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Spin-orbit coupling effects occurring in non-centrosymmetric materials are known to be responsible for non-trivial spin 
configurations and a number of emergent physical phenomena. Ferroelectric materials may be especially interesting in this 
regard due to reversible spontaneous polarization making possible for a non-volatile electrical control of the spin degrees of 
freedom. Here, we explore a technologically relevant oxide material, HfO2, which has been shown to exhibit robust 
ferroelectricity in a non-centrosymmetric orthorhombic phase. Using theoretical modelling based on density-functional 
theory, we investigate the spin-dependent electronic structure of the ferroelectric HfO2 and demonstrate the appearance of 
chiral spin textures driven by spin-orbit coupling.  We analyze these spin configurations in terms of the Rashba and 
Dresselhaus effects within the ⋅k p  Hamiltonian model and find that the Rashba-type spin texture dominates around the 
valence band maximum, while the Dresselhaus-type spin texture prevails around the conduction band minimum. The latter 
is characterized by a very large Dresselhaus constant λD = 0.578 eV Å, which allows using this material as a tunnel barrier to 
produce tunneling anomalous and spin Hall effects that are reversible by ferroelectric polarization.  

I.  INTRODUCTION 

Crystalline materials lacking space inversion symmetry 
exhibit electronic energy bands that are split by spin-orbit 
coupling (SOC). This is due to a non-vanishing gradient of the 
electrostatic potential coupled to the electron spin through the 
intra-atomic SOC. As a result, in non-centrosymmetric 
crystals the SOC is odd in the electron’s wave vector (k), as 
was first demonstrated by Dresselhaus 1  and Rashba. 2  The 
spin-momentum coupling lifts Kramers’ spin degeneracy and 
leads to a complex k-dependent spin texture of the electronic 
bands. The Rashba and Dresselhaus effects have recently 
aroused significant interest in conjunction to thin-film 
heterostructures where a number of emergent physical 
phenomena are triggered by these SOC effects.3 A particular 
interest is driven due to a unique possibility to manipulate the 
spin degrees by an external electric field, 4,5 which is of great 
importance for spintronics – a field of research promising 
revolutionize future electronics. 6    

The Rashba effect has been observed on surfaces and 
interfaces where space inversion symmetry is violated due to 
the structural confinement. For example, surfaces of heavy 
metals, such as Au (111) 7  and Bi (111), 8  surfaces of oxides, 
such as SrTiO3 (001) 9

  and KTaO3 (001),10 two-dimensional 
materials, 11 - 13  and heterostructure interfaces, such as 
InGaAs/InAlAs 14  and LaAlO3/SrTiO3, 15  were demonstrated 
to exhibit the Rashba splitting. The giant Rashba effect has 
also been predicted  and observed   in  bulk materials, such as 
BiTeI, 16 , 17  and GeTe. 18 , 19  The Dresselhaus effect was 
originally proposed for bulk zinc-blende and wurtzite 
semiconductors, where the spin splitting was predicted to be 
proportional to k3.1 The spin-momentum coupling linear in k 
can also be realized in non-centrosymmetric structures giving 
rise to the linear Dresselhaus SOC. 20 For example, the linear 

Dresselhaus term was found to be sizable for indirect-gap 
zinc-blende semiconductors, such as AlAs and GaP. 21   

The linear SOC can be written in terms of an effective k-
dependent field ( )Ω k affecting the spinσ : 22  

 ( )SOH = ⋅Ω k σ ,  (1) 

where ( )Ω k is linear in k and thus SOH preserves the time-
reversal symmetry. The specific form of ( )Ω k  depends on the 
space symmetry of the system. For example, in case of the C2v 
point group, the Dresselhaus and Rashba SOC fields can be 
written as ( ) ( , , 0)D D y xk kλ=Ω k  and ( ) ( , , 0)R R y xk kλ= −Ω k , 
respectively.   

Among non-centrosymmetric materials exhibiting Rashba 
and Dresselhaus effects are ferroelectrics, which are 
characterized by spontaneous polarization switchable by an 
applied electric field. It was proposed that in such materials a 
full reversal of the spin texture can occur in response to the 
reversal of ferroelectric polarization.23  Such functionality is 
interesting in view of potential technological applications 
employing, for example, tunneling anomalous and spin Hall 
effects,24,25 controlled by ferroelectric polarization. 

The original proposal explored properties of ferroelectric 
semiconductor GeTe.18,23 Following this theoretical prediction, 
a number of other materials were considered as possible 
candidates for electrically switchable spin texture. Among 
them are metallo-organic halide perovskites, such as 
(FA)SnI3,26-28 hexagonal semiconductors, such as LiZnSb,29 
strained KTaO3,30 and BiAlO3.31 Coexistence of the Rashba 
and Dresselhaus SOC effects was predicted for ferroelectric 
(FA)SnI3 

26 and BiAlO3.31 
Despite these advances, several challenges impede 

experimental studies and practical applications of the proposed 
materials. In particular, GeTe has a relatively small band gap 
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(~0.5 eV), which leads to large conductivity hindering the 
ferroelectric switching process. Halide perovskites, on the 
other hand, suffer from limited structural stability and could 
hardly be integrated in the modern semiconductor 
technologies. Also ferroelectricity of these compounds is 
questionable. The proposed oxide materials require strain 
(KTaO3) or high temperature/pressure (BiAlO3) to be 
synthetized.  It would be desirable to find a robust ferroelectric 
material, which suffices the requirements of practical 
application. 
      Hafnia (HfO2) is a promising candidate for this purpose. 
This material is considered as a favorable gate dielectric in the 
metal–oxide–semiconductor field-effect transistor (MOSFET). 
This is due to its high dielectric constant (~25), a large band 
gap (~5.7 eV) that suppresses the leakage current, and good 
compatibility with Si. Recently, it was found that thin films of 
doped hafnia exhibit pronounced ferroelectric properties, 32-34 
which makes this material promising also for applications in 
the ferroelectric field effect transistors and memories,35 as well 
as ferroelectric tunnel junctions (FTJs).36-40 The origin of the 
ferroelectric behavior was attributed to the formation of a non-
centrosymmetric orthorhombic phase.32,33 Based on a first-
principles search algorithm, two possible ferroelectric phases 
were identified in HfO2, namely orthorhombic polar phases 
with space group symmetries of Pca21 and Pmn21. 41  The 
direct experimental evidence of the ferroelectric Pca21 phase 
was recently provided by the scanning transmission electron 
microscopy. 42  

The ferroelectric phase of HfO2 is interesting due to 
broken inversion symmetry which allows for the Rashba or 
Dresselhaus effects. Owing to Hf, which is a heavy 5d element, 
a sizable SOC is expected in this material, raising a natural 
question about magnitude of these effects. In this paper, we 
focus on the orthorhombic Pca21 structural phase of HfO2, 
which was proposed by the theory 41 and identified in the 
experiment.42 Using density-functional theory (DFT) 
calculations, we predict the formation of chiral spin textures 
driven by the Rashba and Dresselhaus effects. The spin 
textures are fully reversible with ferroelectric polarization, 
which makes this material promising for novel spintronic 
applications.  

 The rest of the paper is organized as follows. In section II, 
we describe details of the computational methods. Section III 
is devoted to the structural properties of ferroelectric HfO2. 
Section IV is focused on the electronic structure and analysis 
of band symmetry. The spin textures are analyzed in terms of 
the Rashba and Dresselhaus effects within DFT calculations in 
section V and a model Hamiltonian approach in section VI. In 
section VII, we discuss some implications of our results, 
which are summarized in section VIII.   

II. COMPUTATIONAL METHODS 

We employ DFT calculations utilizing the plane-wave 
ultrasoft pseudopotential method 43 implemented in Quantum-
ESPRESSO.44 The exchange-correlation functional is treated 
in the generalized gradient approximation (GGA). 45  Self-
consistent computations are performed using an energy cutoff 
of 680 eV for the plane wave expansion and 10×10×10 
Monkhorst-Pack grid for k-point sampling. A 16×16×16 k-
point mesh is used for the calculation of the density of states. 
Atomic relaxations are performed in the absence of SOC until 
the Hellmann-Feynman forces on each atom became less than 
2.6 meV/Å. The ferroelectric polarization is computed using 
the Berry phase method.46 The expectation values of the spin 
operators sα ( , ,x y zα = ) are found from   

 1
2 k ksα αψ σ ψ= ,  (2) 

where ασ  are the Pauli spin matrices and kψ is the spinor 
eigenfunction, which is obtained from the non-collinear spin 
calculations. 

III.  ATOMIC STRUCTURE 

We consider a bulk ferroelectric HfO2 crystal which belongs 
to the orthorhombic phase of space group Pca21. This space 
group is non-symmorphic, i.e. possesses point-symmetry 
operations combined with non-primitive translations. 47  The 
Pca21 group contains four symmetry operations: the identity 
operation (E); two-fold screw rotation zS which consists of π/2 
rotation around the z axis followed by c/2 translation along the 
z axis:  

 1
2: ( , , ) ( , , )zS x y z x y z c→ − − + ; (3) 

glide reflection M1 which consists of reflection about the 0y =  
plane followed by 1

2 a  translation along the x-axis:  

 1
1 2: ( , , ) ( , , )M x y z x a y z→ + − ; (4) 

and glide reflection M2 which consists of reflection about the 
1
4x a=  plane followed by 1

2 c  translation along the z-axis:  

 1 1
2 2 2: ( , , ) ( , , )M x y z x a y z c→ − + + . (5) 
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Here a, b, and c are the lattice constants. Fig. 1a shows the 
atomic structure of the orthorhombic HfO2. 

 
FIG. 1. (a) Crystal structure of bulk HfO2 in the Pca21 orthorhombic 
phase. The polarization P is along the [001]   direction as indicated 
by the red arrow. (b) Projection of the crystal structure to the (100) 
plane. Distances along the c direction between Hf and O atomic 
planes are shown.  

The Pca21 phase of HfO2 is characterized by ferroelectric 
polarization parallel to the c axis as follows from the C2v point 
group symmetry corresponding to this space group. The C2v 
point group contains mirror xz- and yz-planes, which imply 
zero net polarization along the [100] or [010] directions. On 
the other hand, reflection about the xy-plane does not belong 
to this point group. The polar displacements between Hf and O 
ions along the c-axis yield a finite polarization pointing in the 
[00 1 ] direction, as is evident from Fig. 1(b), showing 
projection of the crystal structure to the (100) plane. There are 
two topologically equivalent variants of the space group Pca21 

with opposite polarization (pointing in the [001]  or [00 1 ]

directions) indicative to the ferroelectric nature of HfO2 in this 
crystallographic phase.  

Table 1. Relaxed lattice constants and atomic positions for bulk HfO2. 

Space group (No) Lattice constants (Å) 
Pca21 (29) a = 5.234, b = 5.010, c = 5.043 

Atom Wyckoff x y z 
Hf 4a 0.9668 0.7337 0.1231 
O1 4a 0.1350 0.0666 0.2672 
O2 4a 0.7288 0.4633 0.8744 
 
Table 1 summarizes the calculated structural parameters 

(in the Wyckoff notation) for bulk HfO2 in the orthorhombic 
Pca21 phase, which are in good agreement with the previous 
results.41,48 The calculated polarization of 73 μC/cm2 is also in 
line with the previous reported value of 52 μC/cm2. 41 

IV.  ELECTRONIC STRUCTURE 

Now we investigate the electronic structure of ferroelectric 
HfO2. First, we perform non spin-polarized calculations, i.e. 
without including spin and SOC. Fig. 2a shows the calculated 

band dispersions along the selected k lines in the first Brillouin 
zone (shown in the inset). It is evident that HfO2 is an indirect-
band-gap insulator with the valence band maximum (VBM) 
located at the Γ point and the conduction band minimum 
(CBM) located near the high symmetry T point (0, π/b, π/c). 
The calculated band gap is about 4.6 eV. This is less than the 
reported experimental value of about 5.7 eV, due to the well-
known deficiency of DFT to describe excited states.  Fig. 2b 
shows the partial density of states (DOS) projected onto O-2p 
orbitals and Hf-5d orbitals. We see that the valence bands are 
mainly composed of the O-2p orbitals, whereas the conduction 
bands are mainly formed from the Hf-5d orbitals. 

Our calculations find that the electronic bands are double 
degenerate  along the symmetry lines Z – U – R – T – Z lying at 
the Brillouin zone boundary plane kz = π/c (highlighted in 
green in inset of Fig. 2). This double degeneracy is not related 
to the d-orbital character of the conduction band. For example, 
the states around the T point have eg symmetry and represent 
two singlets of the 2z

d  and 2 2x y
d

−
 character (denoted by 1T  

and 1T ′ , respectively, in Fig. 2). The double degeneracy of the 
bands in the kz = π/c plane is protected by the non-symmorphic 
symmetry of the Pca21 space group of the HfO2 orthorhombic 
phase. This can be understood as follows. 49,50  

 
FIG. 2. Electronic band structure of HfO2 in absence of SOC. (a) 
Band structure along the high symmetry lines Γ(0, 0, 0) – X(π/a, 0, 0) 
– S(π/a, π/b, 0) – Y(0, π/b, 0) – Γ(0, 0, 0) – Z(0, 0, π/c) – U(π/a, 0, π/c) 
– R(π/a, π/b, π/c) – T(0, π/b, π/c) – Z(0, 0, π/c). Inset: the first 
Brillouin zone with the arrows indicating the k path for the band 
structure calculations. (b) Density of states (DOS) projected onto the 
Hf-5d and O-2p orbitals. The Fermi energy is aligned to the valence 
band maximum and is indicated by the horizontal dashed line. 

      As was discussed above, the Pca21 group contains a two-
fold screw rotation symmetry zS  given by Eq. (3). Applying 
this transformation twice we obtain 

 2 : ( , , ) ( , , )zS x y z x y z c→ + , (6) 

(a)

P

(b)

0.727 Å 1.268 ÅO1

O2
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which is simply translation along the z-axis by vector (0, 0, c). 
For spineless system, we have 2 zik c

zS eψ ψ=k k  and hence 

 2 zik c
zS e= . (7) 

In addition, the system exhibits time-reversal symmetry T.  
Composition of zS  and T defines the anti-unitary symmetry 
operator zS TΘ ≡ . Since zS  and T commute and  2 1T =  for 
spinless system, we find  

 2 2 2 zik c
zS T eΘ = = . (8) 

It is evident from Eq. (8) that at the Brillouin zone boundary, 
kz = π/c, the wave function changes sign under this 
transformation, i.e. 2 1Θ = − . Since Θ  is an anti-unitary 
operator, which commutes with the Hamiltonian and preserves 
the momentum at kz = π/c plane, the two Bloch states ψ k  and 

ψΘ k  are eigenfunctions of the Hamiltonian that are 
orthogonal and have the same eigenvalue.51 This implies that 
all the bands at the kz = π/c plane are doubly degenerate.  

 
FIG. 3. Electronic band structure of HfO2 in presence of SOC. (a) 
bands along the high symmetry lines (shown in the inset of Fig. 2). 
Insets: the band structure zoomed in around the Γ point at the valence 
band maximum (b) and around the T point at the conduction band 
minimum (c). The dashed line denotes the Fermi energy. (d) Two 
doubly degenerate bands in the kz = π/c plane around T point 

(corresponding to kx = 0 and ky = 0 in the plot). The bands cross at the 
T point forming a 3D Dirac point with fourfold degeneracy.    

Fig. 3a shows the calculated relativistic band structure of 
bulk HfO2. Comparing Figs. 2a and 3a, we see that including 
spin-orbit coupling leads to sizable splitting of the bands. The 
splitting is especially pronounced along certain lines in the 
Brillouin zone, particularly in the kz = 0 and kz = π/c planes. On 
the other hand, there are special high-symmetry lines and 
points in the Brillouin zone where the splitting is zero by 
symmetry. This is, in particular, the case for the Γ–Z line, 
where kx = ky = 0 and hence the effective electric field 
associated with the polar displacements along the z-axis is 
parallel to the wave vector.  

The insets in Fig. 3 show the band structure zoomed in 
around the VBM and CBM represented by the Γ and T points, 
respectively. The SOC-induced splitting around the T point 
(~100 meV) is significantly larger than that around the Γ point 
(~5 meV) (note different scales in the insets). As we will see 
in sec. 5, the splitting is Rashba-like around the Γ point, while 
it is Dresselhaus-like around the T point.  

There is another important difference between the bands 
around the VBM and CBM, resulting from their location at 
different symmetry points of the Brillouin zone. The bands 
along the R–T and T–Z symmetry lines preserve their double 
degeneracy even in the presence of SOC, while the bands 
along the X–Γ and Γ–S lines are not degenerate (except the Γ 
point).  

The double degeneracy at the Brillouin zone boundary, kz 

= π/c, follows from 2 1Θ = −  which also holds for a spin-half 
system. In this case, Eq. (7) is replaced by     

 2 zik c
zS e= − , (9) 

where the minus sign occurs due to the 2
zS  transformation 

involving a 2π rotation, which changes sign of the spin-half 
wave function. In addition, for a non-integer spin system 

2 1T = − , which in combination with Eq. (9) preserves Eq. (8). 
Thus, the Θ  symmetry provides the double degeneracy for 
any wave vector k in the kz = π/c plane, which is invariant with 
respect to Θ , also in the spinful system. We note that the 
double degeneracy is lifted when moving out of the kz = π/c 
plane except the high symmetry T–Y line.   

For the wave vector in the kz = π/c plane around the CBM, 
there are two doubly degenerate bands crossing at the time 
reversal invariant T point (Fig. 3c). This crossing and the four-
fold degeneracy at this point are protected by the symmetry 

1M , which is evident from the following consideration. 52  
According to Eq. (4), under the 2

1M  operation the spatial 
coordinate transforms as  

 2
1 : ( , , ) ( , , )M x y z x a y z→ + , (10) 
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whereas the spin component of the wave function changes its 
sign, which leads to 2

1
xik aM e= − . Therefore, along the high 

symmetry line R–T–R invariant under 1M  transformation, 

each band can be labelled by its 1M  eigenvalue, 2
i

xk aie  or 
2
i

xk aie− , i.e. 2
1

i
xk aM ieψ ψ± ±= ±k k . On the other hand, as follows 

from the commutation relation between Θ and 1M , the two 
degenerate states, ψ ±

k  and ψ ±Θ k , have the same eigenvalue of 

1M :  

 2
1 1

i
xx k aik aM e M ieψ ψ ψ± ± ±Θ = − Θ = ± Θk k k . (11) 

Therefore, when two degenerate bands with different 1M  

eigenvalues cross, the resulting crossing point is protected, 
leading to four-fold degeneracy. At the same time, since T  
commutes with 1M , the states with different eigenvalues of 

1M are connected by the time-reversal symmetry. This is seen 
from   

 2 2
1 [ ]

i i
x xk a k aM T T ie ie Tψ ψ ψ−± ± ±= ± =k k km ,  (12) 

which implies that 1M  transforms the wave function Tψ ±
k  in 

the same way as ψ − k
m , and hence Tψ ψ±

−=k k
m . Therefore, the 

symmetry protected crossing of the two degenerate bands with 
different 1M  eigenvalues must occur at the time reversal 
invariant k-point, i.e. the T point in our case. Fig. 3d shows 
the electronic band structure around the T point in the kz = π/c 
plane. The four-fold degenerate time-reversal invariant T point 
is in fact a 3D Dirac point.53   

At the kz = 0 plane 2 1Θ = , as follows from Eq. (8), so 
that the wave functions ψ k  and ψΘ k are not any longer 
orthogonal and represent the same state. Therefore, the bands 
around the VBM (Fig. 3b) are not degenerate, except the Γ 
point. At the Γ point, the energy level is double degenerate 
due to k = 0 being a time-reversal invariant wave vector, 
which implies that the k = 0 state is a Kramers doublet. 

V.  SPIN STRUCTURE  

Now we focus on the spin structure of the bands around the Γ 
point (at the VBM) and the T point (near the CBM). In both 
cases, a constant energy line crosses bands with four different 
wave vectors, two being closer to and two being further from 
the symmetry point. It is convenient to distinguish these bands 
as ‘inner’ and ‘outer’ branches. Figs. 4a and 4b show the 
calculated spin structure for the two branches around the Γ 
point in the kz = 0 plane. The out-of-plane spin component, sz, 
is zero by symmetry, while the in-plane spin components, sx 
and sy, display a pronounced chiral spin texture. The chirality 
changes from counter-clockwise for the inner branch to 
clockwise for the outer branch. It is seen that both for inner 

and outer branches the spin is orthogonal to the wave vector k, 
which is typical for the Rashba-type SOC.  

The spin structure around the T point in the kz = π/c plane 
exhibits distinctly different features. As is seen from Figs. 4c 
and 4d, the angle between k-vector and the spin depends on 
the direction of k. The spin is perpendicular to k along the kx 
and ky axes but parallel to k along the diagonals (the T–U 
direction in the Brillouin zone). This behavior is typical for the 
Dresselhaus-type SOC. Furthermore, we see the presence of a 
sizable out-of-plane spin component, sz, which is indicated by 
color in Figs. 4c and 4d. All three spin components, i.e. sx, sy, 
and sz, change sign between the inner and outer branches, 
reflecting change of the spin direction with respect to the 
effective SOC field ( )Ω k  at a particular k point (Eq. (1)). The 
sz also changes sign when crossing the ky = 0 line, as will be 
explained below using a model Hamiltonian.   

As we saw, even in the presence of SOC each of the spin-
split bands represents a doubly degenerate state in the kz = π/c 
plane. Figs. 4e and 4f show the respective spin structures 
around the T point for the doublet-conjugated states for inner 
and outer branches. By comparing Fig. 4c to 4e and Fig. 4d to 
4f, we see that the doubly degenerate states possess the same 
in-plane spin components but opposite out-of-plane spin 
components. This is explained by non-symmorphic symmetry 
of the crystal combined with time-reversal symmetry, as 
represented by the  zS TΘ ≡  operator, which transforms the 
states within each of the two doubly degenerate bands. The 

zS  transforms the spin components according to 
( , , ) ( , , )x y z x y zs s s s s s→ − − , whereas T transforms s to –s. 
Combing the two transformations, we find that within each 
degenerate band the two spin states have opposite sz but the 
same sx and sy. We note that due to equal population of the Θ-
conjugated states in each of the two doubly degenerate bands, 
the ensemble-average value of the out-of-plane spin 
component, sz, is zero, whereas the in-plane spin components, 
sx and sy, remain finite. 
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FIG. 4. Calculated spin textures in the kz = 0 plane around the Γ point 
at the top of the valence band (a, b) and in the kz = π/c plane around 
the T point at the bottom of the conduction band (c-f) for the inner 
branches (a, c, e) and the outer branches (b, d, f). Panels (c, e) and (d, 
f) corresponds to the two conjugated states within the double 
degenerate band. The in-plane spin components, sx and sy, are shown 
by the arrows while the out-of-plane spin component, sz, is indicated 
by color. The reference k-point (kx = ky = 0) corresponds to the Γ point 
in (a-b) and the T point in (c-f).  

We also note that our DFT calculations indicate that 
around the T point the two Θ-conjugated states in each doubly 
degenerate band are composed of the d orbitals localized on 
the Hf atoms lying in the two different atomic layers which are 

separated along the c direction (Fig. 1b). Since the Θ-
conjugated states have opposite sz components, this spatial 
separation creates a local spin-polarization at a given k-point. 
This behavior is reminiscent to that tagged as ‘hidden spin-
polarization.’ 54   

VI.  A MODEL  

The spin textures around the Γ and T points can be understood 
in terms of an effective ⋅k p  Hamiltonian, which can be 
deduced from symmetry considerations. Here, we assume that 
only linear terms with respect to wave vector k are 
contributing to the SOC Hamiltonian. 55  The wave-vector 
symmetry group of the Pca21 space group at the Γ point is C2v, 
which has two-fold rotation C2z around the z axis as well as 
two mirror reflections about the xz-plane (My) and yz-plane 
(Mx). The corresponding transformations for k and σ are given 
in Table 2. To make the SOC Hamiltonian (1) invariant under 
these transformations in the kz = 0 plane, the effective SOC 
field must have form of ( ) ( , , 0)y xk kα β=Ω k , where α and β 
are some constants. Note that the symmetry forbids having 
linear in k components proportional to zσ  and thus the out-
of-plane spin component is zero.  

Taking into account these considerations, the effective 
Hamiltonian characterizing the electronic and spin structure in 
the kz = 0 plane around the Γ point can be written as follows:    

 0 SOH E H= + ,  (13) 
where  

 
2 22 2

0 2 2
yx

x y

kk
E

m m
= +

hh
  (14) 

is the free-electron contribution with mx (my) being the 
electron effective mass along the kx (ky) direction, and  

 SO x y y xH k kα σ β σ= +   (15) 

is the SOC coupling term. The latter includes the Rashba and 
Dresselhaus SOC effects, as can be seen from rewriting Eq.(15) 
in form ( ) ( )SO D x y y x R x y y xH k k k kλ σ σ λ σ σ= + + − , where 

( ) / 2Dλ α β= +  and ( ) / 2Rλ α β= −  are the Dresselhaus and 
Rashba parameters, respectively.  

Table 2. Transformation rules for wave vector k, and spin (σ) and sublattice (τ) Pauli matrices under the C2v 
point-group symmetry operations for the Γ (0, 0, 0) and T (0, π/b, π/c) points in the Brillouin zone of HfO2 
(shown in the inset of Fig. 2a). The wave vector k is referenced with respect to the high symmetry point (Γ 
and T) where it is assumed to be zero. K denotes complex conjugation.  

Γ point T point 
Symmetry 
operation (kx, ky, kz) (σx, σy, σz) 

Symmetry 
operation (kx, ky, kz) (σx, σy, σz) (τx, τy, τz) 

yT i Kσ=  (–kx, –ky, –kz) (–σx, –σy, –σz) y zT i Kσ τ=  (–kx, –ky, –kz) (–σx, –σy, –σz) (–τx, τy, τz) 

z zS iσ=  (–kx, –ky, kz) (–σx, –σy, σz) z z xS σ τ=  (–kx, –ky, kz) (–σx, –σy, σz) (τx, –τy, –τz) 
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1 yM iσ=  (kx, –ky, kz) (–σx, σy, –σz) 1 yM iσ=  (kx, –ky, kz) (–σx, σy, –σz) (τx, τy, τz) 

2 xM iσ=  (–kx, ky, kz) (σx, –σy, –σz) 2 x xM σ τ=  (–kx, ky, kz) (σx, –σy, –σz) (τx, –τy, –τz) 

 

The band energies of Eq. (13) are given by   

 2 2 2 2
0k x yE E k kα β± = ± + .   (16) 

By fitting the DFT calculated band structure around the Γ 
point, we find for the Rashba and Dresselhaus parameters: λR = 
0.056 eV Å and λD = 0.007 eV Å. 

For the T point, the situation is different. Here, additional 
sublattice degrees of freedom need to be included in the 
consideration to take into account four dispersing bands. This 
is conventionally described by a set of Pauli matrices ατ  
operating in the sublattice space.52 The wave-vector symmetry 
group of the Pca21 space group at the T point is still C2v, but 
the symmetry operations now include transformations both in 
the spin and sublattice space. These are given in Table 2. 
Collecting all the terms which are invariant with respect to the 
symmetry operations we obtain the effective Hamiltonian as 
follows:    

 
1 2

1 2

( )

( ) .
SO x y y x y z y z

z y y z z x

H k k k

k k

α σ β σ σ γ τ γ τ
σ δ τ δ τ χ τ

= + + + +

+ + +    (17) 

Here 1γ , 2γ , 1δ , 2δ , and χ are constants, and the wave 
vector k is referenced with respect to the T point where it is 
assumed to be zero. This Hamiltonian guarantees double 
degeneracy of the bands in the kz = π/c plane (corresponding to 
kz = 0 in Eq. (17)), due to symmetry protection: 
( ) ( )22 1z x yS T i Kσ τ= − = − . Moving away from that plane 

( 0zk ≠  in Eq.(17)) breaks the double degeneracy and splits 
the bands into four singlets except the kx = ky = 0 line where 
the double degeneracy is preserved.   

For kz = 0, the Hamiltonian (17) can be easily 
diagonalized in the sublattice space. The eigenvalues of the 

1 2y zγ τ γ τ+ matrix are ηγ , where 2 2
1 2γ γ γ= +  and 1η =± . 

Thus, the effective SOC Hamiltonian around the T point in the 
kz = π/c plane can be represented in form 

 SO x y y x y zH k k kα σ β σ ηγ σ= + + .  (18) 

This is equivalent to the representation (1) with the SOC field  
( ) ( , , )y x yk k kη α β ηγ=Ω k , which has opposite sign of the z 

component for different values of 1η =± . The band energies 

kE are degenerate with respect to η, producing two doublets 
with energies  
 0k SOE E E± = ± ,  (19) 

where 2 2 2 2 2( )SO x yE k kα β γ= + + . The normalized spinor 

wave function kψ is given by 

 
( )22 1 1

x yi

y SOk

i k k
e k E

α β
ηγψ

π ρ

⋅
±

±

−⎛ ⎞
⎜ ⎟= ⎜ ⎟

+ ⎜ ⎟
⎝ ⎠

k r

m , (20)  

where 
( )

2 2 2 2
2

2
x y

y SO

k k

k E

α β
ρ

ηγ
±

+
=

m
. 56  The expectation value of the 

spin operator is obtained from 1
2 k kψ ψ± ± ±=s σ , resulting in   

 ( ) ( )1, , , ,
2x y z y x y

SO

s s s k k k
E

β α ηγ
±

= ± .   (21) 

As is evident from Eq. (21), the states with different values of 
1η =±  have opposite sign of the z component of the spin. 

Note that the sz changes sign when crossing the ky = 0 line 
consistent with the DFT calculations (Figs. 4(c-f)).   

 
FIG. 5. Calcuated spin textures based on the model of Eq. (18) for 
inner kψ +  (a) and for outer kψ −  (b) branches. The in-plane spin 
components, sx and sy, are shown by the arrows while the out-of-
plane spin component sz is indicated by color. 

Using Eq. (19), we fit the electronic band structure around 
the T point and obtain the following parameters of the model 
Hamiltonian (18): α = 0.605 eV Å, β = 0.550 eV Å, γ = 0.168 
eV Å. From α and β we find the Rashba and Dresselhaus 
parameters: λR = 0.028 eV Å and λD = 0.578 eV Å. It is evident 
that the Dresselhaus SOC splitting dominates the Rashba SOC 
splitting around the T point. The large Dresselhaus constant 
explains the spin texture found from our DFT calculation and 
shown in Figs. 4 (c-f). This behavior is nicely reproduced by 
the ⋅k p  model with the λR and λD extracted from the DFT 
calculation. The respective spin textures for 1η =  are shown in 
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Fig. 5, indicating the Dresselhaus-type feature in spin 
configuration.  The conjugated doublet state with 1η =−  has 
the same in plane spin component but opposite sign of sz (not 
shown).  

VII. OUTLOOK  

The Dresselhaus effect is generally found in the bulk materials 
with spatial inversion symmetry broken, such as zinc-blende 
semiconductors. For comparison, we summarize in Table 3 the 
Dresselhaus parameters λD obtained from DFT calculations for 
a few selected bulk systems. We see that the predicted value 
of λD for bulk HfO2 is significantly larger than the values 
known for non-organic bulk semiconductors and oxides. The 
large λD reported for organic (FA)SnI3 assumes a specific non-
centrosymmetric crystal structure of this material, which may 
be difficult to realize in practice due to disorder in organic 
cation dipole moments.  

Table 3. Calculated Dresselhaus parameters for selected bulk 
materials. 

Material λD (eV Å) Reference 
HfO2 (Pca21) 0.578 This work 

AlAs 0.011 [21] 

GaP 0.072 [21] 

BiAlO3 (R3c) 0.041 [31] 

(FA)SnI3 1.190 [26] 

 
HfO2 is a wide band gap material which can be used as an 

insulating barrier in tunnel junctions. The ferroelectric phase 
of this material is especially interesting due to the tunneling 
electroresistance effect57,58 known as an important functional 
property of ferroelectric and multiferroic tunnel junctions.59 
Due to HfO2 being well compatible with the existing 
semiconductor technologies, it can potentially be employed to 
develop FTJ-based memories. 

The presence of the large SOC coupling effects predicted 
in this work opens additional interesting possibilities for using 
this material. In ferroelectric HfO2, a full reversal of the spin 
texture is expected in response to reversal of its ferroelectric 
polarization P, similar to what was originally proposed for 
GeTe.23 This behavior follows from the fact that reversal of P, 
i.e. change of P to –P, is equivalent to the space inversion 
operation which changes the wave vector from k to –k but 
preserves the spin σ. Applying the time-reversal symmetry 
operation to this state with reversed polarization, we bring –k 
back k but flip the spin, changing it from σ to –σ. Thus, the 
reversed-polarization state is identical to the original state with 
the same k but reversed spin σ.  

A possible implication of this effect may be found in 
tunnel junctions. 60  The Rashba SOC at the interface in a 
magnetic tunnel junction has been predicted to produce a 

tunneling spin Hall effect and tunneling anomalous Hall effect 
(AHE).24 This prediction was extended to the presence of the 
bulk Dresselhaus contribution in a tunnel junction with a 
single ferromagnetic electrode.25 In particular, it was found 
that  magnitude of the tunneling AHE scales linear with the 
Dresselhaus parameter. The large value of λD in HfO2 makes 
this material a favorable candidate for observing this effect 
experimentally. The presence of ferroelectric polarization 
causes the AHE to be reversible, because its sign changes with 
the sign of λD and hence P. 

Finally, we would like to note that there have been efforts 
in using hybrid exchange-correlation functionals to improve 
the description of electronic and structural properties of 
ferroelectric oxides.61,62  It would be interesting to explore how 
this approach affects the predictions made in our paper.  

VIII. SUMMARY  

In summary, we have investigated the Rashba and Dresselhaus 
effects in the bulk ferroelectric oxide HfO2 using first-
principles calculations and a ⋅k p  Hamiltonian model. We 
focused on the orthorhombic Pca21 structural phase of HfO2 
which was previously predicted theoretically41 and confirmed 
experimentally.42 We found that the calculated structural 
parameters and ferroelectric polarization are consistent with 
those reported previously. Results of our calculations showed 
that ferroelectric HfO2 is an indirect-band-gap insulator with 
the VBM located at the Γ point and the CBM located near the 
high symmetry T point. The band energies are doubly 
degenerate in the kz = π/c plane of the Brillouin zone, which 
stems from the non-symmorphic space group of the crystal. 
We found that the time-reversal invariant T point is the Dirac 
point, which supports band crossings and the four-fold 
degeneracy of the electronic states protected by the crystal 
symmetry. The calculated spin textures reveal that the Rashba-
type SOC dominates around the VBM, whereas the 
Dresselhaus-type SOC dominates around the CBM. The spin 
splitting induced by SOC as well as the spin textures are 
explained by the ⋅k p  Hamiltonian deduced from symmetry 
arguments. Importantly, a very large Dresselhaus parameter of 
0.578 eV Å is predicted for the orthorhombic HfO2, which is at 
least an order of magnitude larger than that known for 
conventional semiconductors and oxides. The spin textures are 
fully reversible with polarization switching, which enables the 
control of spin-dependent properties by electric fields. The 
large Dresselhaus parameter and the reversible spin structure 
may have interesting implications for ferroelectric tunnel 
junctions based on HfO2, where sizable spin and anomalous 
Hall effects are expected, reversible with ferroelectric 
polarization. Overall, our results provide the fundamental 
understanding of the Rashba and Dresselhaus effects in 
ferroelectric HfO2, revealing new functionalities of this 
material which could be explored experimentally.  
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