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We theoretically study the effect of the Berry curvature on the transport properties of Weyl
semimetals using a semiclassical Boltzmann transport theory, which results in nonlinear optical
responses. In the adiabatic process, the Berry curvature, which involves the time derivative of the
Bloch states, contributes to the transport properties such as the adiabatic Thouless pump. Although
this effect is very weak in usual solids, it is enhanced in Weyl semimetals, where the Berry curvature
contributes to observable nonlinear optical responses due to its nodal structure. In this paper, using
the semiclassical Boltzmann theory, we show that a d.c. photocurrent induced by the Berry curvature
robustly persists even in the limit of short scattering time. We also show that the photocurrent is
well explained as a consequence of the electromagnetic induction in momentum space. The results
indicate that the electromagnetic induction gives rise to a non-dissipative photocurrent that is robust
against decoherence within a time scale shorter than the periodicity of the incident electromagnetic
field. We also discuss the second harmonic response of an a.c. current when the electron distribution
is displaced from the ground state by an external field.

PACS numbers:

I. INTRODUCTION

The semiclassical transport theory of metals well ex-
plains many of their basic properties. In this theory, the
properties are explained on the basis of the semiclassical
dynamics of charged carriers such as electrons or holes, in
which the carrier velocity is replaced by the group veloc-
ity of the Bloch states. Recent studies on the anomalous
transport phenomena, however, have revealed that the
conventional transport theory is incomplete for explain-
ing the rich transport phenomena discovered in solids.
One of the key features lacking in the simplest version of
the transport theory is the contribution from the Berry
phase in momentum space [1–4]. It was shown that the
Berry phase in the orbital degrees of freedom of the Bloch
electrons is related to rich physics in solids such as the
quantum Hall effect [7, 8] and the electric polarization in
ferroelectric compounds [9, 10], and is now considered as
one of the key features that characterize the electronic
states in solids such as in topological insulators [11–14].

On the other hand, it was also pointed out that
the Berry phase of time-periodic systems induces non-
dissipative particle transport in the adiabatic process [15,
16], which was recently observed in cold atom experi-
ments [17, 18]. In this phenomenon, when the system is
insulating for all t ∈ [0, T ), where T is the period of the
time-dependent perturbation, the charge carried by the
system per a cycle, Q, is expressed by the Berry curvature
of the electron Bloch states with time derivative [15],

Q = −q
∫ T

0

dt

∫
BZ

dk

2π
e(k, t), (1)

where q < 0 is the elementary charge. Here, the second
integral in Eq. (1) is taken over the first Brillouin zone,

and

e(k, t) = −i 〈∂tu(k, t)| ∂ku(k, t)〉
+i 〈∂ku(k, t)| ∂tu(k, t)〉 (2)

is the Berry curvature for the valence band in the t-k
space with u(k, t) being the Bloch state of electrons in
the valence band at wavenumber k and time t. (Here, we
assume one-dimensional systems.)

In principle, this theory is applicable to any periodic
systems including solids. Indeed, in a generalized for-
malism of wave-packet theory, it is shown that the term
identical to Eq. (2) appears in the equation of motion of
the wave packet [4];

ṙµ = ∂kµε(k)− eµ(k, t), (3)

eµ(k, t) = −i 〈∂tu(k, t)| ∂kµu(k, t)
〉

+i
〈
∂kµu(k, t)

∣∣ ∂tu(k, t)〉 . (4)

Here, rµ (µ = x, y, z) is the µth component of the po-
sition vector of the wave packet, and k = (kx, ky, kz)
is the wavenumber of the Bloch state u(k, t). Unfortu-
nately, the physics related to eµ(k, t) is often considered
to be negligible in bulk solid materials. The main obsta-
cle is the energy scale of the time-dependent field [19].
Since the amount of particles pumped during the adia-
batic cycle is proportional to the integration of the Berry
curvature, for an appreciable pumping, a large deforma-
tion of the wave function is required. In solids, how-
ever, the characteristic energy scale of materials, such as
the bandwidth, is much larger than that of the control-
lable time-dependent field, e.g., the electromagnetic field.
Therefore, it is generally difficult to significantly deform
the electronic wave function by external fields.
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In a recent paper [19], however, the present authors
have proposed that the effect of eµ(k, t) may give an ob-
servable contribution to the transport properties of Weyl
semimetals [20–35]. In particular, using an adiabatic ap-
proximation, it was theoretically discussed that eµ(k, t)
is induced by an incident circularly polarized light in
doped Weyl semimetals and results in a non-dissipative
photocurrent. It was further pointed out that this phe-
nomenon could be interpreted as the electromagnetic in-
duction in momentum space, where the circular motion
of magnetic monopoles (Weyl nodes) induces a d.c. emer-
gent electric field.

In this paper, we study in details the transport phe-
nomena induced by eµ(k, t) in Weyl semimetals. Using a
generalized Weyl Hamiltonian with tilting [36–39] and k2

terms, we first study the distribution of eµ(k, t) around
a Weyl node. We show that the circular motion of the
Weyl node induces the d.c. eµ(k, t) that resembles the
magnetic field induced by the circulating point charge.
We then study the transport properties induced by eµ.
We show, by using the Boltzmann theory in the τω � 1
limit, that the non-dissipative photocurrent studied in
Ref. [19] robustly persists even in the limit where the de-
coherence of the quantum phase occurs much faster than
the cycle of the pumping, namely, the period of eµ(k, t)
induced by the incident light. From the calculation, the
non-dissipative nature of the photocurrent is directly ob-
tained; it does not depend on the relaxation time. We,
however, show that in the case where the deformation
of the bands by the electric field is large, the coefficient
of the photocurrent changes. This effect quantitatively
changes the results, and may totally cancel out the pho-
tocurrent in a special case, as shown for the case of the
tilted Weyl Hamiltonian without the k2 terms. Lastly,
we show that the a.c. electric current with the frequency
twice as high as that of the incident light also arises in a
nonequilibrium setup. Distinct from the d.c. photocur-
rent, this second harmonic response is a dissipative cur-
rent and depends on the relaxation time.

The transport properties of Weyl fermions have re-
cently attracted considerable attention, from high en-
ergy physics to its condensed matter realizations named
Weyl semimetals, owing to rich nonlinear electromagnetic
responses, such as the chiral magnetic effect [40, 41],
the nonlinear anomalous Hall effect [42, 43], the pho-
tovoltaic effects [44, 45], and the giant second harmonic
generation [46]. These phenomena originate from several
different mechanisms such as the chiral anomaly, spin-
momentum locking, and the Berry curvature (anoma-
lous velocity) of the Bloch wave functions. Our theory
shows that another form of the Berry curvature, eµ(k, t),
also contributes to the electromagnetic responses of Weyl
semimetals, which are potentially relevant to the candi-
date materials for noncentrosymmetric Weyl semimetals,
such as TaAs [27–29, 32, 33].

The remainder of this paper is organized as follows. In
Sec. II, we introduce the generalized Weyl Hamiltonian
studied in this paper. In Sec. III, we illustrate the main

(a) (b)

kx kz
kx kz

FIG. 1. Dispersion of the Hamiltonian in Eq. (6) at ky = 0
with v = vz = 1 and Dx = Dy = 0. (a) Weyl Hamiltonian
with a nonlinear term, v0 = 0, α1 = 0, and α2 = −1, and (b)
with tilting v0 = 1/4 and α1 = α2 = 0.

idea of the paper, i.e, the electromagnetic induction in
momentum space. We show how eµ(k, t) is induced by
the circular motion of a Weyl node, and present its phys-
ical argument based on an analogy with Maxwell theory;
it is similar to the generation of the magnetic field around
a point charge that circulates around a point. Section IV
discusses the experimental signature of eµ(k, t), that is,
the photocurrent and the second harmonic response. Sec-
tion V is devoted to the summary and discussions regard-
ing other related works. In Appendix A, we elaborate on
the technical details of the Boltzmann theory used in
Sec. IV.

II. MODEL

In this paper, we study a generalized Weyl Hamiltonian
with quadratic terms and the tilting; the Hamiltonian is
given by

H(~k, t) = v0kz +
∑
a

σaRa(k, t), (5)

with

Rx(k) = ±vkx + gDy +
α2

2
kxkz, (6a)

Ry(k) = ±vky − gDx +
α2

2
kykz, (6b)

Rz(k) = ±vzkx +
α1

2
(k2x + k2y − 2k2z). (6c)

Here, Dα (α = x, y) are the electric field along the x and
y directions, and kα (α = x, y, z) are the displacement
of the wavenumber from the nodal point; the axis of k
is chosen so that the pair of nodes connected by time-
reversal or spatial-inversion symmetry are along the z
axis. The velocity of Weyl electrons is given by v and
vz. Due to the uniaxial anisotropy about the z axis, in
a Weyl semimetal, the velocity along the z axis, vz, is
generally different from that of the x or y axis, v.
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In this paper, as the coupling to the external electric
field, we consider an electron orbital coupling allowed by
symmetry [the second terms in Eqs. (6a) and (6b)]. The
incident light propagating along the z axis is given by

Dx = D cos(ωt), (7a)

Dy = D sin(ωt+ χ), (7b)

where D is the square root of the intensity of the light, ω
is the frequency of the light, and χ is the phase shift; the
light is circularly polarized for χ = 0, π, and linearly po-
larized for χ = π/2, 3π/2. g in Eq. 6 is generally nonzero
when the Weyl node is away from a symmetric point,
such as the Γ point.

In addition to these terms, we consider the tilting of
the Weyl node and the quadratic terms in the disper-
sion relation. The tilting is given by the first term in
Eq. (5), and the quadratic terms by the third term in
Eqs. (6a) and (6b), and the second term in Eq. (6c).
These terms violate the symmetry of the dispersion re-
lation under kz → −kz. This is seen in the band disper-
sions shown in Fig. 1. Figure 1(a) shows the dispersion of
the Hamiltonian with v0 = 0, α1 = 0 and α2 = −1, and
Fig. 1(b) shows that with v0 = 1/4, α1 = 0 and α2 = 0.
The nonlinear term proportional to α2 deforms the Fermi
surface into a triangular shape, breaking the symmetry
under kz → −kz. The tilting also breaks the symmetry
related to the transformation kz → −kz, which deforms
the Fermi surface into an oval shape. As we will discuss
in Secs. III and IV, this deformation of the Fermi surface
is necessary to realize nonzero eµ(k, t).

III. e FIELD IN WEYL SEMIMETALS

In this section, we provide an intuitive argument that
explains the qualitative features of the anomalous trans-
ports presented in Sec. IV. We describe an analogy with
the electromagnetism of a moving point charge that well
explains the results of optical responses presented in the
subsequent sections [19]. We consider an analog to the
Ampère law described by

∇×H =
∂E

∂t
+ 4πj, (8)

where j is the current, and H and E are the magnetic
and electric fields, respectively.

In Weyl semimetals, it is known that the Weyl nodes
are the magnetic monopoles of the orbital Berry curva-
ture b, i.e., ∇k · b = ρm 6= 0 at the node, where ρm is
the magnetic charge density of the monopole. When the
Weyl node moves dynamically in the momentum space,
an effect similar to Eq. (8) may appear in momentum
space, which is described by

∇k × e = −∂b
∂t
− 4πjm, (9)

where e is the emergent electric field, and jm is the mag-
netic charge current in momentum space, satisfying the

kx
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FIG. 2. (a) Schematic figure of circular motion of a Weyl
node (magnetic monopole) in momentum space and an in-
duced emergent electric field. In analogy with a magnetic
field induced by the circulating point charge, the emergent
electric field is induced by the cyclic motion of the magnetic
monopole. (b) Averaged emergent electric field per a cycle
calculated using the Hamiltonian in Eq. (5). The calculation
is done for v = vz = 1, α1,2 = 0, g = 0.1, D2

x +D2
y = 1, χ = 0,

and ω = 1. Each arrow shows the electric field e projected
onto the kx − kz plane with its length being proportional to
|e|1/6.

conservation law ∂tρm + ∇k · jm = 0. Equation (9) is
the momentum-space analog of the electromagnetic in-
duction,

∇×E = −∂B
∂t
− 4πjm, (10)

and describes the dynamical generation of e (B is the
magnetic flux density). For the magnetic charge, the
role of electric and magnetic fields changes. There-
fore the emergent electric field e is generated accord-
ing to Eq. (9) by the dynamical motion of the magnetic
monopole (Weyl node). The generated e shows the same
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distribution with the magnetic field H generated accord-
ing to the Ampère law in Eq. (8) by the dynamical motion
of the electric charge. In Eq. (5), in the presence of an
electric field, the position of the Weyl node shifts from
its original position by − gvDy and g

vDx in the kx and
ky directions, respectively. When the light is circularly
polarized, namely, for the case of χ = 0 in Eq. (7), the
Weyl node moves in a circular orbit around its original
position. In analogy with the circulating point charge,
the circular motion of the Weyl node induces a d.c. eµ
field that penetrates through the orbit as schematically
shown in Fig. 2(a).

To see whether this analogy works in momentum space,
we calculate the time average of eµ(k, t):

ēµ(k) =

∫ 2π
ω

0

ω

2π
dt eµ(k, t)f [k,γ(t), t]. (11)

For 2× 2 Hamiltonians, eµ(k, t) reads

eµ(k, t) = ± 1

2R3
R · ∂tR× ∂kµR, (12)

where R = R(k, t) = [Rx(k, t), Ry(k, t), Rz(k, t)] and
R = |R|. The positive and negative signs are for upper
and lower bands, respectively. Substituting Eq. (6) into
R and expanding the result by D, we find that the lowest
order d.c. term [Eq. (11)] appears from the second order
in D. In the case of α1,2 = 0 and a circularly polarized
light (χ = 0), the solution with f [k,γ(t), t] = 1 reads

ēµ(k) = ±ωg2D2vµ
3
∑
ν ẑνκνκµ − κ2ẑµ

4κ5
, (13)

where vµ = v for µ = x, y and κµ = vµkµ; zµ is the µth
component of the unit vector along z, i.e., ẑ = (0, 0, 1).
The distribution of ēµ(k) described by Eq. (13) is de-
picted in Fig. 2(b); it shows the x and z components of
ēµ(k) in the ky = 0 plane. Due to the continuous ro-
tational symmetry around the z axis, ēy(k) = 0 in this
plane. The intensity of ēµ(k) is proportional to the fre-
quency of rotation, ω, and the square of gD, which is
proportional to the area surrounded by the orbit of the
monopole. These features have an obvious analogy to the
magnetic field induced by a circulating charged particle,
which is proportional to the intensity of the current (ve-
locity) and the area surrounded by the loop of the orbit.

Indeed, Eq. (13) is identical to the magnetic field dis-
tribution for the point charge rotating in a circular mo-
tion, in the distance from the orbit of the point charge,
renormalized by the velocity vµ in Eq. (6). For the clas-
sical electromagnetism, the magnetic field distribution
for moving point charges can be exactly calculated using
the Liénard-Wiechert potential. In the limit of large dis-
tance, it is given by replacing gD → 2l

√
q/c in Eq. (13):

Hµ =
ql2ω

c

3
∑
ν ẑνxνxµ − x2ẑµ

x5
, (14)

where xµ (µ = 1, 2, 3) is the real space coordinate, x2 =∑
µ x

2
µ, q is the charge of the point particle, l is the radius

of the orbit, and c is the speed of light (we assumed
c� ωl and x� l).

We remark here that the magnetic field distribution far
away from the circulating point charge cancels out after
the integration over the angular directions. Therefore,
the total eµ cancels out upon the integration over the
momentum space, that is,∫

d3k

(2π)3
ēµ(k) = 0. (15)

Thus, the contribution from eµ vanishes if the band is
fully occupied. This is consistent with the explicit cal-
culation conducted in Sec. IV. With finite doping, the
integration is replaced by the volume inside the Fermi
surface, and therefore the integration can be nonzero.
However, when we have the symmetric Fermi surface,
such as at v0 = α1 = α2 = 0, the integration again can-
cels out. Therefore, to make the integration nonzero, it
is necessary to break the symmetric structure of eµ(k, t)
by deforming the Fermi surface from the symmetric one
at v0 = α1 = α2 = 0. We show, in Sec. IV, that this idea
indeed works and eµ(k, t) induces optical responses.

IV. OPTICAL RESPONSE

To study the optical responses of the Hamiltonian in
Eq. (5), we here utilize the Boltzmann transport theory
with the relaxation time approximation in the τω � 1
limit. In Sec. IV A, we elaborate on the detail of the
Boltzmann theory. The optical responses obtained from
the Boltzmann theory are presented in Secs. IV B and
IV C. In Sec. IV B we study the photocurrent and the sec-
ond harmonic response induced by the emergent electric
field in a Weyl Hamiltonian with nonlinear terms. Those
in tilted Weyl Hamiltonians are discussed in Sec. IV C.

A. Boltzmann Theory

In this paper, we focus on the electric current induced
by the emergent electric field, particularly on the pho-
tocurrent and second harmonic generation. For this pur-
pose, we employ the Boltzmann theory with the relax-
ation time approximation. In the Boltzmann theory, the
electric current is given by

Jµ = q

∫
d3x

(2π)3
ṙµf [k,γ(t), t], (16)

where

ṙ = ∇kε(k)− b(k, t)× k̇ − e(k, t) (17)

is the time derivative of the position of the wave
packet [4], ε(k) is the energy dispersion, and γ(t) de-
notes the time-dependent parameters in the Hamiltonian;
in our case, it is γ = (gDy,−gDx, 0). The first term on
the right-hand side of Eq. (17) is the group velocity of
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the wave packet, and the second term is the anomalous
velocity contributed from the Berry curvature,

bµ(k, t) = εµνλ∂kνaλ(k), (18)

where

aµ(k, t) = i〈u(k, t)|∂kµu(k, t)〉 (19)

is the Berry connection. This term is known to contribute
to the photocurrent when the electron distribution func-
tion deviates from its equilibrium distribution [42, 47]. In
this paper, we focus on the contribution from the third
term in Eq. (17), which can generate the electric current:

J (e)
µ = −q

∫
d3k

(2π)3
e(k, t)f [k,γ(t), t]. (20)

When the system is subjected to a monochromatic light,
the induced e(k, t) field can be decomposed in terms of
the frequency of light ω:

e(k, t) =
∑
n

e(k, n)einωt. (21)

We find both of e(k, 0) and e(k,±2) are of order O(D2),
while e(k,±1) are of order O(D). In the following, we
focus on the d.c. and second harmonic responses that
arise from these terms.

To evaluate the electron distribution function,
f [k,γ(t), t], we here use the relaxation time approxima-
tion to take account of the modulation of the distribution
function due to the time-dependent external electric field.
In the following, we assume that the relaxation time of
the Weyl electrons is much shorter than the typical time
scale of the light, i.e., ωτ � 1, and take the change of
the electron distribution into account up to the leading
order in τω. This corresponds to the opposite limit of
the case studied in Ref. [19], in which the electron oc-
cupation is assumed to be the Fermi-Dirac distribution
in the absence of laser fields. We also note that this
approximation is valid only when the change of the elec-
tron distribution is limited to a small range in the energy
close to the Fermi surface, i.e., when the energy scale of
the electric field is much smaller than the Fermi energy
µ ∼ vkF . The derivation of the distribution function is
elaborated in Appendix A. Here, we just note the main
result of the appendix; the electron distribution can be
approximated as

f(k, t) ∼ f0(k − qτD̃), (22)

where f0(k) is the Fermi-Dirac distribution function, and

D̃ = (D̃x, D̃y, 0) with

D̃x = Dx −
g

vqτ
Dy, (23)

D̃y = Dy +
g

vqτ
Dx, (24)

when τω � 1 and α1,2kF � v. Here, τ is the relaxation
time, and kF is the Fermi wavenumber. Therefore, the

change in the Fermi surface due to the change in the band
structure (the terms independent of τ in qτD̃) appears in
a manner similar to the usual electric field, but shifts its
phase. The first terms on the right-hand side of the above
equations come from the usual electromagnetic coupling
by replacing k by k − qA.

B. Nonlinear Weyl Hamiltonian

To study the optical responses, we first consider the
case with v0 = 0, but nonzero α1,2. This is the model
considered in the previous paper, in which we studied the
limit τω � 1 [19]. We show that the expression of the
photocurrent obtained in Ref. [19] is qualitatively valid
even in the limit of τω � 1. In addition, we show that eµ
also gives rise to the second harmonic response, i.e., the
a.c. current with frequency 2ω, when the displacement
of the electron distribution in momentum space occurs.
These results indicate that, although the dynamics of the
Fermi surface affects the quantitative features of the adi-
abatic current, most of the qualitative features robustly
persist in all τω regions, and are well explained in terms
of the momentum-space electromagnetic induction.

We first consider the photocurrent induced by the eµ
field. We consider the short scattering time regime τω �
1, so that the distribution function is approximated as in
Eq. (22). Since the electric current induced by the light
is proportional to the time and momentum average of
eµ(k, t),

ēµ =

∫ 2π
ω

0

ω

2π
dt

∫
d3keµ(k, t)f0(k − qτD̃), (25)

we here discuss ēµ instead of the current. To calculate
the integral inside the Fermi surface, we focus on the
case α1,2kF � v, vz, and expand the dispersion relation
around the Fermi surface for α1,2 = 0 along the radial
direction. The change in kF due to α1,2, ∆k, is given by
solving

∆ε+ ε′0∆k +
ε′′0
2

∆k2 = 0, (26)

where ∆ε = µF − ε(k
(0)
F ), and ε′0 = ∂kε(k

(0)
F ) and

ε′′0 = ∂2kε(k
(0)
F ) are the derivatives for the radial direction.

Here, k
(0)
F and µF = vkF are the Fermi wavenumber for

α1,2 = 0 and the Fermi energy, respectively. The physical
solution of Eq. (26) is

∆k

k
(0)
F

=
−ε′0 +

√
ε′20 − 2ε′′0∆ε

ε′′0

= − ∆ε

k
(0)
F ε′0

+O

(αk(0)F
v

)3


∼ − ∆ε

k
(0)
F ε′0

. (27)
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In the second line, we expanded the square root by
ε′′0∆ε/ε′20 ∼ (αkF /v)2 � 1. Here, we use the fact that
∆ε ∼ αk2F , ε′0 ∼ v, and ε′′0 ∼ α, where α = α1,2. Hence,
up to the order of (αkF /v)2, we approximate the Fermi
surface by

kF (θ, φ) = k
(0)
F −

∆ε

k
(0)
F ε′0

∣∣∣∣∣
k
(0)
F =k

(0)
F (θ,φ)

, (28)

where k
(0)
F (θ, φ) = k

(0)
F (sin θ cosφ, sin θ sinφ, cos θ).

Using the Boltzmann theory in Appendix A and the
approximated Fermi surface in Eq. (28), we calculate ēµ.
We first consider the limit of qτ |D| � 1

v |γ|. In this limit,
we find

ēzR,L = ±π 4(v2 − 2v2z)α1 − 3vvzα2

60v5v3z
α1(µgD)2ω cos(χ),

(29)

where the + and − signs on the right-hand side are for
the right-handed (ēzR) and the left-handed (ēzL) Weyl
nodes, respectively. Here, µ is the Fermi energy mea-
sured from the node. As discussed in Ref. [19], ēzR(L)

does not depend on the sign of µ, i.e., the expression
does not depend on whether it is electron doped or hole
doped. This result is exactly the same as that in the
ωτ � 1 limit, and implies the robustness of the adia-
batic current. Indeed, reflecting the adiabatic nature of
the current, Eq. (29) does not depend on the relaxation
time.

In regard to the polarization of the light, χ, we find
that the photocurrent is maximized when the light is cir-
cularly polarized (χ = 0, π), while it vanishes for linearly
polarized lights (χ = π/2, 3π/2). This polarization de-
pendence can also be understood in terms of the elec-
tromagnetic induction; the circular motion of a magnetic
monopole (Weyl node) induces the d.c. emergent electric
field penetrating through the orbit, while a vibration of
the monopole does not.

In the limit of qτ |D| � 1
v |γ|, the magnitude of the

photocurrent is modified due to the change in the Fermi
surface. We find

ēzR,L = ±π 16(v2 − v2z)α1 − 9vvzα2

60v5v3z
α2(µgD)2ω cos(χ).

(30)

In this situation, however, the difference from the result
in Eq. (29) is only quantitative. Many of the main fea-
tures in Eq. (29) robustly remain, such as the polarization
dependence and the non-dissipative nature (the result is
independent of τ).

A new feature of the optical response in the Boltz-
mann theory is a second harmonic response. We find
that a second harmonic response is induced by eµ when
the displacement of the electron distribution occurs. In
the qτ |D| � 1

v |γ| limit, it reads

ẽzR,L(t) = πgqτ
(6v2 − 4v2z)α1 − 3vvzα2

30v4v3z
α2

×(µD)2ω sin(χ) cos(2ωt+ χ). (31)

Here ẽz denotes the momentum integration of ez(k, t).
In contrast to the photocurrent, the second harmonic re-
sponse occurs only for the linearly polarized light (χ =
π/2, 3π/2), and vanishes for the circularly polarized light
(χ = 0, π). Another contrasting feature is that the cur-
rent depends on τ , which indicates that the second har-
monic response is dissipative. Reflecting this feature, the
second harmonic response vanishes in the qτ |D| � 1

v |γ|
limit.

C. Tilted Weyl Hamiltonian

We next consider the case with tilting (v0 6= 0).
For simplicity, we here ignore the contribution from
α1,2. In this case, the Fermi surface can be exactly
calculated for |v0| < |vz|; using the polar axis κ =
(vk sin θ cosφ, vk sin θ sinφ, vzk cos θ), it reads

κF (θ) =
vzµ

vz + v0 cos θ
. (32)

We first consider the limit of qτ |D| � 1
v |γ|. In this

limit, ēzR,L reads

ēzR,L = ± π

4v2
X(v0/vz)(gD)2ω cos(χ), (33)

where

X(x) =

∫ π

0

dθ sin θ (1 + 3 cos 2θ) ln

(
1

1 + x cos θ

)
.

(34)

This is, again, the same as that in the ωτ � 1 limit.
When |v0| � |vz|, Eq. (33) becomes

ēzR,L = ±π 2v20
15v2v2z

(gD)2ω cos(χ). (35)

The result is qualitatively similar to the case with α1,2 6=
0 and v0 = 0; the photocurrent shows the maximum for
a circularly polarized light, but vanishes for a linearly
polarized one. Also it is proportional to D2, and does
not depends on τ .

One distinct feature for this case appears in the dop-
ing dependence. Unlike the case with α1,2 6= 0, in the
presence of tilting, the intensity of the photocurrent is
independent of doping. This owes to the difference in the
distortion of the Fermi surface. For the case in Sec. IV B,
the relative amount of the distortion of the Fermi surface
is proportional to α1,2kF /v ∝ µ, while it is independent
of kF in the present case, as seen in Eq. (32).

We, however, note that the result in Eq. (33) does not
indicate a finite photocurrent without doping. In our
calculation, we use the relaxation time approximation.
For this approximation to hold, it is necessary to have
a doping µ � vqτD, gD. Therefore, the photocurrent
in Eq. (33) needs to be corrected when the Fermi level
approaches the node.

We also investigate the case qτ |D| � 1
v |γ|. In this

case, we find that the contribution from the Fermi surface
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modulation cancels the adiabatic current. Therefore, no
photocurrent appears.

Lastly, we discuss the second harmonic response. In
the limit of qτ |D| � 1

v |γ| when α1,2 = 0 and v0 6= 0, we
get

ẽzR,L(t) = − π

4v
X(v0/vz)qτgD

2ω sin(χ) cos(2ωt+ χ).

(36)

For |v0| � |vz| the above equation is simplified as

ẽzR,L(t) = − 2πv20
15vv2z

qτgD2ω sin(χ) cos(2ωt+ χ). (37)

The result also resembles that in the case α1,2 6= 0 and
v0 = 0, with the only distinct feature in the doping de-
pendence. The second harmonic response again vanishes
in the qτ |D| � |γ|/v limit.

D. Effects of Multiple Nodes in Weyl Semimetals

So far, we have focused on the response from a Weyl
node. However, in solids, there always exist multiple
nodes [48], 2n and 4n for centrosymmetric and time-
reversal symmetric Weyl semimetals, respectively [49] (n
is a positive integer). A crucial difference is that by the
time-reversal operation, one Weyl node is related to an-
other with the same chirality. On the other hand, by the
spatial inversion operation, the Weyl node is related to
another with the opposite chirality. Therefore, it is ex-
pected that the photocurrent generally becomes nonzero
for the Weyl semimetals with broken inversion symmetry,
while the photocurrent cancels out between the nodes in
the presence of the spatial inversion symmetry.

As low energy models that take into account of the
pair of nodes, we consider 4 × 4 Hamiltonian that con-
sists of two nodes [45]. For the centrosymmetric Weyl
Hamiltonian, we consider

HP = v0kzτz + τz{v(kxσx + kyσy) + vzkzσz}
+gτz(Dyσx −Dxσy)

+
α1

2
σz(k

2
x + k2y − 2k2z)

+
α2

2
(kzkxσx + kzkyσy). (38)

Here, σα and τα (α = x, y, z) are Pauli matrices for spin
and chirality, respectively. For a time-reversal symmetric
Weyl Hamiltonian, we consider

HT = v0kzτz ± {v(kxσx + kyσy) + vzkzσz}
+gτz(Dyσx −Dxσy)

+
α1

2
τzσz(k

2
x + k2y − 2k2z)

+
α2

2
τz(kzkxσx + kzkyσy). (39)

In HP and HT , we take the time-reversal operator T =
σyτxK and spatial-inversion operator P = τx in addi-
tion to k → −k. The two models also have continuous

rotation symmetry about the z axis, if we assume the
standard rotations for σα matrices while no symmetry
for the rotation about the x or y axis.

We note that the two Weyl nodes in HT have the same
chirality. Hence, there exist at least two more nodes with
the opposite chirality due to the Nielsen-Ninomiya the-
orem [48]. However, there is no symmetry relation be-
tween the two pairs of nodes. Therefore, in general, no
complete cancellation occurs between any two pairs of
different chiralities. Thus, here, we focus only on HT for
the time-reversal symmetric case.

When the inter-nodal scattering is negligible, the opti-
cal response in HP and HT is given as the sum of contri-
butions from the two nodes in the Hamiltonian. There-
fore, we see that the calculation based on HT and HP is
consistent with the argument above.

For the second harmonic response, the sign of the re-
sponse is independent of the chirality. However, g has
opposite signs between the pair nodes for both time-
reversal and spatial inversion operations. Therefore, for
both cases, in this mechanism, the second harmonic re-
sponse vanishes. The cancellation, however, is violated
if the relaxation time becomes different between the pair
nodes, or in a nonequilibrium setting such as chemical
potential difference induced by chiral anomaly [41].

In Weyl semimetals in solids, there sometimes exist
small Fermi pockets other than the Weyl nodes. For
those pockets, the modification of the wavefunctions by
the light is supposed to be vanishingly small. Therefore,
the contribution from such pockets is negligible.

E. Experimental Test

In experiments, the ~e field discussed in this section can
be observed as the electric current induced by the light,
i.e., photocurrent. As in Eq. (20), the current induced by
the ~e field is given by the sum of the contributions from
all Weyl nodes,

Jµ =
∑
i

J (i)
µ ,

= −q
∑
i

∫ 2π
ω

0

ω

2π
dt

∫
d3k

(2π)3
e(i)µ (k, t)f [k,γ(t), t],

= − q

(2π)3

∑
i

ē(i)µ , (40)

where the sum is taken over all Weyl nodes in the Bril-
louin zone and q < 0 is the charge of an electron. Here,

ē
(i)
µ is the net average ~e field; it reads Eq. (29) [Eq. (30)]

for the v0 = 0 case in the qτ |D| � |γ|/v (qτ |D| � |γ|/v)

limit. For the tilted Weyl nodes (α1,2 = 0), the ē
(i)
µ field is

given by Eq. (33) for the v0 = 0 case in the qτ |D| � |γ|/v
limit. Similarly, the second harmonic response reads

Jµ = − q

(2π)3

∑
i

ẽ(i)µ . (41)
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To estimate the order of the magnitude of the cur-
rent, we here focus on the case v0 = 0 [19]. We assume
v ∼ vz ∼ 10−29 Jm (corresponds to ∼ 105m/s velocity)
and the incident light of light power ∼ 105 W/m2. The
magnitudes of k2 terms α1,2 ∼ 10−39Jm2 are estimated
from an assumption vb ∼ α1,2b

2, where b ∼ 1010m−1 is
the length of the reciprocal vector. Intuitively, this as-
sumption states that the effect of α1,2 is non-negligible
away from the node, at the end of the Brillouin zone. In
the theory above, the coupling term to the electric field g
is introduced as a symmetry-allowed parameter. Micro-
scopically, however, this term is expected to arise from
the electric dipolar coupling of the Wannier orbitals. We
assume it to be g ∼ q〈n||δr||m〉 and 〈n||δr||m〉 ∼ 10−10m;
|m〉 and |n〉 are the Wannier functions of the two bands.
By using these parameters, the photocurrent is estimated
to be 0.1-10nA. This can be observed only for a circularly
polarized light.

V. DISCUSSION AND SUMMARY

In this paper, we have studied the effect of the emer-
gent electric field in momentum space, eµ(k, t), in Weyl
semimetals. We describe how the dynamical motion of
the Weyl node induces the eµ(k, t) field, and that it
resembles the magnetic field induced by the dynamical
motion of the point charge in the Maxwell theory. It
has been shown, in the previous paper [19], that the
eµ(k, t) field induces a non-dissipative photocurrent in
the τω � 1 limit, where ω is the frequency of the inci-
dent light and τ is the relaxation time.

In this paper, we have studied how eµ(k, t) contributes
to the electron transport in the regime of τω � 1 by using
the Boltzmann theory. We show that the non-dissipative
photocurrent robustly remains in the Boltzmann theory.
When the change in the fermion distribution function
is mainly caused by the drift of electrons, i.e., when
|qτD| � | gvD|, the result is exactly the same as that
in the adiabatic limit. The magnitude of the photocur-
rent, however, changes in the Boltzmann theory when
the change in the fermion distribution function is dom-
inated by the modification of the band structure, i.e.,
when |qτD| � | gvD|. Nevertheless, even in this limit,
the induced photocurrent is independent of τ , namely, it
is non-dissipative. This is a distinct feature from other
mechanisms of the photocurrent in the Weyl semimet-
als [44, 45], as well as the photocurrent induced by the
Berry curvature [42, 47]. In these mechanisms, a change
in the electron distribution function due to the drift of
the electrons or by light irradiation plays key roles, and
thus the photocurrent depends on the relaxation time.
From the symmetry argument, we discuss that the pho-
tocurrent induced by our mechanism can generally be ob-
served in the noncentrosymmetric Weyl semimetals such
as TaAs [27–29, 32, 33].

In addition to the non-dissipative current, we find that
the second harmonic response (the a.c. current of 2ω

frequency) appears in the Boltzmann theory. This sec-
ond harmonic response, however, cancels out between
the Weyl nodes in the presence of either time-reversal
or spatial-inversion symmetry. Therefore, to realize the
second harmonic response, it is necessary to break both
the time and inversion symmetries. A candidate exper-
imental setup is to prepare a nonequilibrium state with
a Fermi-level difference, µ5. The generation of µ5 using
a circularly polarized light has recently been proposed
in Ref. [41]. Our result suggests that, when the light
polarization is slightly distorted from the circular polar-
ization, it gives rise to the second harmonic response of
the electric current parallel to the separation axis of Weyl
nodes.

The theory presented here generally applies to Weyl
semimetals/metals with a small carrier doping in the
Weyl nodes. With a larger doping, the Fermi level correc-
tion from other nonlinear terms may become important,
changing the result. In addition, the screening of the elec-
tric field by mobile carriers becomes relevant. Therefore,
it is likely that the photocurrent induced by the elec-
tromagnetic induction in momentum space is suppressed
if we have a large amount of carriers. Hence, a Weyl
semimetal with a small number of carriers is favorable
for experiments.
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Appendix A: Boltzmann Theory for the Generalized
Weyl Hamiltonian

In this appendix, we elaborate on the formalism of the
Boltzmann theory used in this paper. In Sec. A 1 we
review a general formalism of the Boltzmann theory with
time-dependent parameters. We elaborate on the general
solution for the electron distribution function within the
relaxation time approximation. In Sec. A 2, we apply the
theory in Sec. A 1 to the generalized Weyl Hamiltonian
in Eq. (5). We show a simple formalism to obtain the
electron distribution function, which we use to calculate
the optical responses in Sec. IV.

1. Boltzmann Equation

In this section, we describe the Boltzmann theory for
Hamiltonians with time dependent parameters γ(t) =
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(γ1(t), γ2(t), · · · ). Assuming a spatially uniform solution,
the electron distribution at time t is given by

f(k,γ(t); t) =

f(k −∆tk̇(t−∆t),γ(t−∆t); t−∆t) + ∆tḟscatt,

(A1)

using the electron distribution function at t − ∆t,
f(k,γ(t); t−∆t), where ∆t is a small time interval. Here,

ḟscatt is the scattering rate. Expanding up to the linear
order in ∆t, we get the Boltzmann equation

∂tf + k̇(t) · ∇kf + γ̇(t) · ∇γf = ḟscatt, (A2)

where k̇(t) = d
dtk(t) and γ̇(t) = d

dtγ(t). Here, we
omit the arguments of the distribution function; f =
f(k,γ(t); t). We assume a small deviation from the equi-
librium distribution function,

f(k,γ(t); t) = f0(k,γ(t)) + g(k,γ(t); t), (A3)

where f0(k,γ(t); t) is the Fermi-Dirac distribution func-
tion, and g(k,γ(t); t)� 1. Using the relaxation time ap-

proximation, ḟscatt = −g/τ with τ being the relaxation
time, we get

∂tg + ~̇k(t) · ∇~kf0 + ~̇γ(t) · ∇γf0 = −g
τ
. (A4)

Suppose both the incident electric field and the time-
dependent parameters are monochromatic with the same
frequency ω, namely,

D(t) = D+e
iωt +D−e

−iωt, (A5)

γ(t) = γ+e
iωt + γ−e

−iωt. (A6)

Then, the solution of g(k,γ(t); t) reads

g(k,γ(t); t) = −τf ′0(ε~k,~γ)
[
q~v · ~E(t) + ~̇γ · ∇γε~k,~γ

]
.

(A7)

Here, for simplicity, we ignore the contribution from the
Berry curvature b(k), and only consider the leading order
terms in τ by assuming ωτ � 1. Using this result, the
electron distribution reads

f(k,γ(t); t) = f0(k,γ(t)) + g(k,γ(t); t) (A8)

∼ f0(k − qτE,γ(t)− τ · γ̇(t)). (A9)

Therefore, the electron distribution can be approximated
by the shift of parameters in the equilibrium distribution
function.

2. Generalized Weyl Hamiltonian

For the generalized Weyl Hamiltonian in Eq. (5), when
α1,2 = 0, the Fermi-Dirac distribution function has the
following relation

f0(k,γ(t)) = f0(k − 1

v
γ(t),0), (A10)

where

γ(t) =

 γx
γy
0

 =

 −gDy

gDx

0

 . (A11)

This relation does not hold for α1,2 6= 0. However, in this
section, we discuss that the distribution function can be
approximated by Eq. (A10) when α1,2kF � v, vz and
|γ| � vkF .

From the above observation, we assume that the elec-
tron distribution function can be approximated as

f0(k,γ) ∼ f0(k + δk,0), (A12)

where

δk =

 δkx
δky
0

 . (A13)

Here δkx = δkx(γx) and δky = δky(γy) are a real function
of γx and that of γy, respectively. We derive δk from the
relation on the energy eigenvalue ε(k,γ),

ε(k,γ) = ε(k + δk,0). (A14)

Expanding Eq. (A14) to the first order in γ and δk,
we obtain relations

vx(k,0)δkx = Rx(k,0)γx, (A15a)

vy(k,0)δky = Ry(k,0)γy. (A15b)

Here, Rx = Rx(k,γ) and Ry = Ry(k,γ) are the parame-
ters of the generalized Weyl Hamiltonian in Eq. (6), and
vα(k,γ) = ∂αε(k,γ) (α = x, y, z) are the group veloci-
ties. Solving Eq. (A15), we find

δkx =
(g
v

+O(
g

v

α1,2

v
kα)
)
Dy, (A16)

δky = −
(g
v

+O(
g

v

α1,2

v
kα)
)
Dx. (A17)

Therefore, to the lowest order, the distribution function
of the generalized Weyl Hamiltonian is approximated by
Eq. (A12), with

δkx =
g

v
Dy, (A18)

δky = −g
v
Dx. (A19)

This distribution function gives the same form with
Eq. (A11). Therefore, we approximate the electron dis-
tribution function as in Eq. (A10).

Combining this result with the result of the relaxation
time approximation in Eq. (A9), we get

f(k,γ(t); t) ∼ f0(k − qτD − 1

v
(γ − τ · γ̇),0)(A20)

∼ f0(k − qτD + δk,0). (A21)

In the second line, we ignore the γ̇ term since we assume
τω � 1. In the first argument of f0 in the second line,



10

the second term comes from the drift of electrons by the
external field, and the third term from the deformation
of the electron orbitals by the external electric field.

Finally, we estimate the order of the magnitude of the
second and third terms in the first argument of f0 in
Eq. (A21). Assuming v = 10−29 Jm, g = 10−29 Jm/V,

ω = 1013, and τ = 10−15 − 10−14s, we get

|g
v
D| ∼ 100D, (A22)

qτ |D| ∼ 100D − 101D. (A23)

Therefore, in most cases, the contribution from qτD
would be dominant. It is, however, possible that the
|gD/v| term gives an appreciable contribution to the
change in the electron distribution function. Therefore,
in the main text, we consider two limits: |gD/v| � qτ |D|
and |gD/v| � qτ |D| for the sake of completeness.
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