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The optical response of small charged metallic nanodisks of one atomic monolayer thickness is
analysed under the excitation by an incident plane wave and by a localised point-like dipole. Using
the time-dependent density functional theory (TDDFT) and classical electrodynamical calculations
we identify the bright and dark plasmon modes and study their evolution under external charging
of the nanostructure. For neutral nanodisks, despite their monolayer thickness, the in-plane optical
response, as obtained from TDDFT, is in agreement with classical electromagnetic results. The op-
tical response for an incident wave polarised perpendicular to the nanostructure cannot be retrieved
classically as it reflects a discrete energy structure of electronic levels. This latter situation appears
most sensitive to external charging while the energy of the in-plane plasmon with dipolar character
is nearly charge-independent.

I. INTRODUCTION

The ability to manipulate and confine light well
below the diffraction limit as offered by metal-
lic plasmonic structures1 allows for a wealth of
practical applications from bio-sensing2 and opti-
cal nanoantennas3,4 to plasmon-enhanced photo-
detection2,5–8, photochemistry9,10, nonlinear optics11,12,
and energy harvesting10,13. Nowadays, plasmonic devices
exploit propagating plasmons confined to (nanostruc-
tured) metal surfaces, or localised plasmons in single
nanoparticles and nanoparticle assemblies. Along
with these three-dimensional structures, plasmonics in
lower dimensional structures such as nanowires14–18
or edges19–25 or two-dimensional materials23–29 offers
further perspectives in miniaturization of optoelectronic
devices, light confinement, active control of response,
and directional plasmon propagation. Albeit the ongoing
discussion on the applicability of the term "plasmonic"
to describe optical resonances in molecular structures,
these structures represent the smallest devices where
the optical response reflects the quantum nature of col-
lective electronic excitations and thus requires quantum
description30–32.

Plasmonics in the nanostructures where one or sev-
eral dimensions are in the nm range rises an impor-
tant practical issue concerning interpretation and pre-
diction of the optical properties. Indeed, classical ap-
proaches based on Maxwell equations with the use of
local dielectric functions to describe the materials prop-
erties allow complete characterization of the interaction
of light with systems of basically any shape and compo-
sition. These classical results are thus extremely valu-
able to guide the design and fabrication of plasmonic
devices with sought optical properties. On the other
hand, when one or more dimension(s) of the structure

becomes very small, classical descriptions might not be
completely adequate and need to be applied with care.
The quantum effects such as quantization of the electron
motion, the spill out of the electron density outside the
geometrical boundary and the tunneling across a nar-
row junction become important33–40. In this context,
understanding of the quantum/classical correspondences
in individual and coupled plasmonic systems when they
are subjected to external perturbations allows to develop
efficient strategies of the active control. Indeed, active
control of the plasmonic modes by applied dc fields42–46
or charging47–50 has been reported in the literature. In
particular, if possible for metallic nanostructures51,52, the
plasmon frequency change via electron doping as known
in the THz range for semiconductor quantum wells or
graphene26–29,53–55 would allow active ultracompact de-
vices in the visible range. Metals, however represent a
challenge because of the high density of conduction elec-
trons and thus of the high levels of charging needed to
reach observable effects.

To address the properties and limitations of low-
dimensional plasmonics with standard metals, in this
work we study bright and dark breathing plasmon modes
in free-electron metal nanodisks with a thickness of a
single atomic layer (1 monolayer, 1 ML), using the
self-consistent density functional theory (DFT), time-
dependent density functional theory (TDDFT), and clas-
sical electromagnetic calculations. Particular emphasis is
given to the dependence of the optical response on the
external charging of the nanostructure with the perspec-
tive to reveal the possibility of its active control. We
show that for a neutral disk, despite its 1 ML thickness,
classical electromagnetic theory correctly reproduces the
quantum results for in-plane plasmon modes character-
ized by the distribution of the charge density symmet-
ric with respect to the equatorial plane of the disk. In
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contrast, the optical excitations associated with antisym-
metric induced charge distribution require transitions be-
tween quantized electronic states perpendicular to the
disk plane and cannot be retrieved classically. For neg-
atively charged nanodisks we show that because of the
quantum confinement of the electron motion perpendic-
ular to the disk plane, and because of the electron density
spill out, the frequency shifts of the plasmon modes in-
duced by the external charging are generally not captured
by the classical theory. Our work demonstrates the exis-
tence of "quantum" and "classical" degrees of freedom in
low dimensional structures and establishes quantum lim-
its to the possibility of active control of plasmon modes
in 2D metal structures via charge carrier injection.

The paper is organized as follows. First, we describe
the geometry of the system under study, the free electron
model of the metal, and the calculation methods used to
obtain the optical response. We show our results and
discuss them in the next sections, addressing the ground
state properties of neutral and externally-charged nan-
odisks, and presenting a detailed analysis of the optical
response and plasmon modes of the nanodisks excited
by an incident plane wave and by a point dipole. The
conclusions and outlook section closes the paper. Unless
otherwise stated, atomic units are used throughout the
paper.

II. SYSTEM AND COMPUTATIONAL
ASPECTS

A. Model system

The sketch of the free-electron metal nanodisk in vac-
uum used in our study is shown in Fig. 1 together
with the different types of plasmon excitation consid-
ered. The nanodisk is described within the jellium
metal (JM) approximation56, well suited for study-
ing the collective behaviour of conduction electrons in
nanostructures33,57–60. Within the JM, the positive ion
cores at the lattice sites are not treated explicitly but
represented by a uniform background density n+ =
(4πr3s/3)−1 confined within the jellium edges that define
the geometrical surface of the nanoparticle. A Wigner-
Seitz radius rs = 4 a0, characteristic of the Na metal, is
used (a0 = 0.53 Å is the Bohr radius). Together with Al,
recently placed at the focus of research in plasmonics61,62,
Na is a prototype of a free electron metal63, and it al-
lows to address plasmon resonances within a frequency
range similar to that of silver and gold nanoparticles. The
neutral system comprises Ne = 304 electrons and has a
height h = 3.99 a0 (2.1 Å) corresponding to the spacing
between atomic planes of the Na(100) surface64. Similar
to graphene structures, we consider the case of a nanodisk
formed by a single layer (1ML) of atoms. The radius of
the disk is thus R = (Ne/πhn+)1/2 = 80.627 a0 (42.7 Å).
It is worth to mention that despite its simplicity, the JM
allowed semi-quantitative predictions of many interesting
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FIG. 1. Schematics of the model systems used in the calcu-
lations. Upper panels present the nanodisk geometry charac-
terized by a radius R = 42.7 Å with a monolayer thickness
h = 2.1 Å, corresponding to the sodium metal. The neutral
system comprises 304 electrons. For the calculations we use a
cylindrical coordinates system r = (ρ, ϕ, z) with z = 0 placed
in the middle of the disk. Middle panels show two different
polarizations of the plane wave incident at the nanostructure.
E is the electric field and k is the photon momentum. The
lower panel represents the excitation of the dark breathing
plasmon modes by a vertical point dipole p placed along the
symmetry axis z, at position zp above the disk.

physical phenomena in subnanometric plasmonics, such
as the evolution of plasmon resonances in metallic nan-
oclusters and nanoshells33,57,60, or tunneling effects in
narrow plasmonic gaps38,39,65. The conclusions derived
from the JM calculations have been later confirmed by
the experimental data40,66–69, and ab-initio calculations
at a full atomistic level70–72.

To capture the dynamics of bright and dark plasmon
modes in the system we have considered different types
of excitation: an incident linearly polarized electromag-
netic plane wave and a point dipole, as indicated in the
lower panels of Fig. 1. The incident plane wave polarised
along the y-axis allows to probe the optical response of
the nanodisk in the in-plane direction. Here, owing to the
relatively large radius of the disk R, a quasi-continuum
of electronic states is formed leading to a well devel-
oped dipolar plasmon. The incident plane wave polarised
along the z-axis allows to probe the system in the "quan-



3

tum" direction. Indeed, as we show below, because of
the nanodisk thickness of a few Ångstroms, the discrete
structure of electron energy levels determines the optical
response for the z-polarized light. Finally, with a vertical
dipole, p, located on the symmetry z-axis above the cen-
ter of the disk (lower panel of Fig. 1) at position z = zp,
the breathing dark plasmon modes73 are excited.

B. DFT and TDDFT calculations

Prior to the implementation of the TDDFT calcula-
tions of the optical response of our system, the ground
state properties of the neutral and charged nanoparti-
cle are obtained within the Kohn-Sham (KS) scheme of
DFT74. In short, the electron density of the system is
given by

n(r) =
∑
j

F (Ej − EF )
∣∣ψgsj (r)

∣∣2 , (1)

where the sum runs over the KS orbitals ψgsj (r) with en-
ergies Ej , assuming equal occupation of the "up" and
"down" spin states. The superscript gs stands for the
ground state. To accelerate the convergence of the DFT
calculations, a small energy broadening given by the
Fermi distribution function F (Ej − EF ) with temper-
ature T = 290 K is introduced (EF stands for the Fermi
energy). The wave functions ψgsj (r) and their ener-
gies Ej are obtained from the solution of the stationary
Schrödinger equation[

T̂ + Vxc(n, r) + VH(n, r)
]
ψgsj (r) = Ejψ

gs
j (r). (2)

In Eq. (2), T̂ stands for the kinetic energy opera-
tor, Vxc(n, r) is the exchange-correlation potential de-
rived within the local density approximation (LDA) from
the exchange-correlation functional of Gunnarson and
Lundqvist75, and VH(n, r) is the Hartree potential. We
use cylindrical coordinates, r = (ρ, ϕ, z), as shown in
Fig. 1. With wave functions ψgsj (r) sought in the form
ψgsj (r) = exp[iMϕ] ψ̃f (ρ, z), Eq. (2) is then solved sepa-
rately for each M subspace on a (ρ, z) mesh. The M and
f quantum numbers are thus grouped in j.

The electron density dynamics triggered by an exter-
nal perturbation in neutral and charged nanodisks is
calculated using the real time propagation within the
TDDFT76,77. The time-dependent KS equations

i
∂ψj(r, t)

∂t
= V (r, t)ψj(r, t) (3)

are solved on a mesh in cylindrical coordinates with
initial condition ψj(r, t = 0) = ψgsj (r). The specific
numerical implementation of our approach is detailed
elsewhere39. In Eq. (3), V (r, t) is a time-dependent ef-
fective one-electron potential given by the sum of the

exchange-correlation, Hartree, and external potential
contributions:

V (r, t) = Vxc(n, r, t) + VH(n, r, t) + Vext(r, t). (4)

We use the adiabatic local density approximation
(ALDA)76 so that the exchange-correlation potential
Vxc(n, r, t) has the same functional dependence on the lo-
cal electron density as in the DFT study. The Hartree po-
tential VH(n, r, t) is calculated from the time-dependent
electron density n(r, t) =

∑
j F (Ej − EF ) |ψj(r, t)|2, us-

ing the non-retarded approximation well suited here be-
cause of the small size of the system. Finally, Vext(r, t) is
the potential given by the external perturbation allowing
to "probe" the electronic excitations.

We consider an impulsive perturbation with elec-
tric field polarised along the s = x, y, z axis, Vext =
κ (êsr) δ(t), where κ is a small constant, and ês is the unit
length vector along s-direction. The frequency-resolved
absorption cross-section σs(ω) can be obtained in this
case from:

σs(ω) =
4πω

c
Im {αs(ω)} , (5)

where c is the speed of light in vacuum, and the
frequency-resolved dipolar polarizability of the system is
calculated from the dynamics of the induced dipole using
the time-to-frequency Fourier transform

αs(ω) =
1

κ

∫ ∞
0

eiωt−ηtdt

∫
V

(êsr)n(r, t)d3r. (6)

The broadening η = 0.15 eV is introduced here to account
for the various plasmon damping mechanisms beyond the
TDDFT38.

To analyse the dark plasmon modes of the nanodisk
we also use an impulsive perturbation corresponding to
the potential created by a point dipole, p = êzp, lo-
cated at the symmetry axis of the disk. In this case
Vext = p

z−zp
|r−rp|3 δ(t), where the dipole position vector

rp = êzzp. From the TDDFT calculations, we perform
the time-to-frequency Fourier transform and obtain the
normalized rate of energy dissipation by the point emit-
ter in the presence of the nanostructure, so-called Purcell
factor:78,79

P

P0
= 1 +

3

2p

1

k3
Im {êzEns(rp, ω)} . (7)

Here Ens(rp, ω) is the frequency resolved electric field
induced by the nanostructure at the dipole position, k is
the photon wave vector, and P0 is the energy dissipation
rate of the point emitter in vacuum.

The total field created by the dipole placed in vicinity
of the nanodisk can be expressed as

Etot(r, ω) = E0(r, ω) + Ens(r, ω)

=
4π

c
[G0(r, rp, ω) + Gns(r, rp, ω)]p, (8)
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where G0 is the free-space Green’s dyadic and Gns is the
change of the Green’s dyadic because of the presence of
the nanostructure. Then Eq. (7) takes the form80,81

P

P0
= 1 +

6πc

ω
Im {êzGns(rp, rp, ω)êz}

= 1 +
3π2c3

ω2
Nns(rp, ω). (9)

The change in the projected local electromagnetic den-
sity of states (LDOS) induced by the nanostructure,
Nns(rp, ω), can be thus obtained from the TDDFT re-
sults using Eq. (7) and Eq. (9) as

Nns(rp, ω) =
1

2π2ω
Im {êzEns(rp, ω)} . (10)

The frequency resolved electric field Ens(zp, ω) is ob-
tained from the time-dependent Hartree field Ens(rp, t) =
∇VH(n, rp, t) using time-to-frequency Fourier transform
similar to Eq. (6). The dark breathing plasmon modes of
the nanodisk appear as resonances inNns(rp, ω), allowing
the analysis of their frequencies and lifetimes.

In order to reveal the importance of quantum ef-
fects in the optical response of the system we compare
the TDDFT results with those obtained using classical
electromagnetic theory calculations as implemented in
boundary elements method82. To this end, we describe
the disk material by means of a local Drude dielectric
function

ε(ω) = 1−
ω2
p

ω(ω + iγ)
(11)

well suited for the free electron metal. Here ωp =√
4πne = 5.89 eV is the bulk plasma frequency of Na,

and γ = 0.15 eV is the corresponding damping factor due
to intrinsic losses. ne = n+ =

(
4π
r r

3
s

)−1 is the density
of the homogeneous free-electron gas characterised by rs.
In practice, to match the in-plane dipolar plasmon reso-
nance frequency calculated with TDDFT for the neutral
nanodisk with that obtained from classical calculations
for the same electron density, we used a slightly lower
value for ωp (5.6 eV). This allows to partially account for
the quantum spill out effect. For charged nanodisks, the
homogeneous distribution of the extra-charges over the
metal nanoparticle in the classical calculations has been
assumed following standard approaches26–28,47–52, which
results in rescaling of the plasma frequency in Eq. (11)
as ωp → ωp

√
(Ne +Q)/Ne. Here, Q is the number of

electrons added to initially neutral system.

III. GROUND STATE PROPERTIES OF
MONOATOMIC METALLIC NANODISKS

A. Neutral system

In Fig. 2 we show the effective one-electron potential
and ground state electronic density for the neutral nan-
odisk as obtained from the DFT calculations. The 1 ML
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FIG. 2. Ground state electronic density (red) and one-
electron effective potential (black) in a neutral sodium nan-
odisk calculated with DFT. a) Results along the symmetry
axis of the disk are shown as a function of the z−coordinate.
b) Results in the z = 0 plane (at the middle of the sodium
layer) are shown as a function of the radial coordinate mea-
sured from the center of the disk. The dashed blue vertical
line indicates the sodium disk boundary (jellium edge), lo-
cated at R = 80.63 a0 = 4.26 nm. The dashed horizontal
blue line indicates the position of the vacuum level.

thickness of the nanodisk results in a narrow potential
well in the direction perpendicular to its surface. To
understand the distribution of energies of the electronic
states associated with this system, let us consider an in-
finite metallic layer. In the present conditions, a single
occupied state with energy E0 exists for the electron mo-
tion in the z-direction. This state corresponds to a wave
function symmetric with respect to z = 0. The in-plane
motion in an infinite layer is free with momentum k‖,
giving rise to a continuum of occupied electronic states
Ek‖ = E0 +k2‖/2. Due to the finite size of the disk struc-
ture, the motion along the ρ coordinate is quantized by
the reflection at the radial boundary of the disk at ρ = R.
Neglecting the coupling of modes along the z and ρ di-
rections at the edges, the one-electron KS orbitals of the
disk form an energy sequence Ej = E0 + Eρj , j = 1, 2, ...

where Eρj stands for the discrete energy values because
of the quantization of the in-plane continuum. The work
function of the nanodisk is Φ = 3.067 eV, and the lowest
KS orbital has an energy E1 = −4.32 eV, as calculated
here with DFT. The narrow symmetric density profile
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FIG. 3. Effect of extra charge on the electronic structure of a
nanodisk. a) Evolution of the effective one-electron potential
for different number of electrons Q added to the system. The
potential is shown as function of the ρ-coordinate for z = 0.
The dashed horizontal line represents the vacuum level. The
vertical blue line denotes the disk boundary R. b) Dependence
of the energy of the Fermi level on the number of electrons Q
added to the system, as obtained from the DFT calculations.
The energy is measured with respect to the vacuum level. The
line shows the analytical fit by a linear dependence.

in Fig. 2a reflects the z-quantization of the electron mo-
tion, while the density oscillations (Friedel oscillations) in
Fig. 2b originate from the reflection at the disck bound-
ary ρ = R of the electron waves propagating parallel to
the nanodisk surface.

B. Charged system

Electron doping of the nanodisk creates a repulsive
electrostatic potential that increases the energy of the
bottom of the potential well confining the valence elec-
trons and thus reduces its depth so that the change of
the potential at metal vacuum interface becomes more
gradual. This is shown in Fig. 3a for different number Q
of electrons (Q = 4, 8, 12, 16, 20) added to initially neu-
tral system. The electrical charge of the nanodisk is thus

(−Q) in atomic units. Based in simple considerations,
and assuming an homogeneous charging of the infinitely
narrow nanodisk, an additional potential acting on the
electrons at the disk center is given by VQ = 2Q/R. Ac-
cordingly, one can expect the shift of the energy of the
Fermi level EF with Q as:

EQF = −Φ + 2Q/R, (12)

It follows from Fig. 3a, that the change of the Fermi
energy calculated with DFT indeed linearly depends on
Q. From the linear fit to the DFT data, we obtain
EQF ∼ 0.46Q [eV], while Eq. (12) predicts a faster change,
EQF ∼ 0.67Q [eV]. This difference is because the extra-
charges are partially expelled to the disc circumference
as we discuss in detail below. At the moment, to keep the
qualitative discussion simple, we will use the analytical
dependence given by Eq. (12).

The negative charging rises the Fermi level and de-
creases the work function of the nanodisk until a charg-
ing value where the system becomes unstable. For a
charge doping above the critical value Q ≥ Qcr = Φ R/2,
the Fermi level is promoted above the vacuum level,
EQF ≥ 0. In this situation the electrons can escape
from the nanodisk through the potential barrier at the
metal/vacuum interface so that the extra charge would
relax to the critical value83. For a neutral nanostructure
with Ne = πhR2n0 electrons, Qcr/Ne ∼ 1/R, i.e. the
larger is the nanodisk, the less (in relative terms) charge
doping is possible. In the present case, however, the re-
duced dimensionality of the system allows higher doping
rates when compared to 3D metal structures83 with anal-
ogous electron density, where Qcr/Ne ∼ 1/R2.

In Fig. 4 we analyse the electron density change when
Q = 4, 8, 12, 16, 20 electrons are added to the initially
neutral disk. Note that for Q > 6, the Fermi level of the
system is promoted above the vacuum level (see Fig. 3) so
that a priori the extra charge above this value will leave
the system. However, the decay rates via electron tun-
neling from the metal potential well into vacuum83 are
very low for charges up to Q = 20. This allows to con-
verge the DFT calculations of the charged nanodisks and
perform the TDDFT studies of their plasmon dynamics
presented below.

For a 3D metallic object the charge neutrality in the
bulk has to be preserved and additional charges are accu-
mulated in the surface layer83. In the current 2D struc-
ture, addition of Q extra electrons affects the charge
distribution over the entire nanodisk. This effect can
be observed in Fig. 4a, where the DFT results of the
electron density change ∆nQ(ρ) are shown as a func-
tion of the radial coordinate ρ. The ∆nQ is defined as
∆nQ(ρ) =

∫
[nQ(ρ, z)− n0(ρ, z)] dz, where nQ(ρ, z) and

n0(ρ, z) are the electron densities of the charged and neu-
tral nanodisk, respectively. The z-integration allows a
comparison with the surface charge density of a pure 2D
system with zero height. Aside from the Friedel oscilla-
tions, ∆nQ(ρ) generally grows over the entire 0 ≤ ρ ≤ R
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FIG. 4. Analysis of the electron density change of the nan-
odisk induced by negative charging. Different colors are
used for results obtained with different number of electrons
Q (electron charge) added to the neutral system as indi-
cated at the top of the figure. a) DFT results for the den-
sity change. The z-integrated change of the electron density
∆nQ(ρ) =

∫
[nQ(ρ, z)− n0(ρ, z)] dz is shown as function of

the radial ρ-coordinate. Horizontal dashed line indicates the
value of ∆n expected for Q=20 in the case of an homogeneous
distribution of charges over the disk. b) Number of additional
electrons Ne inside a cylinder of radius ρ, concentric to the
nanodisk of radious R. Dashed lines indicate the analytical
dependence obtained for an homogeneous charge distribution.
The vertical dashed lines in both panels of the figure denote
the nanodisk boundary R.

range as Q increases, as observed in Fig. 4a. However,
inside the disk the charge doping is nearly twice smaller
than what would be expected for an homogeneous dis-
tribution of the extra-electrons, while the proximity of
the disk boundary R shows a larger accumulation of the
extra charge. The charge accumulation at R results in
an electron density spill out in vacuum, which increases
with Q. Similar results have been reported in self consis-
tent calculations for graphene nanostructures53,84, albeit
tight binding or classical descriptions in that case prevent
the spill out effect to be revealed.

The above conclusions are further supported by the re-
sults in Fig. 4b, where we show the change of the total
number of electrons ∆Ne(ρ) inside a disk of radius ρ, i.e.
the distribution of the extra electrons in concentric disks
of progressively larger size. This quantity is defined as

∆Ne(ρ) = 2π
∫ ρ
0

∆n(ρ′)ρ′dρ′. In the case of an homoge-
neous increase of the electron density upon doping, the
∆Ne(ρ) would adopt the values ∆Nhm

e (ρ) = Qρ2/R2 for
ρ ≤ R, and ∆Nhm

e (ρ) = Q for R ≤ ρ, as indicated by
dashed lines in Fig. 4b. In the self-consistent DFT cal-
culations because of the electron-electron repulsion the
electron density change is not homogeneous over the nan-
odisk. Approximately half of the additional charges are
expelled into a surface region of ≈ 5 Å width around the
nanodisk circumference of radius R, extending into the
vacuum region.

The accumulation of about half of the extra charges
within the ring of radius R also explains the slower in-
crease of the Fermi energy with Q obtained from the
DFT study when compared with the analytical predic-
tion given by Eq. (12). In deriving Eq. (12) we assumed
a uniformly charged disk while self-consistent calculation
shows that half of the additional charge is accumulated at
the disc circumference. The mean value between the po-
tential created at the coordinate origin by the uniformly
charged disk, 2Q/R, and that created by a ring, Q/R,
results in a value of EQF ≈ 0.5Q [eV], i.e. very close to
the relationship EQF ∼ 0.46Q [eV], derived from the fit to
the DFT data.

IV. OPTICAL RESPONSE OF CHARGED
MONOATOMIC METALLIC NANODISKS

A. Excitation by a plane wave

We analyse in this sub-section the optical response of a
charged monoatomically thin metallic nanodisk induced
by an incoming linearly polarized plane wave with dif-
ferent directions of polarization. One might expect that
for a 1ML-thick nanodisk the in-plane optical response
could be similar when calculated within quantum and
classical frameworks owing to the large lateral size that
shows a pseudo-continuum of electronic states propagat-
ing in the ρ-direction. In contrast, the optical response of
the system to a z-polarized electromagnetic wave should
be strongly affected by the quantum-size effect because
of the confinement of the electron motion in z-direction.

In Fig. 5 we present the absorption spectra calculated
for neutral and negatively charged sodium nanodisks as
a response to an incoming electromagnetic plane wave
polarized parallel to the disk plane (in-plane excitation).
We start our analysis with a case of the neutral nanodisk.
The absorption spectrum in this case is very similar in
both classical and quantum calculations. It is dominated
by the excitation of an in-plane dipolar plasmon mode
(DP) at the frequency ωDP = 0.9 eV. The corresponding
induced charge density profile, −∆nDP, is shown in the
(x, y, z = 0) equatorial plane of the nanodisk in the insert
of Fig. 5b. The induced electron density ∆nDP(r) =
n(r, t∗)−n(r, t = 0) is obtained from the time-dependent
electron density n(r, t) by exposing the system to the
linearly z-polarized electromagnetic wave with frequency
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FIG. 5. Absorption spectra of neutral and negatively
charged monoatomic metallic nanodisks obtained with classi-
cal electromagnetic calculations [panel a)], and with quantum
TDDFT calculations [panel b)]. The incoming field is a plane
wave incident along the disk symmetry axis and polarized
parallel to the disk surface, as shown in the inset of panel a).
Different colors are used for results obtained with a different
number of extra electrons Q (electron charge) added to the
neutral system, as indicated on the top of the figure. Re-
sults are shown as a function of the frequency of the incident
radiation. The insert of panel b) shows the induced charge
density calculated with TDDFT at the equatorial plane of the
neutral disk for the frequency of the dipolar plasmon mode
ωDP = 0.9 eV. The negative (positive) values of the induced
charge density are shown with blue (red) color.

ω = ωDP. The instant of time t∗ corresponds to the
maximum induced dipole.

Importantly, when Q electrons are added to the sys-
tem, the change of the absorption spectra predicted by
the classical theory, is not confirmed by the TDDFT cal-
culations even qualitatively. Indeed, for the 2D-systems
it is commonly assumed that the extra charge is ho-
mogeneously distributed over the nanoobject26–28,47–51,
so that the plasmon frequency changes as ∆wp/wp =
0.5Q/Ne. Thus, within this assumption, in the classical
calculations the plasmon modes experience a blue-shift
with increasing Q as shown in Fig. 5a as has been also
reported in the literature51. Observe, that in a classi-

cal picture even a nonhomogeneous doping would lead to
the blue shift of the plasmon mode because the electron
density would experience an overall increase.

In the optical response obtained from the quantum cal-
culations, however, the electron doping affects both the
energy and the width of the plasmon resonance in a very
moderate way with a small, but visible red shift of the
plasmon frequency. The redshift of the plasmon reso-
nance with increasing number of extra electrons added
to initially neutral system is related to the spill out of
the electron density outside the disk boundaries at R.
Since the DP induced charges reside mainly at the ex-
ternal circumference of the disk [see inset in Fig. 5b],
the boundary effects mainly affect this plasmon mode.
The density spill out increases with increasing Q. This
leads to the red shift of the DP frequency. This effect
of charging is well documented in the cluster physics. In
addition to the red shift of the plasmon resonance for
the negatively charged clusters, it is shown that the con-
traction of the electron density (reduced spill-out) for the
positively charged clusters leads to the blue shift of the
plasmon resonance85–90. On the formal level, the shift of
the plasmon resonance of the nanoobject with electron
addition (removal) can be related to the change of the
position of the plasmon induced charges with respect to
the metal/vacuum interface. This is the same physical
parameter that controls cluster size dependence of the
energy of the dipolar plasmon resonance35–37,83.

It follows from the present TDDFT data that the spill
out compensates and even overrides the effect of the over-
all increase of electron density and thus of ωp. The clas-
sical theory with sharp boundaries does not account for
the exponential tail of the electron wave functions in the
vacuum region so that it cannot properly reproduce the
quantum results. Since accumulation of the extra-charges
at the circumference of the nanodisk is an electrostatic
effect linked with repulsive electron-electron interactions,
we expect it to be qualitatively the same for free-electron
metal nanodisk as addressed here or for the nanodisk
made of the noble metal (Au, Ag). In this later case the
increased spill out of the charge density towards the vac-
uum should also lead to the slight red shift of ωDP with
electron doping, as has been reported in 3D spherical
metallic nanoparticles83.

In contrast to the in-plane optical response described
above, for an incident field polarized perpendicular to
the plane of the disk, the TDDFT calculations reveal
that the polarizability of the system αz(ω) and thus the
absorption cross-section σz(ω) are strongly affected by
the electron doping Q. The classical and quantum calcu-
lations for the case of z-polarized incidence are shown
respectively in Fig. 6a) and in Fig. 6b). Similar to
the other systems with pronounced quantization effects
such as molecules30, narrow shells33,60, metal slabs34
or monoatomic wires91–93, in this polarization direction
the optical response reflects transitions between the oc-
cupied and unoccupied KS orbitals derived by the z-
quantization of the electron motion. Obviously, such a
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FIG. 6. Absorption spectra of neutral and negatively
charged monoatomic metallic nanodisks obtained with clas-
sical electromagnetic calculations [panel a)], and with quan-
tum TDDFT calculations [panel b)]. The incoming field is
a z-polarized plane wave as shown in the inset of panel a).
Different colors are used for results obtained with different
number of electrons Q (electron charge) added to the neu-
tral system, as indicated at the top of the figure. Results are
shown as a function of the frequency of the incident radia-
tion. c) Induced charge densities calculated with TDDFT for
a neutral nanodisk at the (x = 0, y, z) plane perpendicular to
the surface of the nanodisk for the edge mode (EM) to the
left, and for the vertical mode (VM) to the right. The neg-
ative (positive) values of the charge density are shown with
blue (red) color.

situation involves a strong quantum character and can-
not be captured within a classical electromagnetic de-
scription. The main resonance in the absorption spec-
trum (vertical mode, VM) is associated with the excita-
tion of the transition between the orbitals with symmet-
ric (occupied) and antisymmetric (empty) character in
z-dependence so that the opposite charges are located at
the top and bottom surfaces of the nanodisk [see right
panel of Fig. 6c]. The VM has a dipolar strength simi-
lar to the in-plane dipolar plasmon mode and it appears
in classical calculations close to the bulk plasmon fre-
quency [Fig. 6a]94, while in the TDDFT results, the VM
is at ωVM = 3.99 eV for the Q = 0-case [Fig. 6b].

Along with the VM resonance, in the TDDFT cal-
culations for the Q = 0 -case we also find an edge
mode (EM) at ωEM = 3.34 eV [see the left panel of

Fig. 6c]. The EM arises from the ρ-coordinate depen-
dence of the effective one-electron potential well confining
the electron motion in z-direction, as has been discussed
for the case of the transversal edge mode found for the
monoatomic nanowires91,92. Similar to the VM, the EM
also posses a dipolar character with induced charge den-
sity antisymmetric in z. However, while the VM is as-
sociated with induced charge density extending over en-
tire top and bottom surface planes, the EM is localised
at the disc circumference. Observe that both VM and
EM posses axial symmetry. This later property of the
present EM with no nodal structure in angular depen-
dence with ϕ makes it quite different from the classically
attainable plasmons propagating along the edges of the
nanostructures20,23–25, or multipolar plasmons in metal-
lic nanodisks73. Interestingly, both have been also shown
to obey the same dispersion relation95. As we mentioned
above the physics underlying the formation of the EM in
the present case is similar to the one discussed for the
monoatomic nanowires91–93, and it can not be retrieved
in the classical calculations.

As the nanosdisk is negatively charged, the classical
calculations predict a blue shift of the spectral features
because of the overall increase of electron density and
thus of the bulk plasma frequency wp in the Drude di-
electric function. This is analogous to the previously de-
scribed case of the in-plane polarized light. The TDDFT
study reveals a completely opposite trend. As the disk is
negatively charged, the potential well confining the elec-
trons within the metal becomes shallower [see Fig. 3a]
and the energy difference between KS orbitals describing
the vertical z-confinement decreases. The features in the
absorption spectra (VM and EM) display a pronounced
red shift with increasing Q. Because of the charge ac-
cumulation at the disc circumference the edge mode ap-
pears most sensitive to electron doping. Thus, in contrast
to the in-plane dipolar plasmon, it is found here that the
optical response in the out-of-plane (vertical) direction of
a thin metallic nanodisk can be efficiently controlled by
charge injection.

We obtained that adding Q = 4 extra electrons to the
initially neutral nanodisk, i.e. changing the total num-
ber of the electrons by 1.3% only, results in a 60 meV
red-shift of the VM frequency and 150 meV red-shift of
the EM frequency. However, while the general trend ob-
tained here should be robust, the efficiency of this control
mechanism is rather difficult to predict in practical situa-
tions where 2D metal systems are usually supported over
other materials. This is because the potential confining
electrons inside the metal disk, and the evolution of this
potential with external charging should be dependent on
the specific properties of the interfaces.

In closing this subsection, a remark is in order with re-
spect to the widths of the spectral features in optical re-
sponse. For the plane wave excitation with incoming field
polarized parallel or perpendicular to the surface of the
nanodisk, the electron doping Q leads to the broadening
of the DP mode (Fig. 5) and of the EM and VM (Fig. 6).
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Similar results have been obtained for the 3D spherical
clusters83. The increase of the width corresponds to the
faster decay of the excitation by hot electron production
and its eventual emission into the vacuum86,96. Indeed,
increasing the negative charge of the nanodisk lowers the
depth of the potential well confining the electrons as seen
in Fig. 3.

B. Excitation by a point dipole

While the excitation of the nanodisk system by an in-
cident electromagnetic plane wave discussed above al-
lows to address plasmon modes with dipolar charac-
ter, the eventual dependence of dark breathing plasmon
modes73,95 on the electronic charge of the nanodisk is
also of interest. Breathing plasmon modes are acces-
sible for instance in electron energy loss spectroscopy,
or when considering the excitation by a point dipole, as
we use here. These are standing electron charge den-
sity waves due to the confinement of radially propagat-
ing plasmons (cylindrical waves)97 scattered back by the
radial disk boundary. If relevant values of plasmon en-
ergy dependence were found in this case, the frequency
change of breathing plasmon modes with electron doping
could open the possibility to actively control the cou-
pling of a quantum emitter to a flat nanodisk antenna98,
and thus the decay of the former. Since the breath-
ing modes are non-radiative this is predominantly the
non-radiative contribution to the total decay rate of the
nanoemitter79,80 that might be affected in this way.

For a z-oriented dipole located at the symmetry axis of
the nanodisk, only the m = 0 modes are excited. Here m
stands for the azimuthal quantum number defining the
exp(imϕ) dependence of the plasmon fields. These are
the "dark" plasmon modes with zero dipole moment. Ac-
cording to the symmetric or antisymmetric distribution
of the plasmon induced charge density at the opposite
top and bottom surfaces of the disk (z-coordinate), two
branches of modes exist: tangencial and normal94. Since
in our case the typical plasmon wave vectors q ' 1/R are
such that ωp � cq, we can use the nonretarded approx-
imation for the dispersion of the plasmon modes, which
is consistent with the TDDFT procedure used here. The
dispersion of the tangencial (symmetric) plasmons in a
metallic thin film is given by94

ω− =
ωp√

2

(
1− e−hq

)1/2 ≈ ωp√
2

√
hq, hq � 1, (13)

and the dispersion of the normal (antisymmetric) plas-
mons is given by

ω+ =
ωp√

2

(
1 + e−hq

)1/2 ≈ ωp√
2

√
2− hq, hq � 1. (14)

The wave vectors q are quantized in our nanodisk sys-
tem because of the reflection at the disk boundary at R:
Rq` = π` + φ` leading to a discrete spectrum of breath-
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FIG. 7. Projected density of electromagnetic states, PDOS,
as obtained from TDDFT (a) and classical Drude (b) calcula-
tions for a z-oriented point dipole placed at the symmetry axis
of the disk, 1 nm above the nanodisk surface (see the sketch).
Results are shown as a function of the frequency of the dipole
emitter. Different colors are used for results obtained with a
different number of electrons Q (electron charge) added to the
neutral system, as indicated at the top of the figure. The sym-
metric and antisymmetric plasmon modes are labelled with
their radial quantum number. We use labels with "prime"
for the antisymmetric modes to distinguish between the two
types of excitations. c) Induced charge densities calculated
with TDDFT and classical Drude approach corresponding to
the symmetric plasmon modes of a neutral monoatomic disk.
Results are shown in the (x = 0, y, z) plane perpendicular to
the surface. The modes are labelled as in panel a) of the fig-
ure. The negative (positive) values of the electron density are
shown in blue (red) color.

ing plasmon modes. Here, ` = 1, 2, ... is the radial quan-
tum number, and φ` is the phase of the reflection at the
boundary.

To study the dependence of the breathing plasmon
modes on electron doping we have calculated the pro-
jected density of electromagnetic states (PDOS) of the
nanodisk Nns(zp, ω) given by Eq. (10) by placing a unit
point dipole p = êz at position zp = 1 nm on the symme-
try z-axis. In Fig. 7 we compare classical and TDDFT
results of Nns(zp, ω) obtained for the neutral and nega-
tively charged nanodisks. To improve the contrast of the
high-frequency modes only Im {êzEns(zp, ω)} is shown in
Fig. 7a) and Fig. 7b), i.e. the 1/ω multiplier is omitted.
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The low-energy part of the PDOS reveals an in-plane
optical response without excitation of the electron tran-
sitions between lowest occupied (symmetric) and higher
energy (antisymmetric) states confined by the metal po-
tential well in z-direction. Similar to the in-plane dipolar
plasmon excitation, the TDDFT results for the breath-
ing modes with symmetric character in the neutral (Q =
0) case are well reproduced with classical simulations
(modes frequency and width). Up to five plasmon modes
can be clearly distinguished in the spectra. These modes
can be labelled according to their radial quantum num-
ber `, and have a distribution of frequencies of ω−,1 =
1.59 eV, ω−,2 = 2.10 eV, ω−,3 = 2.45 eV, ω−,4 = 2.72 eV,
and ω−,5 = 2.95 eV, as obtained with TDDFT. The en-
ergy dispersion of the symmetric breathing modes is well
described by the dependence ω2

−,` ∝ `, as follows from
Eq. (13), and assuming q` = [π` + φ]/R. This indicates
that the reflection phase changes only weakly within the
considered energy window (φ` ≈ φ, ` = 1, 2, 3, 4, 5). The
above assignment of modes is further confirmed by the
corresponding induced charge densities shown in Fig. 7c.
In the classical calculations to the right of Fig. 7c, the
induced surface charge density at the boundaries is ob-
tained from the difference in the components of the fields
perpendicular to the metal surface.

As the nanodisk is negatively charged, classical calcu-
lations predict a blue shift of the plasmon modes through
the increase of the electron density and thus of ωp (see
Eq. (13)). The quantum calculations also indicate a blue
shift and broadening of the symmetric breathing modes.
Both effects are more pronounced for the states with
higher frequencies. As follows from the static DFT re-
sults, with an increasing number of additional electrons
Q the overall electron density increases within the nan-
odisk, even though to lesser extent than that expected
for the homogeneous charging (see Fig. 4). The elec-
tron density increase leads to the blue shift of the ener-
gies of the in-plane plasmons propagating in ρ-direction.
However, this tentative explanation has to be considered
with care, as the phase shift φ associated with the plas-
mon wave reflection at the nanodisk boundary is a priori
also charge dependent. The boundary effect might also
explain the broadening of the plasmon modes99 as has
been also observed in charged spherical metal clusters83.
It is worthwhile mentioning that the frequency shift at-
tainable for the symmetric breathing modes is moderate
since the charging Q itself is limited.

At higher frequencies, along with the vertical mode
(VM), the breathing plasmon modes associated with nor-
mal (antisymmetric) plasmons are excited by the point
dipole located above the surface of the nanodisk. As we
already discussed for z-polarized plane wave excitation,
the VM corresponds to a distribution of opposite charges
at the upper and lower surfaces of the nanodisk with no
nodal structure in the ρ-direction. Within the current
definition of the breathing modes, this mode can be for-
mally denoted as the ` = 0′ antisymmetric mode. We
use labels with "prime" for the antisymmetric modes to
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FIG. 8. Projected density of electromagnetic states, PDOS,
obtained with TDDFT for a neutral nanodisk Q = 0 and
nanodisk externally charged by adding Q = 4, and Q = 8
electrons. Two locations of the z-oriented point dipole are
considered, as sketched in the insets. For the spectrum in
gray the dipole is placed at the symmetry axis of the Q = 0
disk (x = y = 0, z = 1 nm). For the spectra in black (Q = 0),
red (Q = 4), and cyan (Q = 8) the dipole is placed outside the
disk, close to its edge (x = R+1 nm, y = 0, and z = 0.25 nm).
In the latter case the result is scaled by a factor of 2. The
origin of coordinates is at the centre of the nanodisk. The
quantity Im {êzEns(zp, ω)} is shown in arbitrary units as a
function of the frequency ω of the dipole. EM stands for the
nanodisk edge mode.

distinguish between the two types of excitations. The
` ≥ 1′ antisymmetric modes form a dense energy se-
ries with their frequency decreasing with increasing q and
thus `, as follows from Eq. (14). These modes are well
resolved in classical calculations shown in Fig. 7b where
the VM has an energy close to ωp.

The excitation of an antisymmetric distribution of
plasmon induced charge density at opposite surfaces of
the nanodisk requires transitions between lowest occu-
pied (symmetric) and higher unoccupied (antisymmet-
ric) states, confined by the metal potential well in the
z-direction. This situation is thus sensitive to the details
of the electronic structure and this is the reason why the
series of antisymmetric modes (associated to the VM)
shows a lower energy in the TDDFT results as compared
to those in the classical calculations (compare the energy
of VM and the series of 0’, 1’, 2’, 3’ and 4’ in Fig. 7a and
Fig. 7b respectively). In difference to classical Drude re-
sults, the individual peaks in the PDOS associated with
these modes are not resolved in the quantum calculations.
However, the analysis of the induced electron density cal-
culated with TDDFT over the frequency range around
ωVM (not shown here) indicates that the feature appear-
ing as a single resonance in the PDOS is, in fact, formed
by several overlapping resonances. Each of these "hid-
den" resonances is characterised by a specific induced
density profile, antisymmetric in z with a nodal struc-
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ture developing along the ρ coordinate as the frequency
is decreasing from ωVM.

When external electrons are added to initially neutral
nanodisk, the frequency of the resonance in the PDOS
calculated with TDDFT and associated with the VM
[Fig. 7a)] experiences a strong red shift with electron dop-
ing. Obviously, because of the same underlying physics
this result is consistent with VM shift obtained in the
TDDFT for the excitation with a z-polarized plane wave
[Fig. 6b)]. The antisymmetric breathing modes pinned
to VM are also strongly red shifted. This quantum be-
haviour is not reproduced in the classical electromagnetic
calculations which predict that all the modes are blue
shifted with increasing Q, irrespective of their character.

For a point dipole positioned at the nanodisk symme-
try axis, the EM is weakly excited and cannot be resolved
in the PDOS. As the point dipole position is shifted from
the symmetry axis at ρ = 0 towards the edge of the nan-
odisk, the efficiency of the EM excitation and thus the the
intensity of the associated peak in the PDOS increases.
This effect can be clearly observed in the TDDFT data
shown in Fig. 8 for the neutral and negatively charged
nanodisks. When the point dipole located close to the
edge of the nanodisk, the EM clearly emerges in the
PDOS. In this situation, the excitation of the in-plane
dipolar mode, multipolar modes, as well as the breathing
symmetric plasmon modes characterised by the different
(m, j) quantum numbers95, leads to a broad structure in
the PDOS below 3 eV. Consistently with results obtained
with TDDFT for the excitation with a z-polarized plane
wave [Fig. 6b] the resonance in PDOS associate with plas-
monic EM strongly red shifts with electron doping. The
strong sensitivity of the EM to the electronic charge of
the nanodisk thus offers an interesting possibility to ex-
ploit the active control of the decay rate of quantum emit-
ters coupled to monoatomic metallic nanoantennas.

V. CONCLUSIONS AND OUTLOOK

We have studied the optical absorption cross section
and the electromagnetic density of states of charged and
neutral 2D metallic nanostructures using quantum ap-
proaches based on the density functional theory and time-
dependent density functional theory, as well as using clas-
sical approaches. With an example of a monolayer-thick
free-electron metallic nanodisk in vacuum, we have shown
how quantum effects alter the optical response of a 2D
metallic nanoantenna, the excitation of its bright and
dark plasmon modes, and the dependence of the optical
response on electron doping.

We have demonstrated that optical excitations in the
neutral system and their sensitivity to quantum effects
can be understood from the profile of the associated in-
duced charge density.

The dipolar plasmon mode excited by incident electro-
magnetic radiation polarised parallel to the disk plane,
and the symmetric breathing dark plasmon modes ex-

cited by a point dipole located at the disk axis are char-
acterized by symmetric distributions of the plasmon in-
duced charge density at both top and bottom surfaces of
the nanodisk. The optical response in this case involves
nearly free electron motion in the lateral direction and
thus the quantum and classical results for the neutral
system are very close to each other.

The optical response associated with antisymmetric
distributions of the charge density induced by an external
potential at the top and bottom surfaces of the nanodisk
requires hybridization between symmetric and antisym-
metric electronic orbitals describing a quantized electron
motion strongly confined in the direction perpendicular
to the disk plane. The quantum results in this case can-
not be retrieved classically. Thus, for the dipolar tran-
sitions excited by an incident electromagnetic radiation
polarised perpendicular to the disc plane, or for the anti-
symmetric breathing plasmon modes, the classical theory
maximizes the optical response and electromagnetic den-
sity of states close to the bulk plasmon frequency. In
contrast, quantum results are determined by the excita-
tion energy between the z-quantized states.

Our quantum calculations reveal the excitation of a
plasmon edge mode localized at the disk boundary. This
mode is axially symmetric and it is characterized by
an antisymmetric charge density distribution induced
at the top and bottom surfaces of the nanodisk. Dif-
ferent from the propagating edge plasmons discussed
classically20,23–25,73,95, the edge mode of the nanodisk
found here stems from lateral coordinate dependence of
the confining potential and it is similar to the trans-
verse edge mode reported in quantum calculations of the
monoatomic wires91–93

For nanodisks negatively charged by electron doping
several quantum effects are important:

• The energy of the Fermi level increases so that
above a certain critical charge, the system becomes
unstable. This limits the range of the possible elec-
tron doping.

• The metal potential well becomes less attractive
and the excitation energy between z-quantized
states is reduced with increase of the number of
additional electrons.

• The additional charges are distributed nonhomo-
geneously over the 2D object. The charge accu-
mulation at the circumference of the disk leads to
the spill out of the electron density outside the disk
which increases with increasing electronic chargeQ.

These quantum effects lead to quantitative and even
qualitative differences between quantum and classical re-
sults for negatively charged nanodisks. The classical the-
ory predicts a blue shift of all the spectral features in
the optical response because of the overall increase of
the electron density. While this is confirmed by the
TDDFT calculations only for the in-plane symmetric



12

breathing modes, the frequency of the in-plane dipolar
plasmon mode with symmetric character appears nearly
unaffected by negative charge doping. This is because
the electron spill out effect compensates in this case the
overall increase of the electron density. As to the op-
tical excitations associated with antisymmetric induced
charge density, the TDDFT calculations show a charging
effect opposite to that predicted classically. The features
in the optical response are red shifted with increasing
Q because of the decreasing energy spacing between z-
quantized states.

Our results indicate that the optical absorption for in-
cident light polarised perpendicular to the plane of the
nanodisk and the plasmon edge mode are the most sen-
sitive to negative charging of the nanoobject. In partic-
ular, the frequency shift of the edge plasmon mode with

negative charging could allow an efficient control of the
optical absorption and of the coupling between quantum
emitters and 2D metallic nanoantennas. The robust ef-
fects revealed here can thus be used in control of single
photon emitters and design of optically active devices.

ACKNOWLEDGMENTS

J.A. and M.Z. acknowledges support from the Span-
ish Ministry of Economy, Industry and Competitiveness
through project FIS2016-80174-P, as well as support from
NIST grant nr. 70NANB15H32 of the US Department of
Commerce. A.K.K acknowledges financial support from
the project FIS2016-76617-P of MINECO. M. Z. also ac-
knowledges the hospitality of the Institute des Sciences
Moléculaires d’Orsay.

∗ andrei.borissov@u-psud.fr
1 D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4,
83 (2010).

2 J. N. Anker and W. P. Hall, Nat. Materials 7, 442 (2008).
3 A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen
and W. E. Moerner, Nat. Photonics 3, 654 (2009).

4 L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
5 J. P. Camden, J. A. Dieringer, J. Zhao and R. P. Van
Duyne, Acc. Chem. Res. 41, 1653 (2008).

6 H. Chen, G. C. Schatz and M. A. Ratner, Rep. Prog. Phys.
75, 096402 (2012).

7 K. M. Mayer and J. H. Hafner, Chem. Rev. 111, (6) 3828
(2011).

8 J. Langer, S. Novikov and L. M. Liz-Marzán, Nanotech-
nology 26, 322001 (2015).

9 G. Baffou and R. Quidant, Chem. Soc. Rev. 43, 3898
(2014).

10 C. Clavero, Nat. Photonics 8, 95 (2014).
11 M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737

(2012).
12 H. Aouani, M. Rahmani, M. Navarro-Cía, S. A. Maier Na-

ture Nanotechnology 9, 290 (2014).
13 H. A. Atwater and A. Polman, Nat. Materials 9, 205

(2010).
14 V. J. Sorger, R. F. Oulton, R. -M. Ma and X. Zhang, MRS

Bulletin 37, 728 (2012).
15 J. Ho, J. Tatebayashi, S. Sergent, Ch. F. Fong, Y. Ota, S.

Iwamoto, Y. Arakawa, Nano Lett. 16, 2845 (2016).
16 E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T.

Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee,
M. L. Brongersma, Nature Materials 11, 241 (2012).

17 M. Mayer, L. Scarabelli, K. March, T. Altantzis, M. Tebbe,
M. Kociak, S. Bals, F. J. García de Abajo, A. Fery, L. M.
Liz-Marzán, Nano Lett. 15, 5427 (2015).

18 Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J.
Halas, H. Xu, Nano Lett. 10, 1950 (2010).

19 A. L. Fetter Phys. Rev. B 33, 5221 (1986).
20 L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken,

N. Talebi, R. Vogelgesang, J. Mu, X. Wen, J. Mao, Phys.
Rev. B 83, 195433 (2011).

21 F.-Ph. Schmidt, H. Ditlbacher, U. Hohenester, A. Ho-

henau, F. Hofer, J. R. Krenn, Nature Communications 5,
3604 (2014).

22 W. Wang, P. Apell, J. Kinaret, Phys. Rev. B 84, 085423
(2011).

23 T. Ando, A. B. Fowler, F. Stern Rev. Mod. Phys. 54, 437
(1982).

24 Z. Fei, M. D. Goldflam, J.-S. Wu, S. Dai, M. Wagner, A.
S. McLeod, M. K. Liu, K. W. Post, S. Zhu, G. C. A. M.
Janssen, M. M. Fogler and D. N. Basov, Nano Lett. 15,
8271 (2015).

25 A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A.
Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E.
Hueso, F. H. L. Koppens and R. Hillenbrand, Nat. Pho-
tonics, 10, 239 (2016).

26 F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crom-
mie, Y. R. Shen, 320, 2006 (2008).

27 Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod,
M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G.
Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau,
F. Keilmann, D. N. Basov, Nature 487, 82 (2012).

28 J. Chen, M. Badioli, P. Alonso-González, S. Thongrat-
tanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno,
A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Ca-
mara, F. J. García de Abajo, R. Hillenbrand, F. H. L.
Koppens, Nature 487, 77 (2012).

29 F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubrama-
niam, Nature Photonics 8, 899 (2014).

30 A. Lauchner, A. E. Schlather, A. Manjavacas, Y. Cui, M.
J. McClain, G. J. Stec, F. Javier García de Abajo, P. Nord-
lander, N. J. Halas, Nano Lett. 15, 6208 (2015).

31 A. J. Wilson, K. A. Willets, Ann. Rev. of Analytical Chem-
istry 9, 27 (2016).

32 T. Wang, Ch. A. Nijhuis, Applied Materials Today 3, 73
(2016).

33 E. Prodan, P. Nordlander, N.J. Halas, Chem. Phys. Lett.
368, 94 (2003).

34 Z. Yuan, S. Gao, Phys. Rev. B 73, 155411 (2006).
35 P. Apell and A. Ljungbert, Solid State Commun. 44, (9)

1367 (1982).
36 A. Liebsch, Phys. Rev. B. 48, 11317 (1993).
37 R. C. Monreal, T. J. Antosiewicz and S. P. Apell, New



13

Journal of Physics 15, 083044 (2013).
38 J. Zuloaga, E. Prodan and P. Nordlander, Nano Lett. 9,

887 (2009).
39 D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpu-

rua and A. G. Borisov, Nano Lett. 12, 1333 (2012).
40 J. A. Scholl, A. García-Etxarri, A. L. Koh, J. A. Dionne,

Nano Lett. 13, 564 (2013).
41 G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F.

Evers, H. Xu, N. A. Mortensen, M. Wubs, Nature Com-
munications 6, 7132 (2015).

42 Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala,
K. Thyagarajan, S. Han, D. P. Tsai, H. A. Atwater, Nano
Lett. 16, 5319 (2016).

43 C. Große, A. Kabakchiev, T. Lutz, R. Froidevaux, F.
Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K.
Kuhnke, K. Kern, Nano Lett. 14, 5693 (2014).

44 A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Ped-
ersen, M. Luisier, C. Hafner, T. Schimmel, J. Leuthold,
Nano Lett. 16, 709 (2016).

45 D. Xiang, J. Wu, and R. Gordon Nano Lett., Article ASAP,
DOI: 10.1021/acs.nanolett.7b00360 (2017).

46 D. C. Marinica, M. Zapata, P. Nordlander, A. K. Kazan-
sky, P. M. Echenique, J. Aizpurua, A. G. Borisov, Science
Advances 1, e1501095 (2015).

47 K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu and C. C.
Chen, Appl. Phys. Lett., 89, 103107 (2006).

48 S. K. Dondapati, M. Ludemann, R. Müller, S. Schwieger,
A. Schwemer, B. Handel, D. Kwiatkowski, M. Djiango, E.
Runge and T. A. Klar, Nano Lett. 2012, 12, 1247 (2012).

49 L.-H. Shao, M. Ruther, S. Linden, S. Essig, K. Busch, J.
Weissmuller and M. Wegener, Advances Materials 22, 5173
(2010).

50 P. Mulvaney, J. Perez-Juste, M. Giersig, L. M. Liz-Marzán
and C. Pecharroman, Plasmonics 1, 61 (2006).

51 A. Majavacas, F. J. García de Abajo, Nature Comm. 5,
3548 (2012).

52 F. J. García de Abajo, A. Majavacas, Faraday Discuss.
178, 87 (2015).

53 S. Thongrattanasiria, I. Silveiro and F. J. García de Abajo,
Appl. Phys. Lett. 100, 201105 (2012).

54 V. V. Popov, O. V. Polischuk, T. V. Teperik, X. G. Peralta,
S. J. Allen, N. J. M. Horing, M. C. Wanke, Journal of
Applied Physics 94, 3556 (2003).

55 G. C. Dyer, G. R. Aizin, S. Preu, N. Q. Vinh, S. J. Allen,
J. L. Reno, E. A. Shaner, Phys. Rev. Lett. 109, 126803
(2012).

56 N. D. Lang and W. Kohn, Phys. Rev. B. 3, 1215 (1970).
57 M. Brack, Rev. Mod. Phys. 65, 677 (1993).
58 M. J. Puska, R. M. Nieminen, Phys. Rev. A 47, 1181

(1993).
59 J. Lermé, B. Palpant, E. Cottancin, M. Pellarin, B. Prével,

J. L. Vialle, M. Broyer, Phys. Rev. B 60, 16151 (1999).
60 E. Prodan, P. Nordlander and N. J. Hallas, Electronic

structure and Optical properties of gold nanoshells. Nano
Lett. 3, (10) 1411 (2003).

61 M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nord-
lander and N. J. Halas, ACS Nano 8, 1 (2013).

62 B Metzger, M. Hentschel, H. Giessen, Nano Lett. 17, 1931
(2017).

63 I. W. Lyo and E. W. Plummer, Phys. Rev. Lett. 60, 1558
(1988).

64 H. Kitamura, J. Phys.: Condens. Matter. 25, 065505
(2013).

65 T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G.

Borisov, Optics Express, 22 27306 (2013).
66 K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov,

J. Aizpurua, J. J. Baumberg, Nature 491, 574 (2012).
67 W. Zhu, K. B. Crozier, Nature Communications 5, 5228

(2014).
68 G. Hajisalem, M. S. Nezami, R. Gordon, Nano Lett. 14,

6651 (2014).
69 A. Sanders, R. W. Bowman, J. J. Baumberg, Scientific

Reports 6, 32988 (2016).
70 P. Zhang, J. Feist, A. Rubio, P. García-González and F. J.

García-Vidal, Phys. Rev. B 90, 161407(R) (2014).
71 M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G.

Borisov, J. Aizpurua and D. Sánchez-Portal, Nano Lett.,
15 (5), 3410 (2015).

72 T. P. Rossi, A. Zugarramurdi, M. J. Puska, and R. M.
Nieminen, Phys. Rev. Lett. 115, 236804 (2015).

73 F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau,
F. Hofer and J. R. Krenn, Nano Lett. 12, 5780 (2012).

74 W. Kohn, L. J. Sham, Phys. Rev. 140, A1133 (1965).
75 O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B. 13,

4274 (1976).
76 M. A. L. Marques and E. K. U. Gross, Annu. Rev. Phys.

Chem. 55, 427 (2004).
77 R. E. Stratmann,G. E. Scuseria and M. J. Frisch. J. Chem.

Phys. 109, 8218 (1998).
78 L. Novotny and B. Hecht, Cambridge University Press

(2006).
79 R. Carminati, J.-J. Greffet, C. Henkel, J.M. Vigoureux,

Optics Communications 261, (2) 368 (2006).
80 R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krach-

malnicoff, R. Pierrat, Y. De Wilde, Surf. Sci. Rep. 70, 1
(2015).

81 G. Colas des Francs and G. A. Dereux, J. Chem. Phys.
117, (10) 4659 (2002).

82 F. J. García de Abajo, A. Howie, Phys. Rev. B 65, 115418
(2002).

83 M. Zapata Herrera, J. Aizpurua, A. K. Kazansky and A.
G. Borisov, Langmuir 32, 2829 (2016).

84 R. Yu, J. D. Cox, and F. J. García de Abajo, Phys. Rev.
Lett. 117, 123904 (2016).

85 J. Tiggesbäumker, L. Köller and K. -H. Meiwes-Broer,
Chem. Phys. Lett. 260, 428 (1996).

86 A. Rubio, L. C. Balbas, J. A. Alonso, Phys. Rev. B 46,
4891 (1992).

87 T. Reiners, H. Haberland, Phys. Rev. Lett. 77, 2440
(1996).

88 Ch. Schmitt, Ch. Ellert, M. Schmidt and H. Haberland,
Zeitschrift für Physik D Atoms, Molecules and Clusters,
42, 145 (1997).

89 N. Dam, W. A. Saunders, Phys. Rev. B 46, 4205 (1992).
90 V. Kresin, Phys. Rev. B. 40, 12507 (1989).
91 J. Yan, Z. Yuan, S. Gao, Phys. Rev. Lett. 98, 216602

(2007).
92 J. Yan, S. Gao, Phys. Rev. B 78, 235413 (2008).
93 B. Gao, K. Ruud, Y. Luo, J. Chem. Phys. 137, 194307

(2012).
94 J. M. Pitarke, V. M. Silkin, E. V. Chulkov and P. M.

Echenique, Rep. Prog. Phys. 70, 1 (2007).
95 F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau,

F. Hofer and J. R. Krenn, Nature Comm., 5, 3604 (2014).
96 A. Manjavacas, J. G. Liu, V. Kulkarni, P. Nordlander, ACS

Nano 8, 7630 (2014).
97 S. Nerkararyan, Kh. Nerkararyan, N. Janunts, and T.

Pertsch, Phys. Rev. B 82, 245405 (2010).



14

98 R. Esteban, T. V. Teperik, J. J. Greffet, Phys. Rev. Lett.
104, 026802 (2010).

99 J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin,

A. Crut, P. Maioli, N. Del Fatti, F. Vallée, M. Pellarin, J.
Phys. Chem. Lett. 1, 2922 (2010).


