
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Coulomb-interaction induced coupling of Landau levels in
intrinsic and modulation-doped quantum wells

J. Paul, C. E. Stevens, H. Zhang, P. Dey, D. McGinty, S. A. McGill, R. P. Smith, J. L. Reno, V.
Turkowski, I. E. Perakis, D. J. Hilton, and D. Karaiskaj
Phys. Rev. B 95, 245314 — Published 28 June 2017

DOI: 10.1103/PhysRevB.95.245314

http://dx.doi.org/10.1103/PhysRevB.95.245314


Coulomb induced coupling of Landau levels in intrinsic and modulation-doped
quantum wells

J. Paul,1 C. E. Stevens,1 H. Zhang,1 P. Dey,1 D. McGinty,1 S. A. McGill,2 R. P.

Smith,3 J. L. Reno,4 V. Turkowski,5 I. E. Perakis,6 D. J. Hilton,6 and D. Karaiskaj1, ∗

1Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620
2National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 30201
3Department of Physics, California State University, East Bay, Hayward, CA 94542, USA

4CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
5Department of Physics, University of Central Florida, Orlando, Florida 32816, USA

6Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA

We have performed two-dimensional Fourier transform spectroscopy on intrinsic and modulation
doped quantum wells in external magnetic fields up to 10 Tesla. In the undoped sample, the strong
Coulomb interactions and the increasing separations of the electron and hole charge distributions
with increasing magnetic fields lead to a non-trivial in-plane dispersion of the magneto-excitons.
Thus, the discrete and degenerate Landau levels are coupled to a continuum. The signature of this
continuum is the emergence of elongated spectral line shapes at the Landau level energies, which
are exposed by the multidimensional nature of our technique. Surprisingly, the elongation of the
peaks is completely absent in the lowest Landau level spectra obtained from the modulation doped
quantum well at high fields.

I. INTRODUCTION

In undoped or intrinsic quantum wells electrons can be
promoted in the conduction band optically leaving posi-
tively charged holes in the valence band. The Coulomb
attraction between electrons and holes leads to bound
quasiparticles called excitons [1]. These can further form
higher four-particle bound quasiparticles called biexci-
tons [2]. Excitons show a quadratic diamagnetic shift in
energy with the external field. At high magnetic fields
Landau levels also form, which instead shift linearly in
energy with the applied magnetic field, if valence band
mixing is neglected [3–7].

The introduction of dopants in quantum wells moves
the Fermi edge into the conduction band. The dopant
atoms are placed in the barrier region of the quantum
well, known as modulation doping or δ-doping. In a
strong magnetic field, the two-dimensional electrons in
the doped system form Landau levels. At low tempera-
tures, a correlated system is formed that exhibits unique
electronic transport properties such as the integer and
fractional quantum Hall effect [8]. The two-dimensional
electron gas in semiconductor quantum systems is the
subject of renewed interest as a result of the discovery
of three dimensional topological insulators [9]. The two-
dimensional electron gas in the quantum Hall regime have
been extensively studied using transport measurements.
However, transport measurements probe only the con-
ducting edge states, whereas optical methods have the
ability to probe the Landau levels in the insulating bulk.

Light scattering and photoluminescence measurement
in the quantum Hall regime and have provided important
insights into the physics of optical excitations at high
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magnetic fields [10–22]. The light scattering experiments
have lead to the observation of magnetorotons and have
provided details into the physics of composite fermions
at different fractional filling factors [23–30]. The time-
resolved coherent spectroscopy provides unique tools to
study the dynamics of strongly correlated systems. It
can probe directly contributions that occur as a result
of four-particle and higher terms in perturbation theory
[31–41]. Recently, the two-dimensional Fourier transform
(2DFT) spectroscopy was developed, which can provide
details of the may-body interactions that cannot be ob-
tained using other methods. The correlated nature of the
frequency axes can reveal underlying physics in the form
of two-dimensional line shapes and additional peaks in
the 2DFT frequency spectra [42–48].

In the present study, 2DFT spectroscopy reveals dis-
tinct differences in the Landau levels originating from
undoped and modulation doped quantum wells. In
the undoped sample elongated lineshapes along the ωτ
frequency direction of the 2DFT spectra are observed
[45, 51, 52]. This behavior was expected to be stronger
in the modulation doped sample due to the higher prob-
ability of quasiparticle scattering with free carriers. Sur-
prisingly, the elongated lineshapes are completely absent
in the lowest Landau level in the modulation doped quan-
tum well sample between 8 and 10 Tesla.

In order to understand this seemingly counterintu-
itive behavior, we perform time-dependent density func-
tional theory (DFT) calculations [53–56]. Density ma-
trix time-dependent DFT reveals the underlying physics
and attributes the elongated lineshapes to the effect of
Coulomb interactions on the inhomogeneities within the
electron and hole charge density overlap, which couples
discrete Landau levels to a continuum state. In the
time-dependent DFT formalism, these inhomogeneities
are taken into account in the exchange-correlation poten-
tial. The electron and hole charge distributions become
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FIG. 1. Schematic of the experimental setup: The four phase-stabilized laser beams are provided by the MONSTR instrument
[49, 50]. Three beams labeled as A∗, B, and C are used to generate the FWM signal, where A∗ corresponds to the phase
conjugate beam. The beams are aligned in the three corners of a square. The FWM signal generated at the sample propagates

along the missing corner (direction ~−ka + ~kb + ~kc). A fourth beam labeled as Ref. is used to trace the FWM and as the local
oscillator for heterodyne detection. The samples are kept at 1.6 Kelvin inside the magneto-optical cryostat. The magnetic fields
up to 10 Tesla are applied perpendicular to the sample surface in Faraday geometry. The FWM signal is heterodyne detected
and dispersed into a spectrometer. The Fourier transformed spectral interferograms lead to the 2DFT spectra. (Sample ID:
VA0607)

progressively separated with increasing magnetic fields,
leading to an overlap of the charge densities which be-
comes comparable to the in-plane lattice constant. These
charge inhomogeneities within the charge density overlap
become sufficiently important, leading to a breakdown
on the Kohn’s theorem [57–59]. Whereas the absence of
the elongated lineshapes in the ωτ direction of the 2DFT
spectra in the doped sample is attributed to the effect
of screening of the Coulomb interactions, which lead to
a reduced effect of the inhomogeneity within the charge
density overlap and restores Kohn’s theorem.

Finally, in the undoped quantum well strong quan-
tum coherent coupling between the Landau levels is
observed, leading to distinct cross-diagonal peaks in
the two-dimensional spectra. Inter-Landau level co-
herent coupling was first observed as a beating in the
time-integrated FWM signal [38, 40]. However, time-
integrated FWM cannot unambiguously distinguish be-
tween quantum coherence and polarization beating. The
appearance of cross-peaks below and above the diagonal
in 2DFT spectroscopy provides clear indication of quan-
tum coherence coupling [60].

II. EXPERIMENT AND SAMPLES

The experimental setup used in the present study is
shown in Fig. 1. Three laser pulses are incident on the

sample in directions ~ka, ~kb, and ~kc and are separated by
the time delays τ and T. The third-order nonlinear inter-

action gives rise to a signal in the direction −~ka+~kb+~kc.
By varying the time delay τ and monitoring the FWM in-
tensity, referred as time integrated FWM, the dephasing
time of excitons can be measured. In 2DFT spectroscopy,
the time delays τ and t are monitored simultaneously
while scanning with interferometric precision and accu-
rately preserving the phase. The Fourier transform to
frequency domain with respect to the two time delays
τ and t leads to correlated two-dimensional frequency
spectra dependent on ωτ and ωt [61]. The extension to
two frequency axes is not merely a more convenient way
of plotting the data, since the axes are now correlated,
analogous to the extension of nuclear magnetic resonance
to two dimensions [62]. When the spectra are plotted
with respect to -ωτ and ωt the resonances probed ap-
pear along the diagonal, whereas signatures of quantum
coherent coupling can be manifested as cross-diagonal
peaks [60]. Furthermore, the two-dimensional lineshapes
are highly sensitive to the many-body interactions in the
sample, making this technique very suited to study many-
body effects. The advantages of multidimensional spec-
troscopy are well documented in the literature, where
in semiconductor materials 2DFT spectroscopy has pro-
vided insights into the microscopic details of the many-
body interactions [43, 44].

The laser pulses with a duration ∼130 femtoseconds
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FIG. 2. Experimental SI 2DFT spectra of the undoped
GaAs quantum well at (H,H,H,H) linear horizontal polar-
izations under high magnetic fields. The linear horizontal
(H,H,H,H) polarizations correspond to A∗, B, C and detec-
tion, respectively. The spectrally resolved FWM (blue line)
and the absorbance (black line) are shown above the experi-
mental spectra. Upper row: 2DFT spectra of the Landau lev-
els from the undoped GaAs quantum well at magnetic fields
of (a) 6 Tesla and (b) 10 Tesla. Bottom row: 2DFT spectra
of the excitonic region from the undoped GaAs quantum well
at magnetic fields of (c) 6 Tesla and (d) 10 Tesla.

were generated by a standard tunable Ti:sapphire oscil-
lator. The samples were held at 1.6 Kelvin inside the
Oxford Spectromag magneto-optical cryostat. The mag-
netic field was applied in the Faraday geometry perpen-
dicular to the sample surface and could be varied from
zero up to 10 Tesla. Two quantum well samples were
used in the present studies, one undoped (intrinsic) with
12 nm well thickness and a modulation-doped 18 nm
GaAs/AlGaAs quantum well with in-well carrier concen-
tration of ∼ 4 × 1011 cm−2. The samples were studies
using different optical techniques and the carrier concen-
tration has been unambiguously determined [47, 63].

III. RESULTS

We start our discussion with the intrinsic GaAs quan-
tum wells, where the exciton ground state is strongly

FIG. 3. (a) Absorbance of the modulation doped GaAs quan-
tum well showing the two lowest Landau levels LL0 and LL1
at different magnetic field strength from 0 to 10 Tesla. Both
Landau levels shift linearly with temperature marked by the
dashed lines. (b) Polarization dependent absorption spectra
of the LL1 at 6.5 Tesla. (c) Polarization dependent absorption
spectra of the LL0 at 10 Tesla. (d) Time-integrated FWM of
the LL1 at 4.5 Tesla (black squares) and LL0 at 10 Tesla (blue
squares). The red lines are the exponential fittings.

bound due to Coulomb interactions. Several excited
states of the exciton are observed, which shift linearly
with magnetic fields. The level assignment of the ex-
cited states has been discussed in the literature and is
not the subject of the present study [3, 4, 64–69]. The
laser pulses generated by the oscillator, with a full width
at half maximum of ∼15 meV, were tuned resonantly
with these Landau levels. Therefore, only the spectral
range excited by the laser pulse can be observed. In Fig.
2 (a) and (b) 2DFT spectra of Landau levels originating
from the undoped quantum well are shown at 6 and 10
Tesla. The two-dimensional Landau level spectra show
full widths at half maximum below 1 meV along the ωt
frequency in the 2DFT spectra, but much larger and elon-
gated lineshapes along the ωτ frequency [45, 51, 52, 61].
Furthermore, the two Landau levels shown at 10 Tesla
reveal strong quantum coherent coupling between them,
as indicated by the cross-diagonal peaks marked by the
red dashed circles [70, 71].

The 2DFT spectra in the frequency region of the exci-
tonic ground state are shown in Fig. 2 (c) and (d) at 6
and 10 Tesla, respectively. It should be noted here that
the excitonic ground state, which shows a diamagnetic
quadratic shift with magnetic fields, lies at lower ener-
gies than the Landau levels shown in Fig. 2 (a) and (b).
Therefore, the center wavelength of the laser has been
tuned towards lower energies and only the spectral range
excited by the laser can be observed. At 6 Tesla both
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FIG. 4. Left: Experimental SI 2DFT spectra using
(σ+σ+σ+σ+) polarizations of LL1 at three different magnetic
fields (4, 4.5, and 5.5 Tesla). Right: Experimental SI 2DFT
spectra using (σ+σ+σ+σ+) polarizations of LL0 at three dif-
ferent magnetic fields (8, 9, and 10 Tesla).

the exciton and biexciton peaks can be observed in Fig.
2 (c) and are marked by the red arrows. As previously
shown, the exciton and biexciton resonances do not show
the vertical elongation along the ωτ frequency, but are
slightly elongated along the diagonal of the 2DFT spec-
tra due to inhomogeneous broadening [60]. This further
confirms the preservation of the phase stability during
the 2DFT measurements.

Such peculiar elongated line shapes along the ωτ ob-
served for the Landau levels have in the past been ob-
served in the absence of magnetic fields and have been
attributed to interactions with the continuum [47, 51, 52].
However, in the present high quality sample the discrete
nature of the Landau levels and the quantum confinement
of the quantum well in the magnetic field direction should
not lead to such continuum state interactions. Accord-
ing to Kohn’s theorem the Coulomb interaction should
not lead to an in-plane dispersion of charge excitations
and alter the frequency of the Landau levels [57, 72–74].
In contrast, along the ωt frequency direction the Landau
levels remains narrow with increasing fields. This is fur-
ther observed in the much narrower spectrally resolved
FWM spectra as compared to the absorption spectra in
Fig. 2.

We further proceed by discussing the modulation
doped quantum well. The absorption spectra are shown
in Fig. 3 (a) and follow patters reported previously
in the literature [35]. With increasing magnetic fields

FIG. 5. Theoretical SI 2DFT spectra of the undoped GaAs
quantum well under high magnetic fields, calculated using
time-dependent DFT. 2DFT spectra of the Landau levels
from the undoped GaAs quantum well at magnetic fields of (a)
6 Tesla and (b) 10 Tesla. 2DFT spectra of the excitonic spec-
tral region from the undoped GaAs quantum well at magnetic
fields of (c) 6 Tesla and (d) 10 Tesla. Theoretical SI 2DFT
spectra from the modulation doped sample. SI 2DFT spec-
tra of LL1 (e) at 5.5 Tesla and LL0 (f) at 10 Tesla, calculated
using time dependent DFT.

the formation of Landau levels can be observed, starting
with LL1. Between 4 and 5 Tesla only LL1 is populated
and shifts toward higher energy with increasing magnetic
field. At higher magnetic fields starting at 8 Tesla, only
the lowest Landau level LL0 is populated [70, 71]. The
polarization dependence of LL1 and LL0 is shown in Fig.
3 (b) and (C) for circular σ+ and σ− polarizations. The
first Landau level LL1 shows only a small energy shift
between the σ+ and σ− polarizations, whereas the low-
est Landau level LL0 is strongly polarization dependent.
The lowest Landau energy level at fixed momentum ac-
commodates only particles with one projection of spin,
while the next level is filled with particles with both spins
[75]. This likely leads to the strong polarization depen-
dence of the lowest Landau level.

The time-integrated FWM was measured for LL1 and
LL0 at 6.5 and 10 Tesla, respectively and are shown in
Fig. 3 (d). A rapid dephasing of several hundred fem-



5

toseconds is observed for both Landau levels. The fast
dephasing is followed by a much slower component, last-
ing several picoseconds. The longer decay component is
measured at 4.6 picoseconds for LL1 and increases fur-
ther to 6.2 picoseconds for LL0. The longer dephasing
for LL0 is likely due to under population of the level as
compared to LL1, and hence reduced scattering effects.
On the other hand, the initial ∼100 fs relaxation for both
levels is due to similar ultrafast pre-equilibration of the
quasi-free excitations.

The 2DFT spectra for the modulation doped quantum
well are shown in Fig. 4 for LL1 (left) and LL0 (right)
at three different magnetic fields. Surprisingly, the elon-
gation in the ωτ frequency direction of the transitions
observed in the undoped quantum well is substantially
reduced for LL1, and is completely absent for LL0. De-
spite the much higher concentration of the free carriers
in the modulation doped sample, there is no stripe-like
elongation for the lowest Landau level at fields between
8 and 10 Tesla.

IV. DISCUSSION

In order to gain a deeper understanding of the physics
behind the behavior of the Landau levels in doped
and undoped quantum wells, we performed density ma-
trix time-dependent DFT calculations for both samples,
which are shown in Fig. 5. The details of the time-
dependent DFT calculations are provided in recent pub-
lished articles [53–56] and in Ref. 76. The theory repro-
duces well the elongated lineshapes of the Landau levels
in the undoped sample in Fig 5 (a-b), Furthermore, at
lower energies the theoretical calculations replicate the
bound exciton and biexciton peaks in the 2DFT spectra
(Fig. 5 (c-d)). Although not as well resolved, the cross-
peaks due to quantum coherent coupling are shown in
Fig. 5 (b) and marked by the red circles.

The time-dependent DFT calculations reveal the un-
derlying physics and attribute the elongated lineshapes
to breaking of the translational invariance by inhomo-
geneities in the exchange-correlation potential. The in-
homogeneity effects become important when the char-
acteristic field-related length scales, i.e., the overlap of
the electron-hole wave functions becomes comparable or
smaller than the in-plane lattice constant. The calcu-
lated spatial charge density distribution is shown in Fig.
6, where the blue and green circles estimate the effec-
tive sizes of the electron and hole clouds. The red ar-
row shows the effective distance between the electron
and hole charge densities. The overlap between electron
and hole charge densities decreases with increasing mag-
netic fields, approaching the in-plane lattice constant for
higher fields. The unscreened Coulomb interactions in
the undoped sample have a stronger effect on the charge
inhomogeneities within the charge density overlap, bring-
ing the system outside the Kohn’s theorem protective
limits. Thus, the highly degenerate and discrete Lan-

FIG. 6. The difference between the electron and hole charges
at B=10T. The blue and green circles estimate the effective
sizes of the electron and hole clouds (Full Width at Half Max-
imum). The red arrow shows effective distances between the
electron and hole clouds. The opposite sign of the wave func-
tions leads to a charge density in the area between the circles
that is much smaller than the average individual electron and
hole charge densities.

dau levels couple coherently forming a continuum, re-
vealed by the elongated lineshapes. Anomalies beyond
Kohn’s theorem have been observed in the past and were
caused by phonons, non-parabolic electron dispersion,
and Coulomb interactions [58, 59, 77–79].

The excitonic response of semiconductors is described
by the optical polarization [2]. We obtain the optical po-
larization P (ω) using the density-matrix time-dependent
DFT equation, which has the following form

∑
k′

[(εck+q − εvk)δkk′ + F cvvckkk′k′ ]Pk′+µq(ω) = ωPk+µq(ω),

(1)
where q is the exciton momentum, µ is the reduced
pair mass, and εck and εvk are the dispersions of the
conduction and of the valence bands. In the doped
case, there is an additional term in the left-hand side
of the equation

∑
kk′ wcccckkk′k′Pk′+µq(ω), which describes

the electron-electron repulsion potential defined by

wabcdkqk′q′ =
1

εee

∫
dr1dr2ψ

a∗
k (r1)ψbq(r1)

1

|r1 − r2|
ψc∗k′ (r2)ψdq′(r2), (2)

where εee is the static dielectric screening. This term
leads to screening of the attractive electron-hole inter-
actions. In the time domain the effective electron-hole
interactions are given by

F abcdkqk′q′(t1, t2) =

∫
dr1r2φ

a∗
k (r1)φbq(r1)
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×fXC(r1, t1, r2, t2)φc∗k′ (r2)φdq′(r2), (3)

where φak(r) are the static Kohn-Sham wave functions for
the band a and momentum k, obtained from the solution
of static DFT equations. The matrix F abcdkqk′q′(t1, t2) de-
pends on the exchange-correlation kernel and therefore
describes the strengths of the electron-hole attractions.
In this article, we use the screened Slater expression for
the exchange-correlation kernel kernel:

fXC(r, t, r′t′) = −δ(t− t′)
2|
∑
j,k φ

j
k(r)φj∗k (r′)|2

ε|r− r′|n0(r)n0(r′)
(4)

The spatial dependence of the equilibrium charge den-
sity n0(r) over the unit cell becomes significant in the
regime of high magnetic fields and unscreened electron-
hole interactions. In the time-dependent DFT calcu-
lations this becomes apparent when analyzing the ex-
pression for effective electron-hole scattering matrix in
real space F (r, r′) =

∫ ∫
e−ikrF cvvckkk′k′(ω)eik

′r′d2kd2k′,
which contain the exchange-correlation kernel fXC [76].
Introducing the average and relative coordinate of the
electron-hole pair, R = (r + r′)/2 and ρ = r − r′ one
obtains

F (R, ρ) =

∫ ∫
e−i(k−k

′)RF cvvckkk′k′(ω)ei
(k+k′)

2 ρd2kd2k′

(5)
If the function F cvvckkk′k′(ω) would depend on the differ-

ence of the momenta q = k − k′, the standard trans-
lation invariant theory is obtained, leading to F (R) ∼∫
d2qe−iqRF cvvcq (ω). However, the lack of translational

invariance due to the spatial inhomogeneity within the re-
duced overlap of the charge density distributions, makes
the interaction potential dependent on both coordinates
F (R, ρ), leading to a nontrivial in-plane momentum de-
pendence for quasi two-dimensional systems. This effect
is induced purely by Coulomb interactions and not by
quantum well disorder [79].

In order to test the validity of our conclusions and
demonstrate the importance of the charge inhomogene-
ity effects, we calculate the 2DFT spectra for a unit cell
artificially expanded four times in the in-plane direction.
In this case, the in-plane unit cell parameter is larger than
the distance between the electron and hole charge distri-
butions. As a result, the charge inhomogeneity within
the overlap of the electron and hole charge density is ar-
tificially weakened. The calculated spectra are shown in
Fig. 7 and we obtain the usual line shape that does not
show the elongation along ωτ in the 2DFT spectra. This
clearly indicates the origin of the peculiar lines we ob-
serve. In the doped case, the screening introduced by
the dopant reduces the perturbation effect on the elec-
tron and hole. It leads to a reduced amplitude of the
matrix element, which in a sense is equivalent to weak-
ening these fluctuations.

After obtaining quantitative agreement in the undoped
sample, we calculate the 2DFT LL1 and LL0 spectra for

FIG. 7. (a) 2DFT spectrum of the undoped quantum well
at field magnetic fields of 6 Tesla. (b) The corresponding
spectrum obtained by using the interaction functions obtained
for a unit cell expanded four times in the in-plane directions.

the modulation doped quantum well. Further quanti-
tative agreement is achieved for the modulation doped
sample, where the time-dependent DFT calculations re-
produce well the disappearance of the elongated vertical
lineshapes for LL0 at 10 T. The time-dependent DFT
provides illuminating insights into this seemingly coun-
terintuitive observation. The screening generated by the
free carrier weakens the effect of the fluctuations within
the charge density overlap, described by the inhomo-
geneities of the exchange-correlation kernel. Further-
more, the shrinking of the Landau level radius with mag-
netic field leads to a substantial decrease of scattering
probability with free electrons. The combined effect leads
to the disappearance of the peculiar elongation in the ωτ
frequency direction in the 2DFT spectra and a reduction
of free-carrier induced dephasing. As a result, the LL0
state reaches a homogeneous linewidth of ∼0.27 meV at
10 T, obtained experimentally from the cross-diagonal
profile of the resonance peak in the 2DFT spectra, well
in agreement with the measured dephasing time using
time-integrated FWM.

Finally, we use a simple diagrammatic description in
order to summarize the essential physics obtained from
the time-dependent DFT calculations. In Fig. 8 the band
structure and Landau levels for the undoped and doped
quantum wells. The laser pulse promotes an electron into
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FIG. 8. Simplified schematic of the Landau levels and
band structure in the undoped (Left) and modulation doped
(Right) sample. The strong Coulomb interaction between the
unscreened carriers in the undoped quantum well, depicted
by the thick black arrows, leads to lifting the degeneracy of
the Landau levels and coupling them to a continuum. This
is depicted in a simplified manner by the broadened Landau
levels for the undoped sample. In the modulation doped (δ-
doped) sample the screening generated by the electron doping
significantly weakens the Coulomb interactions, leaving the
Landau levels degenerate. The charge screening is schemati-
cally depicted by the pink cloud, whereas the Coulomb lines
are weaker and the Landau levels are discrete.

the Landau levels creating a positively charged hole in the
valence band. The attractive Coulomb interaction be-
tween the electron and the hole is depicted by the dashed
field lines. In the undoped case the bare Coulomb inter-
actions between the electron and hole, and the repulsive
electron-electron interactions, lead to stronger Coulomb
interactions and thus the effect of the inhomogeneities
within the reduced charge density overlap is stronger.
These inhomogeneities within the overlap of the electron
and hole charge density distributions break the transla-
tional symmetry of the in-plane charge excitations and
drive the system outside the Kohn’s theorem limits. As
a result, the degeneracy of the Landau levels is lifted
and the Landau levels are coupled to a continuum. In
the modulation doped case the Coulomb interactions are
substantially weakened due to the screening provided by
the electron doping. Furthermore, orbital-localization ef-
fects with increasing magnetic fields lead to an additional
reduction in quasiparticle scattering. Thus, the Kohn’s
theorem is restored and the Landau levels remain dis-

crete.

V. CONCLUSIONS

In this article, we demonstrate the combined effect
of Coulomb interactions and extreme quantum confine-
ment on the electronic properties of two-dimensional elec-
tron gases, such as the validity of the jellium model and
Kohn’s theorem. In the regime of two-fold quantum con-
finement, namely, in the out of plane direction provided
by the quantum well barrier and in plane by the strong
magnetic fields, the charge distributions of electrons and
holes become strongly localized. The charge separation
leads to an overlap region that is increasingly smaller
with increasing magnetic fields and eventually becomes
comparable to the in plane unit cell. At this regime
the microscopic details of the charge density distribution,
namely the spatial fluctuations become significant. This
leads to a breakdown of the smooth charge assumption in
the jellium model and and brings the system outside the
protective limit of Kohn’s theorem. This breakdown is fa-
cilitated by the strong unscreened Coulomb interactions
in the intrinsic sample. When the Coulomb interactions
are weakened, the system returns to the usual assumption
of smooth charge distribution and translation invariance
along the plane.
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[41] R. A. Kaindl, D. Hägele, M. A. Carnahan, and D. S.
Chemla, Phys. Rev. B 79, 045320 (2009).

[42] D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin,
S. Mukamel, and S. T. Cundiff, Phys. Rev. Lett. 104,
117401 (2010).

[43] K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T.
Cundiff, and K. A. Nelson, Science 324, 1169 (2009).

[44] D. Turner and K. Nelson, Nature 466, 1089 (2010).
[45] P. Dey, J. Paul, N. Glikin, Z. D. Kovalyuk, Z. R. Kudryn-

skyi, A. H. Romero, and D. Karaiskaj, Phys. Rev. B 89,
125128 (2014).

[46] P. Dey, J. Paul, G. Moody, C. E. Stevens, N. Glikin,
Z. D. Kovalyuk, Z. R. Kudrynskyi, A. H. Romero,
A. Cantarero, D. J. Hilton, and D. Karaiskaj, J. Chem.
Phys. 142, 212422 (2015).

[47] J. Paul, C. E. Stevens, C. Liu, P. Dey, C. McIntyre,
V. Turkowski, J. L. Reno, D. J. Hilton, and D. Karaiskaj,
Phys. Rev. Lett. 116, 157401 (2016).

[48] J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent,
J. M. Luther, M. C. Beard, and D. Karaiskaj, Phys. Rev.
B 86, 125322 (2012).

[49] P. Dey, J. Paul, J. Bylsma, S. Deminico, and
D. Karaiskaj, Rev. Sci. Instrum. 84, 023107 (2013).

[50] A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carls-
son, K. R. Hagen, R. Jimenez, and S. T. Cundiff, Review
of Scientific Instruments 80, 073108 (2009).

[51] C. N. Borca, T. Zhang, X. Li, and S. T. Cundiff, Chem-
ical Physics Letters 416, 311 (2005).

[52] Tianhao Zhang and Irina Kuznetsova and Torsten Meier
and Xiaoqin Li and Richard P. Mirin and Peter Thomas
and Steven T. Cundiff , PNAS 104, 14227 (2007).

[53] V. Turkowski and C. A. Ullrich, Phys. Rev. B 77, 075204
(2008).

[54] V. Turkowski, A. Leonardo, and C. A. Ullrich, Phys.
Rev. B 79, 233201 (2009).

[55] V. Turkowski and M. N. Leuenberger, Phys. Rev. B 89,
075309 (2014).



9

[56] A. Ramirez-Torres, V. Turkowski, and T. S. Rahman,
Phys. Rev. B 90, 085419 (2014).

[57] W. Kohn, Phys. Rev. 123, 1242 (1961).
[58] T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn,

C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber,
M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, Nat.
Phys. 12, 119 (2016).

[59] M. Mittendorff, F. Wendler, E. Malic, A. Knorr, M. Or-
lita, M. Potemski, C. Berger, W. A. de Heer, H. Schnei-
der, M. Helm, and S. Winnerl, Nat. Phys. 11, 75 (2015).

[60] X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, Phys.
Rev. Lett. 96, 057406 (2006).

[61] S. T. Cundiff, Opt. Express 16, 4639 (2008).
[62] S. Mukamel, Principles of Nonlinear Optical Spectroscopy

(Oxford University Press, 1995).
[63] J. Paul, P. Dey, T. Tokumoto, J. L. Reno, D. J. Hilton,

and D. Karaiskaj, J. Chem. Phys. 141, 134505 (2014).
[64] J. C. Maan, G. Belle, A. Fasolino, M. Altarelli, and

K. Ploog, Phys. Rev. B 30, 2253 (1984).
[65] A. H. MacDonald and D. S. Ritchie, Phys. Rev. B 33,

8336 (1986).
[66] S. R. E. Yang and L. J. Sham, Phys. Rev. Lett. 58, 2598

(1987).
[67] G. E. W. Bauer and T. Ando, Phys. Rev. B 37, 3130

(1988).
[68] J. B. Stark, W. H. Knox, D. S. Chemla, W. Schäfer,
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