/Ge interfaces, in which86

3



they demonstrated the importance of inelastic processes in a broad transition region (TR) rather87

than only at the plane of the interface. Inelastic processes in the TR downconvert energy from88

high-frequency to low-frequency modes, which then transmit elastically, in agreement with our89

observations. However, their analysis did not provide a direct calculation of the separate elastic90

and inelastic contributions to conductance, nor the temperature dependence of the contributions,91

which will be essential for testing models that correctly incorporate inelastic processes.92

Therefore, the goal of the present work is to decompose the thermal conductance at a model93

interface into explicit contributions from the harmonic dynamics, the anharmonic effects at the94

interface, and the anharmonic effects in the bulk materials. Our model system is a planar interface95

between Ar and “heavy Ar,” which has been the prototypical model system for studying these96

phenomena. In Sec. II we present calculations of the conductance in the model system with dif-97

ferent configurations of harmonic and anharmonic forces between atoms. The results confirm that98

conductance rises with temperature only in the systems with anharmonic forces, which presum-99

ably enable inelastic phonon processes. However, at high temperatures, the anharmonicity at the100

interface itself appears to contribute less than half of the total conductance in our model system;101

the anharmonicity in the bulk materials is responsible for the rest. These observations are cor-102

roborated in Sec. III, in which use the wavelet transform to calculate the spectral energy densities103

throughout the interfacial systems. Those spectra show that energy reflected from the interface104

is in strong non-equilibrium, and anharmonicity enables its thermalization, suggesting a mecha-105

nism to explain the increase in interfacial conductance. We summarize the findings in Sec. IV and106

comment on their relation to other research on this topic.107

II. EFFECT OF LOCAL ANHARMONICITY ON INTERFACIAL THERMAL CONDUCTANCE108

In this section, we present calculations of interfacial thermal conductance using non-equilibrium109

molecular dynamics (NEMD). Further simulation details are given in Appendix A. As a prototypi-110

cal anharmonic potential, we use the Lennard-Jones (LJ) potential ULJ(ri j)= 4ε
[
(σ/ri j)

12− (σ/ri j)
6]

111

where ri j is the distance between atoms i and j, ε is the energy scale, and σ is the length scale.112

The LJ potential is strongly anharmonic, which induces inelastic phonon processes. In order113

to suppress inelastic phonon processes in certain regions, we replace the LJ potential with its114

second-order Taylor expansion about the equilibrium separation req = 21/6σ , Uharmonic(ri j) =115

1
2k(ri j− req)

2, where k = 36(2)2/3ε/σ2. In all simulations, atoms interact only with their nearest116
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neighbors, which is a difference from other MD work. This was enforced for both LJ and harmonic117

potentials and for both intra-species and cross-species interactions. The main reason is that, since118

the harmonic potential does not tend to zero as ri j → ∞, it is ill suited to describe the forces of119

more distant neighbors. We limit the interactions within both potentials to include nearest neigh-120

bors only so that Uharmonic approximates ULJ in a straightforward manner. This also precludes121

cross-species interactions beyond those between the two immediate monolayers, which would be122

ordinarily present using the standard LJ potential and would introduce additional complexity to123

the comparison between harmonic and anharmonic systems.124

We have calculated the interfacial thermal conductance in systems with four different configu-125

rations of these forces: (a) all LJ, (b) all LJ except with harmonic interactions across the interface,126

(c) all harmonic except with LJ interface, and (d) all harmonic. Examples of steady-state tem-127

perature profiles from all four cases under otherwise identical simulation conditions are shown in128

Fig. 1. Each data point represents the average temperature in each bin as described in Appendix A,129

and the shaded region indicates the 95% prediction interval for the bin temperatures. We note that130

the temperature profiles in cases (c) and (d) have effectively zero slope, corresponding to the di-131

verging conductivity expected in a material with no phonon–phonon scattering.132

In order to calculate the interfacial thermal conductance from each simulation, the temperatures133

in the bulk leads are fitted to a linear profile and extrapolated to the interface, which allows the134

definition of the temperature drop ∆T .25 The conductance is then135

h =
Q̇

A ∆T
, (1)

where A is the cross-sectional area and Q̇ is the steady heat current added to the heat source and136

removed from the heat sink. Ten such simulations were performed in each system at each tem-137

perature with randomized initial velocities to provide independent trials. The mean conductance138

values from those trials are plotted in Fig. 2 with error bars indicating 95% confidence intervals.139

The conductances in all four systems converge at low temperatures, since displacements are140

small and the LJ potential is well approximated by the harmonic potential. As temperature in-141

creases, the conductance increases in case (a), as has been observed in MD simulations in previous142

work.5–7 The conductance also increases with temperature in cases (b) and (c), although at smaller143

rates. In contrast, the conductance in the harmonic case (d) is constant with temperature. These144

results are consistent with the hypothesis that, in the classical limit, increasing conductance with145

temperature is caused by inelastic processes, which are enabled by anharmonicity. The average146
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and standard deviation of these values is 24.9± 0.8 MW m−2 K−1. Empirically, we note that147

adding the “excess” conductance from cases (b) and (c) to the harmonic case (d) at each temper-148

ature produces conductance values (gray dashed line) very similar to those obtained in the all-LJ149

case (a). This lends support to the notion that the anharmonic contributions from the interface and150

from the bulk regions are simply additive.151

For comparison, we have also calculated the conductance of the harmonic system using atom-152

istic Green’s functions (AGF) to model both a two-probe26 and a four-probe measurement.27 The153

two respective conductance values are 21.69 MW m−2 K−1 and 26.69 MW m−2 K−1, converged154

within 0.01 MW m−2 K−1 with respect to wavevector and frequency sampling. Details of these155

calculations are given in Appendix B. The conductance obtained by NEMD in the harmonic sys-156

tem falls between the predictions of the two AGF models and in somewhat closer agreement with157

the four-probe model. This is consistent with the fact that the four-probe model better describes the158

physical circumstances of the NEMD calculation, in which the conductance is calculated based on159

temperatures extrapolated to the interface rather than the temperatures at the baths. Physically, the160

NEMD conductance is also expected to be slightly higher than the two-probe conductance. The161

difference is apparent in the temperature profile of the harmonic system in Fig. 1(d); small contact162

resistances between the hot/cold baths and the Ar/heavy-Ar leads cause the temperature difference163

at the interface to be slightly smaller than that between the baths. By calculating conductances164

using bath temperatures from the NEMD simulations, the effective conductance in the harmonic165

system is 22.3±2.6 MW m−2 K−1 in closer agreement with the two-probe prediction, as shown166

in Appendix A. These comparisons corroborate the NEMD results and provide evidence that they167

are free of serious size and edge effects as cautioned in other work,28,29 since AGF calculations do168

not suffer from the same issues.169

The key observation from Fig. 2 is that the system consisting of LJ solids joined by harmonic170

interfacial forces [case (b)] exhibits a consistently higher conductance than the system of harmonic171

solids joined by LJ forces [case (c)]. Moreover, the discrepancy grows with temperature. We172

therefore conclude that, in this system, inelastic phonon processes in the bulk materials make a173

larger contribution to the conductance than inelastic processes at the interface.174
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III. ROLE OF BULK INELASTIC SCATTERING175

In this section, we present calculations of the energy distributions among the normal modes in176

the same NEMD simulations described in the previous section. By comparing the energy distri-177

butions, we elucidate the phonon phenomena that are responsible for the differences in conduc-178

tance observed in Section II. We use the wavelet transform, which has been applied previously179

to analyze the distribution of energy in MD simulations in spatial and spectral domains simul-180

taneously.30 To collect the signal to be transformed, we sampled atomic velocities every 40 ns181

during the same period in which the temperature profiles were collected. We chose to sample nor-182

mal modes with wavevector q parallel to the 〈001〉 direction; therefore, we obtained the average183

velocity v̄ of atoms in each monolayer (i.e., each (002) plane) to form a one-dimensional signal184

wα(z) =
√

m(z)/2 v̄α(z) corresponding to each Cartesian component α . The wavelet transform of185

that signal, w̃(z′,q′), is then used to calculate a kinetic energy density EK(z,q) as a function of both186

space and wavenumber. For ease of interpretation, we convert this to an equivalent temperature,187

Tequiv(z,q); i.e., the temperature of a classical system at thermal equilibrium with an equal energy188

density. In principle, the same procedure can also be used to obtain the spectra of modes in direc-189

tions other than (001) by sampling the corresponding planar velocities. However, the geometry of190

the system introduces complications in the interpretation of spectra in off-axis directions, so we191

present spectra along (001) only. For brevity, we also present only the spectra corresponding to192

longitudinal polarization. We find that the spectra corresponding to transverse modes are very sim-193

ilar because, although their frequencies differ from the longitudinal modes, mode conversion does194

not occur at sharp interfaces for wavevectors along 〈001〉,31 and the wavenumber of the transverse195

Ar modes corresponding to the cutoff frequency of the transverse heavy Ar modes is the same.196

Further details regarding this calculation are given in Appendix C.197

The resulting kinetic energy densities from six sets of NEMD simulations are plotted in Fig. 3.198

To reduce noise, the energy density shown in each panel is obtained from averaging data from199

ten simulations. Each paired row of panels is taken at the same temperature, increasing from top200

to bottom: (a, b) 2 K, (c, d) 26 K, and (e, f) 50 K. In each pair, the left panel is from the all-LJ201

system, and the right panel is from the all-harmonic system. In each system, the average spectral202

temperature decreases from left to right, reflecting the decrease in total temperature. The sharp203

decrease at z = 0 reflects the temperature discontinuity at the interface. Since the simulations are204

classical, the energy density at thermal equilibrium would exhibit a uniform distribution among205
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wavevectors (i.e., along vertical sections). The color scales are chosen proportionally to the to-206

tal temperature so that relative deviations from the equilibrium distribution can be compared at207

different temperatures.208

Interestingly, the energy distribution is in significant nonequilibrium on the Ar side in the LJ209

system at low temperature [panel (a)] and in the harmonic system at all temperatures [panels210

(b, d, f)]. There is excess energy in the modes with wavenumbers above q ≈ 0.4qmax, while211

there is a deficit of energy at lower wavenumbers. The threshold coincides with the wavenum-212

ber of the Ar mode that has the same frequency as the cutoff frequency of heavy Ar, q/qmax =213

2π−1 sin−1(mAr/mh-Ar). Therefore, we attribute the nonequilibrium to the fact that, in the har-214

monic system and in the low-temperature LJ system, phonons can only transmit elastically at the215

interface. High-frequency phonons originating in the Ar are therefore completely reflected at the216

interface, since there are no available modes of the same frequency in the heavy Ar.217

As temperature increases in the LJ system, the atomic displacements increase, and the anhar-218

monic forces enable the exchange of energy among modes of different frequency—i.e., the rates of219

inelastic processes increase. This leads to thermalization of vibrational energy in the Ar in the se-220

quence from panel (a) to (c) to (e): the energy that is confined above q/qmax ≈ 0.4 steadily relaxes221

into modes below the threshold. In light of the results of Section II, this thermalization correlates222

with a drastic increase in thermal conductance of the interface. We therefore infer that conduc-223

tance increases due to an increasing rate of thermalization of excess energy in high-frequency,224

non-transmitting modes to low-frequency modes with a high transmission.225

The kinetic energy spectra of the remaining two types of systems are shown in Fig. 4: the226

left panels are from LJ systems with harmonic interfacial forces, and the right panels are from227

harmonic systems with LJ interfacial forces. In other words, the systems differ from those of228

Fig. 3 only in the forces at the interface. The energy distributions of corresponding panels look229

remarkably similar, which implies that the interfacial forces have only a minor effect on the ther-230

malization of modes in the Ar. In particular, we note that the LJ forces at the interface between231

harmonic solids only promotes thermalization very weakly if at all. This is associated with a rel-232

atively small increase in conductance with temperature in case (c) of Fig. 2, which we attribute to233

the bona fide interfacial inelastic phonon processes investigated in detail by Sääskilahti et al.7234
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IV. CONCLUSIONS235

We have used classical molecular dynamics simulations to investigate the contributions to in-236

terfacial thermal conductance from anharmonic effects at the interface and in the nearby bulk237

materials. First, we confirmed that anharmonicity of interatomic forces is responsible for the in-238

crease of conductance with temperature. The results support the physically appealing model that239

the total thermal conductance at an interface is the sum of a contribution from elastic phonon240

transmission (which is constant in the classical limit) and a contribution from inelastic phonon241

processes that increases with temperature. We found that the inelastic part of the conductance can242

be further decomposed into contributions from bulk inelastic and interfacial inelastic processes.243

Between the two, the contribution from bulk inelastic processes is larger than that from the in-244

terface itself, and this difference grows with temperature. We then used the wavelet transform to245

obtain kinetic energy spectra, which show energy distributions exhibiting strong non-equilibrium246

at low temperatures because transmission is purely elastic. As temperature increases, the energy247

distribution in the anharmonic system approaches a thermal distribution, presumably due to an248

increase in bulk scattering rates. We hypothesize that this increase in bulk scattering enables an249

increasing contribution to the interfacial flux from non-transmitting modes, and that this mech-250

anism is responsible for the majority of the observed increase in conductance with temperature.251

The same thermalization is not observed in a system with anharmonic forces only at the interface252

and harmonic forces elsewhere, suggesting that purely interfacial inelastic scattering contributes253

to increased conductance through a different mechanism, such as directly increasing the effective254

transmission, as observed in previous work.7 In addition to improving the understanding at single255

interfaces, the identification of these separate types of contributions from inelastic processes will256

also be useful in understanding the role of anharmonicity at interfaces incorporating thin layers for257

thermal engineering, which we are also investigating in other work.32
258

The present conclusions apply strictly to the Ar/heavy-Ar interface, which has been used exten-259

sively as a model system for interfacial thermal conductance. There are some aspects that should260

be investigated further to extend the findings to other systems, such as metal/diamond interfaces261

that have been measured experimentally. The present work does not address the effects of inter-262

facial disorder or lattice mismatch, which may play important roles in the experimental systems.263

Furthermore, the vibrational mismatch of the Pb/diamond interface, for example, is much larger264

than the mismatch of the Ar/heavy-Ar system studied in this and most other MD work on this265
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problem. Gordiz and Henry did recently investigate the effects of increasing mismatch explicitly,266

and showed that the anharmonic contribution to conductance becomes particularly important at267

large mismatch in bonding strength.33
268

Nevertheless, the present findings provide important general guidance for the development269

of interfacial thermal conductance models that can accurately incorporate inelastic processes.270

Namely, our results suggest that it is not sufficient for conductance models to account only for271

frequency conversion at the interface, as done e.g. in the HHIM20 and the AIM.21 In addition, it is272

necessary to account for the effective increase of incident phonon flux due to rethermalization of273

energy in modes with low transmission, as was done phenomenologically, for example, by Duda et274

al.22 New models that incorporate these effects could take the parameters of the Ar/heavy-Ar sys-275

tem as input and test their predictions directly against the conductance contributions from elastic,276

bulk inelastic, and interfacial inelastic processes provided in this work.277
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Appendix A: Ar/heavy Ar simulation details286

All molecular dynamics simulations were performed with the LAMMPS code package.34 In287

choosing the model system, we sought the simplest system in which one can observe the effect of288

anharmonicity on thermal conductance and on phonon transport. A system meeting these criteria,289

similar to systems used in past MD studies of interfacial conductance,5,7,25 is a coherent [001]290

interface between solid Ar (40 amu) and solid “heavy Ar” (120 amu). In this work, we use the291

LJ parameters ε = 0.01617 eV and σ = 3.347 Å, which correspond to the harmonic parameters292

k = 0.8249 eV Å−2 and req = 3.757 Å.293
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These interatomic potentials produce a cubic lattice parameter of 5.313 Å at 0 K, compared with294

5.311 Å extrapolated for Ar from experimental data.35 The potentials produce phonon dispersions295

in good agreement with neutron scattering measurements in solid Ar,36 as shown in Fig. 5. The296

highest-frequency mode has a vibrational period of 500 fs, based on which we select a timestep of297

2 fs. To account for thermal expansion in the systems with LJ forces, simulations were performed298

to determine the zero-pressure lattice constant as a function of temperature. The simulations pro-299

duced values of a(T ) that were fitted to a third-order polynomial function300

a(T ) = a0 +a1T +a2T 2 +a3T 3. (A1)

The fitted coefficients are provided in Table I.301

The NEMD simulation domain has dimensions of 10× 10× 60 conventional unit cells. The302

boundary conditions are periodic in the plane of the interface, approximating the interface be-303

tween two slabs of infinite cross section. On each end, two (002) planes are held fixed as walls304

(400 atoms), and the temperature of the next twenty (002) planes (4000 atoms) is controlled us-305

ing a Langevin thermostat with a time constant of 2.14 ps. Sääskilahti et al.7 determined that306

this geometry was sufficiently large to avoid size effects in their system. In NEMD of harmonic307

and low-temperature systems, energy outgoing from the interface must be well thermalized in the308

two thermostatted regions (“baths”) so that the distribution of energy emitted from each bath is309

in thermal equilibrium. Insufficient thermalization manifests as a dependence of thermal proper-310

ties on system size, thermostat strength, or size of the bath. Since (1) the forces in some of our311

systems are purely harmonic and (2) our LJ potential is limited to nearest-neighbor interactions,312

presumably reducing phonon–phonon scattering even in our anharmonic systems, we performed313

additional simulations to check for evidence of insufficient thermalization of phonons emitted from314

the baths. Namely, we ran three series of simulations with increased cross-section (15×15 cells),315

increased length (90 cells), and decreased thermostat time constants (1.07 and 0.54 ps) with no316

statistically significant change in conductance, suggesting that the Langevin thermostats provide317

sufficient thermalization to avoid size and edge effects as others have cautioned.28,29 This is also318

supported by the fact that the conductance also falls between the values predicted by two comple-319

mentary AGF methods (Section II and Appendix B), in which the distributions of energy emitted320

from the temperature baths are prescribed exactly and are not coupled with the distributions of321

energy leaving the interface.322

Each simulation began with the atoms in their equilibrium positions and with kinetic energy323
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equivalent to twice the nominal temperature. For simplicity, the initial atomic velocities were set324

to the corresponding uniform magnitude of |v| = (2dkBTnominal/m)1/2 with random orientation.325

The simulation then ran for 20 ps in order to reach thermal equilibrium. The thermostats were then326

applied at target temperatures of (1±1/10)Tnominal for 4 ns, at which point we confirmed that the327

temperature distributions had reached steady state. To determine the temperature distribution, we328

divided the atoms into 120 bins along the transport direction, each bin containing one monolayer329

(200 atoms). The temperature was sampled in each bin in intervals of 1 ps. Running averages330

were stored in memory and written to disk every 40 ps, and those averages were collected for331

8 ns, which provided 200 samples of the temperature in each bin. To check the degree to which332

the LJ systems at different temperatures are approximated by the harmonic system, we have also333

calculated distributions of atomic displacements from equilibrium during the NEMD simulations.334

Distributions from six selected simulations are shown in Fig. 6. At 2 K, the distributions are nearly335

identical, and the distributions increasingly diverge with increasing temperature.336

Each simulation thus provided a one-dimensional temperature distribution T (z). We used a337

standard procedure for extracting the thermal conductance at the interface: we fit a linear model338

to the temperature profiles in the two “bulk-like” regions and extrapolated them to the interface.25
339

We calculated ∆T as the difference between the extrapolated values, from which we calculated340

the conductance using Eq. (1). In Section II, we comment that in the special case of the har-341

monic system, replacing the extrapolated temperatures with the temperatures of the thermostatted342

regions enables a fair comparison with the two-probe conductance model using atomistic Green’s343

functions (AGF). Those data are shown in Fig. 7 (blue circles) in comparison with the conduc-344

tance calculated using the extrapolated temperatures (red crosses) and the AGF value (gray line).345

The inclusion of the contact resistances appears to be a plausible explanation for the discrepancy346

between the methods.347

Appendix B: Atomistic Green’s Functions348

According to the formalism of atomistic Green’s functions (AGF) in the harmonic limit, the349

thermal conductance of a “device” (in this case, a single planar interface between two materials)350

in contact with reservoirs at thermal equilibrium is given by37,38
351

h2p =
1

2πA

∞∫
0

h̄ω
∂N
∂T

Tr
{

ΓlGΓrG†
}

dω, (B1)
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where A is the cross-sectional area, h̄ω is the phonon energy, N is the Bose–Einstein distribution,352

and T is the temperature. G is the retarded Green’s function for the dynamical equation of the353

device, which describes the response of the device upon an impulse excitation. Γl (Γr) is the354

anti-Hermitian part of the left (right) contact self-energy. This quantity is related to the rate at355

which phonons leak from the device into the left (right) contact.38 Equation B1 corresponds to a356

two-probe measurement based on the temperatures of phonons emitted from the reservoirs, which357

exhibit an equilibrium distribution. A modification has been proposed to approximate a four-probe358

measurement based on the combined energy density of phonons emitted from the reservoirs and359

those transmitted through the interface:27
360

h4p = h2p
1

1− 1
2

[
h2p
hl

+
h2p
hr

] , (B2)

where hl and hr are the effective conductances of the pure materials. Detailed explanations of361

the AGF method and its numerical implementation are available in the literature;27,37–41 here we362

discuss details relevant to the present systems.363

To compare the conductances calculated from AGF and classical MD simulations, we evaluate364

Eqs. B1 and B2 in the classical limit (h̄ω� kBT ). In that limit, the factor h̄ω(∂N/∂T ) reduces to365

the Boltzmann constant, kB, and the thermal conductance becomes366

h =
kB

2πA

∞∫
0

Tr
{

ΓlGΓrG†
}

dω. (B3)

We used AGF to calculate the conductance at the Ar/heavy-Ar interface in the harmonic limit.367

The interatomic force constants were calculated from the Taylor expansion of the total energy, and368

we verified that they produce the same spectrum of normal modes. To calculate Tr
{

ΓlGΓrG†}, we369

use the transverse symmetry of the system to decompose the problem into a sum of independent370

systems in the transverse k-space.42 The transverse Brillouin zone was sampled with a grid of371

200×200 equally spaced k-points.372

Appendix C: The wavelet transform373

The wavelet transform w̃(q,z) of a signal w(z) is an integral transform,374

w̃(z′,q′) = W {w(z)}=
∫

∞

−∞

w(z)ψ
∗
z′,q′(z)dz, (C1)
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where the kernel functions ψz′,q′ are wavelets. We use the convention of Baker et al.30 in which375

each “daughter wavelet,” corresponding to a specific location z′ and wavenumber q′, is defined as376

ψz′,q′(z) = π
−1/4

(
q′

q0

)1/2

exp
[
iq′(z− z′)

]
×

exp

[
−1

2

(
q′

q0

)2

(z− z′)2

]
. (C2)

This is a scaled and translated version of a mother wavelet ψz′,q0 whose dominant wavenumber377

is q0. The definition is normalized so that the energy density per length, per wavenumber is378

calculated as379

Eψ(z′,q′) =
1

Cq0
|w̃(z′,q′)|2. (C3)

We use the combination w(z) =
√

m(z)/2v(z) as the signal to be transformed so that the wavelet380

energy density calculated by Eq. (C3) corresponds to the density of kinetic energy per length, per381

wavenumber. The constant C accounts for the fact that, unlike the plane waves that form the basis382

functions for the Fourier transform, the wavelets are not orthogonal:383

C =
∫

∞

−∞

|ψ̄z′,q0(q)|
2

|q|
dq, (C4)

where ψ̄z′,q′0
(q) is the Fourier spectrum of the mother wavelet.384

The window of useful information from the spectrum is bounded in wavenumber space from385

above due to aliasing artifacts at short wavelengths and from below due to edge artifacts at long386

wavelengths. We use the tolerances for these artifacts suggested in Ref. 30, corresponding respec-387

tively to constants η = 0.05 and φ = 1 defined therein. Based on those constraints, one may choose388

the dominant wavenumber of the mother wavelet, q0, to determine the range of useful information389

in the final spectrum. In this work, we used q0 = 10/a, which produces an energy spectrum with390

useful information in the range of wavenumbers between qlow ≈ 0.19qmax and qhigh ≈ 0.83qmax.391

These correspond to the limits on the vertical axes in Figs. 3 and 4 and allow a clear representation392

of changes in the energy distribution occurring near 0.4qmax.393

To facilitate interpretation, the values plotted in those figures are not E(z,q) itself, but rather394

the equivalent temperature395

Tequiv(z,q) =
2Lz(qhigh−qlow)

kB
E(z,q), (C5)
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where Lz is the system length in the z direction. That is, if a system were at thermal equilibrium396

with a uniform energy density of E(z,q), then its temperature would be equal to Tequiv(z,q).397
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FIG. 1. Steady-state temperature profiles in four identical systems except for the anharmonicity of the455

interatomic forces. The nominal temperature of these simulations is T = 26 K.456
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FIG. 2. Thermal boundary conductance as a function of temperature in the same systems as in Fig. 1. Also458

shown are conductance values calculated using atomistic Green’s functions to model two-probe and four-459

probe measurements (solid gray). The dashed gray line is the sum of the harmonic conductance of case (d)460

with the “excess” conductances from cases (b) and (c).461
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462

FIG. 3. Distributions of kinetic energy in longitudinal 〈001〉 modes obtained by a wavelet transform during463

NEMD simulations between Ar (z < 0) and heavy Ar (z > 0). Modes with frequency 0.75 THz are marked464

with dashed gray lines; modes with frequency 1.15 THz, the maximum frequency in heavy Ar, are marked465

in solid red. The nominal temperature increases from top to bottom: (a, b) 2 K, (c, d) 26 K, and (e, f) 50 K.466

The left panels (a, c, e) are calculated from systems with all LJ forces and the right panels (b, d, f) from467

systems with all harmonic forces.468
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469

FIG. 4. The same as Fig. 3, but with different forces between atoms at the interfaces. The left panels (a, c,470

e) are calculated from LJ systems with harmonic interfacial forces, and the right panels (b, d, f) are from471

harmonic systems with LJ interfacial forces.472
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FIG. 5. Dispersion of normal modes in simulated argon from lattice dynamics (LD) and from normal mode474

decomposition from molecular dynamics simulations (MD) compared with experimental measurements475

from Ref. 36.476
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FIG. 6. Average displacements of Ar atoms from their equilbrium positions during NEMD simulations used478

to calculate conductances in Fig. 2. Distributions were calculated from atoms within the twelve monolayers479

nearest the interface in six simulations: one simulation with all LJ forces (blue) and one with all harmonic480

forces (red) at each of three temperatures: 2 (top), 26 (center), and 50 K (bottom).481
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FIG. 7. Conductance in the harmonic system calculated from NEMD using the lead temperatures extrapo-483

lated to the interface (red crosses) and the bath temperatures (blue circles) compared with two-probe (2p)484

and four-probe (4p) AGF calculations.485
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TABLES486

487
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TABLE I. Coefficients for Temperature-Dependent Lattice Parameter of LJ Argon [Eq. (A1)]

Parameter Fitted Value

a0 5.313 Å

a1 1.813 ×10−3 Å K−1

a2 4.792 ×10−6 Å K−2

a3 1.394 ×10−8 Å K−3
488
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