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Wilson operator algebras and ground states of the coupled BF theories
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The multi-flavor BF theories in (3+1) dimensions with cubic or quartic coupling are the simplest
topological quantum field theories that can describe fractional braiding statistics between loop-like
topological excitations (three-loop or four-loop braiding statistics). In this paper, by canonically
quantizing these theories, we study the algebra of Wilson loop and Wilson surface operators, and
multiplets of ground states on three torus. In particular, by quantizing these coupled BF theories
on the three-torus, we explicitly calculate the S- and T -matrices, which encode fractional braiding
statistics and topological spin of loop-like excitations, respectively. In the coupled BF theories with
cubic and quartic coupling, the Hopf link and Borromean ring of loop excitations, together with
point-like excitations, form composite particles.
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I. INTRODUCTION

For more than three decades exotic quantum phases
of matter have been extensively studied in condensed
matter physics. In particular gapped systems with non-
trivial topological order have been of much interest.1

Topologically ordered phases have properties such as
fractional statistics, long-range entanglement, ground-
state degeneracy on manifolds with non-trivial topology,
and symmetry fractionalization, etc.2–7 Canonical exam-
ples are fractional quantum Hall states in 2+1 dimen-
sions, which have been observed experimentally.

At long wavelengths, topologically ordered phases of
matter can be described by topological quantum field
theories (TQFTs), for which all correlation functions are
topological, i.e., metric independent. For example, many
fractional quantum Hall states, as well as simple lattice
models such as the Kitaev toric code model,8–10 can be
described by the Chern-Simons topological quantum field
theories. For these examples, fractional braiding statis-
tics between quasiparticles is described in terms of Wil-
son lines (loops) in the TQFTs, i.e., by the correlation
functions of Wilson loops forming a Hopf link in the 2+1-
dimensional spacetime.11

The idea of fractional braiding statistics can be gen-
eralized to 3 + 1 dimensions. Since particles cannot
braid in three spatial dimensions or equivalently, their
world-lines cannot link in 3 + 1-dimensions, the simplest
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kind of braiding is between point-like and loop-like ex-
citations, which can have non-trivial fractional braiding
statistics. This is described by the BF topological field
theory and has been studied quite well.12–16 Topological
phases in 3+1-dimensions, however, have richer possibil-
ities in terms of the kind of braiding processes that can
exist.17–22

In this work we explore a subset of such processes by
using (3+1)-dimensional TQFTs. In particular, we study
TQFTs which can be thought of as extensions of the or-
dinary BF theory. We mainly study two kinds of ex-
tensions: The first is the BF theory with a cubic de-
formation. More precisely, we consider multiple (two or
three) copies of the BF theory coupled together via a
cubic term. These theories realize non-trivial statistics
between three loop excitations whose spacetime world
surfaces are linked together, i.e., the so-called three-loop
braiding statistics. The second is four (or more) copies
of BF theories coupled via quartic terms. These field
theories describe four-loop braiding statistics. Similar
TQFTs with cubic and quartic coupling terms have been
discussed recently in the literature.21,23 The coupled BF
theories with cubic or quartic coupling can also be ob-
tained by functionally bosonizing (or gauging) bosonic
symmetry protected phase (SPT) described in Ref. 24
and 25.

In addition to these TQFTs with a cubic or quartic
coupling, we also discuss avatars of these coupled topo-
logical field theories which are quadratic but with mod-
ified coupling to external currents. We quantize these
quadratic theories on the spatial three torus and discuss
the algebra of Wilson operators which encodes the topo-
logical data, i.e braiding statistics.

A salient feature of topological field theories is bulk
boundary correspondence wherein ground states in the
bulk Hilbert space are in one-to-one correspondence with
twisted partition functions defined for the boundary field
theory. In our previous work,26 we studied the two-copies
of BF theories coupled by a cubic term, but focused
on the gapless surface theory and the boundary-bulk
correspondence: We quantized the surface theory and
explicitly calculated the partition functions under vari-
ous twisted boundary conditions. In addition, by per-
forming large diffeomorphism transformations or modu-
lar transformations on the twisted partition functions,
we extracted the bulk braiding data directly from the
gapless surface theory. (As a related work, see Ref. 27
for the bulk-boundary correspondence for gapped topo-
logically ordered surface states.) In this work we study
such TQFTs describing three-loop and four-loop braid-
ing in more detail. In particular, we will study various
“bulk” properties of these TQFTs, and hence provide a
complementary perspective to our previous work.

A. Summary and outline

The summary of our main results, as well as the outline
of the paper, is as follows.

Section II is devoted to the coupled BF theories re-
alizing non-trivial three-loop braiding statistics. In Sec.
II A and Sec. II B, we introduce these coupled BF the-
ories, and give an overview of their basic properties. In
particular, at the classical level, one can read off from
the equations of motion that Hopf links play particle-like
roles in these two theories. This braiding structure is
encoded in the algebra of the dynamical gauge fields in
these theories.

In the following Sections II C, II D, and II E, we quan-
tized the quadratic BF theories introduced in Sec. II B,
which differ from the ordinary BF theory due to their
modified coupling to the quasi-vortex current. The
quadratic theory has the same equations of motion as the
cubic theories. Moreover, the Wilson operator algebra of
the quadratic theories encodes the three-loop braiding
statistics. More specifically the commutator, and triple
commutator between the respective Wilson operators are
relevant to the respective particle-loop, and the three-
loop braiding phases (Sec. II C).

Further we quantize the quadratic three-loop braiding
field theory on a spatial three torus in Sections II D and
II E. We construct the multiplet of ground states of the
two (or three) copies of the BF theories at level K put
on spatial three torus T 3, by directly constructing repre-
sentations of the Wilson operator algebra. The ground
state degeneracy is K2 (or K3). In Appendix B, an al-
ternative construction of the ground state multiplet by
using geometric quantization is given. Furthermore, by
calculating various overlaps between ground states, we
explicitly compute the modular S and T matrices and
extract particle-loop and three-loop braiding phases from
them. These agree with the braiding phases computed in
our previous work from the surface theory,26 as well as
with previous bulk calculations in the literature.17–20,26

Much of what is discussed in Sec. II carries over to Sec.
III, in which we discuss the coupled BF theories realizing
non-trivial four-loop braiding statistics. In these theo-
ries, the role played by Hopf links in three-loop braiding
theories is played by Borromean rings of loop-like excita-
tions. The role of the triple is replaced by the quadruple
commutator of the Wilson operators. This carries infor-
mation about four loop braiding.

Finally in Sec. IV, we propose condensation mecha-
nisms by which topological field theories describing three-
loop and four-loop braiding statistics may arise at long
wavelengths. It is known that the simplest continuum
topological field theory in 3 + 1 dimensions, i.e., the BF
theory at level K, describes the deconfined phase of the
ZK gauge theory. This may arise from a parent (ultravi-
olet) U(1) gauge theory, if the U(1) gauge symmetry is
Higgsed to ZK by the abelian Higgs mechanism. Alter-
natively the BF theory may arise as a result of the mag-
netic condensation via the Julia-Toulouse mechanism. In
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Sec. IV, we discuss how the coupled BF theories realiz-
ing three- or four-loop braiding statistics may arise from
ultraviolet theories by condensation of some sort. By
condensing a composite of electric charge and a Hopf
link between U(1) field lines, it can be shown that the
long wavelength effective field theory is a topological field
theory that describes three-loop braiding. Alternately
by condensing a composite of electric charge and a Bor-
romean ring between U(1) field lines, it can be shown
that the effective field theory is a topological field theory
that describes four-loop braiding.

We conclude in Sec. V with a few words on open issues.

II. THREE-LOOP BRAIDING THEORY

A. The cubic theories

In our previous work,26 we analyzed the coupled BF
theory defined by the following action:

S =

∫
M

[
K

2π
δIJb

I ∧ daJ

+
p1

4π2
a1 ∧ a2 ∧ da2 +

p2

4π2
a2 ∧ a1 ∧ da1

− δIJbI ∧ JJqv − δIJaI ∧ JJqp
]
, (1)

where aI and bI are one- and two-form gauge fields,
respectively; I, J = 1, 2; M is the (3+1)-dimensional
spacetime manifold, and we will mostly assume M =
Σ×R where Σ/R is a spatial/temporal part of the man-
ifold. K and p1,2 are the parameters of the theory; The
“level” K is an integer, whereas p1,2 are an integer mul-
tiple of K and are given by

p1 = q1K, p2 = q2K, q1,2 = 0, . . . ,K− 1. (2)

Finally, the three-form Jqp and two-form Jqv repre-
sent quasi-particle and quasi-vortex (loop-like) currents,
which are treated as a non-dynamical background. For
a quasi-particle whose world line is given by C ⊂ M,
and for a quasi-vortex whose world surface is given by
S ⊂M, Jqp and Jqv are given as

Jqp = δ(C), Jqv = δ(S), (3)

respectively, where the delta function forms δ(C) and
δ(S) are defined such that

∫
M δ(C) ∧ a =

∫
C a and∫

M δ(S) ∧ b =
∫
S b for arbitrary one- and two-form a

and b, respectively. (For properties of the delta function
forms, see Ref. 26.)

The action (1) describes topological gauge theories of
various kinds with gauge group G = ZK×ZK. Following
the seminal work of Dijkgraaf and Witten,28 we know
that topological gauge theories in d+ 1-dimensions with
a discrete gauge group G are classified by the group co-
homology Hd+1(G,U(1)). Since H4(ZK × ZK, U(1)) =
ZK×ZK, we expect there are K2 distinct theories. Within

the coupled BF theory (1), these are parametrized by
p1,2 (or equivalently q1,2).

For later use, we record the equations of motion derived
from (1):

K

2π
daI = JIqv,

K

2π
dbI = − pI

4π2
aĪ ∧ daĪ +

pĪ
2π2

aĪ ∧ daI

− pĪ
4π2

daĪ ∧ aI + JIqp, (4)

where we introduced the notation 1̄ = 2 and 2̄ = 1, and
the repeated capital Roman indices are not summed over
here.

In addition to the two flavors of BF theories (1), we will
also discuss three flavors of BF theories and couple them
by introducing a cubic term. This leads to the action

S =

∫
M

[
K

2π
δIJb

I ∧ daJ + pa1 ∧ a2 ∧ da3

− δIJbI ∧ JJqv − δIJaI ∧ JJqp
]
, (5)

where the flavor indices I, J run over 1, 2, 3. As before, K
and p are the parameters of the theory. This three-flavor
theory shares similar properties as the two-flavor theory
(1), and can be discussed in parallel with the two-flavor
theory. In particular, both two-flavor and three-flavor
theories realize non-trivial three-loop braiding statistics.

1. Gauge invariance

Let us now discuss the gauge symmetries of the theory
(1). (We will focus on infinitesimal or small gauge trans-
formations here; we will discuss large gauge transforma-
tions in detail later.) We first switch off the coupling to
currents Jqp and Jqv. The action (1) is invariant under

bI → b′I = bI − pĪ
2πK

(aĪ ∧ dϕI + dϕĪ ∧ aI),

aI → a′I = aI + dϕI , (6)

where ϕI is a scalar. This transformation is a generaliza-
tion of the usual 1-form gauge symmetry that the ordi-
nary BF theory has. As in the ordinary BF theory, the
action (1) is invariant under an additional 2-form gauge
symmetry

bI → bI + dζI (7)

where ζI is a one-form. Formally, these transformations
can be read off by identifying the operators that generate
the Gauss law constraints.

Naively it seems that the coupling to sources in Eq.
(1) is not gauge invariant. Upon gauge transformation,
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the source terms transform as

δIJa
I ∧ JJqp + δIJb

I ∧ JJqv
−→ δIJa

I ∧ JJqp + δIJb
I ∧ JJqv

+ dϕ1 ∧
[
J1
qp +

p2

K2
d−1J2

qv ∧ J1
qv −

p1

K2
d−1J2

qv ∧ J2
qv

]
+ dϕ2 ∧

[
J2
qp +

p1

K2
d−1J1

qv ∧ J2
qv −

p2

K2
d−1J1

qv ∧ J1
qv

]
+ δIJdζ

I ∧ JJqv, (8)

where we have used the equation of motion (4) to write
aI = (2π/K)(d−1JIqv). Demanding the gauge invariance,
we can read off the conservation law of currents,

d
[
JIqp +

pĪ
K2

d−1J Īqv ∧ JIqv −
pI
K2

d−1J Īqv ∧ J Īqv
]

= 0,

dJIqv = 0. (9)

Here, for static configuration of currents JIqv, d
−1JIqv ∧

JJqv, once integrated over space, is the Hopf linking num-
ber,

Hopf(JIqv, J
J
qv) =

∫
Σ

(d−1JIqv) ∧ JJqv, (10)

in the spatial manifold Σ. Thus, the composite of the
particle current and Hopf linking number current is con-
served. This suggests that the Hopf linking number can
be treated effectively as a quasiparticle of some sort (Fig.
1).

This point of view also played a crucial role in our
previous work, Ref. 26. Integrating over the equation of
motion (4) over the spatial manifold Σ, again by using
aI = (2π/K)(d−1JIqv), we obtain

K

2π

∫
Σ

dbI = − pI
K2

∫
Σ

(d−1J Īqv) ∧ J Īqv

+
pĪ
K2

∫
Σ

(d−1J Īqv) ∧ JIqv +

∫
Σ

JIqp, (11)

where note that in the static configurations considered
here, Jqv is a delta function two form supporting a spatial
loop, whereas Jqp is a delta function three form support-
ing a spatial point. Correspondingly, d−1Jqv is a delta
function one form supporting a three dimensional man-
ifold. The contributions to the flux

∫
Σ
dbI coming from

quasivortex loops,
∫

Σ
(d−1JIqv) ∧ JJqv, are given in terms

of their Hopf linking number. By using the Stokes theo-
rem, Eq. (11) can be used to link the twisted partition
functions on the boundary and the quantum numbers in
the bulk, and hence to establish the bulk-boundary cor-
respondence.

+ +

(a) (b)

(c) (d)

(e)

FIG. 1. Hopf links (a) and Borromean rings (b) as an ef-
fective quasiparticle. The red dot represents an “ordinary”
point-like quasiparticle.

B. The quadratic theory

In Ref. 26, an alternative to the cubic theory (1), the
quadratic theory, is proposed:

S =
K

2π

∫
δIJb

I ∧ daI −
∫
δIJa

I ∧ JIqp

−
∫ [

b1 +
p2

2πK
a1 ∧ a2

]
∧ J1

qv

−
∫ [

b2 +
p1

2πK
a2 ∧ a1

]
∧ J2

qv. (12)

Comparing the cubic and quadratic theories, in the cubic
theory, the canonical commutation relations differ from
the ordinary BF theory, while they remain the same in
the quadratic theory. On the other hand, the set of Wil-
son loop and surface operators in the cubic theory is con-
ventional (i.e., identical to the ordinary BF theory) while
it is modified in the quadratic theory, as seen from the
coupling to JIqv (see below in Eq. (17)). In spite of these
differences, the algebra of Wilson loop and surface op-
erators of the two theories appear to be identical. We
will use the cubic and quadratic theories somewhat in-
terchangeably; When discussing the Wilson operator al-
gebra and ground state wave functions (functionals), we
will use the quadratic theories, while when discussing the
condensation picture, we will use the cubic theory.

1. Gauge invariance

One can derive the infinitesimal gauge transforma-
tions from the source-free part of the action (12). Since
in this case the theory is identical to the ordinary BF
theory, there are two conserved charges (K/2π)dbI and
(K/2π)daI . These are 3-form density-like and 2-form
vorticity-like charge operators, respectively. The gauge
transformations are generated by these charge operators
and are given by

aI → aI + dϕI , bI → bI + dζI . (13)

Similar to the cubic theory discussed earlier, demanding
the invariance under (13), one can read off the conserva-
tion law of current, which is identical to (9).
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C. Three-loop braiding statistics

To see the three-loop braiding statistics, we need to
quantize the coupled BF theory (either the cubic theory
or its quadratic avatar). In this section, we consider the
coupled BF theory on topologically trivial spacetimes,
e.g., Σ = R3, M = R3 × R, and study the properties
of the Wilson loop and Wilson surface operators. In the
next section, we put the coupled BF theory on the spatial
manifold with non-trivial topology, the three torus, Σ =
T 3.

As one of the simplest and quickest way to see the
three-loop braiding statistics, let us start by integrating
over aI and bI , on both cubic and quadratic theories.
One then obtains the effective action of the currents

Z[JIqp, J
J
qv] = eiSeff [JIqp,J

J
qv] =

∫
D[aI , bI ]eiS (14)

where

Seff = −2π

K

∫
(d−1JIqv) ∧ JIqp

+
2πp1

K3

∫
(d−1J1

qv) ∧ (d−1J2
qv) ∧ J2

qv

+
2πp2

K3

∫
(d−1J2

qv) ∧ (d−1J1
qv) ∧ J1

qv. (15)

The first term in the effective action describes, as in the
ordinary BF theory, the quasparticle-quasivortex braid-
ing statistics. It is given in terms of the linking number
of

Link(JIqv, J
J
qp) =

∫
M

(d−1JIqv) ∧ JJqp, (16)

in the spacetime M. On the other hand, the second
and third terms include topological linking among three
quasivortex loops, i.e., three-loop braiding statistics.

The three-loop braiding statistics can also be discussed
by quantizing the theory and using the Wilson loop and
Wilson surface operators. Let us now take the quadratic
theory (12). From the coupling to the currents, we read
off the Wilson loop and Wilson surface operators in the
theory:

AIL := exp

[
i

∫
L

aI
]
, W I

S := exp

[
i

∫
S

ΛI
]
, (17)

where L and S are arbitrary closed loop and surfaces in
the spatial manifold Σ, respectively, and

ΛI := bI +
qĪ
2π
aI ∧ aĪ . (18)

The commutation relations between these Wilson oper-
ators can be computed from the canonical commutation
relation

[aIi (x), bJj(y)] =
2πi

K
δIJδji δ

(3)(x− y) (19)

where aI = aIi dx
i, bI = (1/2)bIijdx

i ∧ dxj , and bIi :=

(1/2)εijkbIjk. (We have adopted the temporal gauge aI0 =

bI0i = 0.) The exponents of the Wilson operators satisfy

[∫
C
aI ,
∫
S

ΛJ
]

=
2πi

K
δIJI(C, S),[∫

S
ΛI ,

∫
S′

ΛJ
]

=
2i

K2

∫
S#S′

(
pJ̄δ

IJ̄aJ − pJ̄δ
IJaJ̄

)
(20)

and as before the repeated capital Roman indices are not
summed over. Here,

I(C, S) =

∫
Σ

δ(C) ∧ δ(S) (21)

is the intersection number between C and S, and S#S′

is the intersection of S and S′. Note that (20) is gauge
invariant as S#S′ is a contractible 1-cycle.

The three-loop braiding statistic is encoded in the fol-
lowing product of Wilson operators29

(Ŵ J†
S′ Ŵ

I†
S Ŵ J

S′Ŵ
I
S)ŴK†

S′′ (Ŵ I†
S Ŵ J†

S′ Ŵ
I
SŴ

J
S′)Ŵ

K
S′′

= exp
([[

i
∫
S

Λ̂I , i
∫
S′

Λ̂J
]
, i
∫
S′′

Λ̂K
])

(22)

where the triple commutator is given by[[∫
S

ΛI ,
∫
S′

ΛJ
]
,
∫
S′′

ΛK
]

=
4πpJ̄
K3

(
δIJδJ̄K − δIJ̄δJK

)
I(S#S′, S′′). (23)

Physically, this product of Wilson operators braids loop
I with loop J while both I and J are linked with ‘back-
ground’ loop K. Notice that the triple commutator sat-
isfies the Jacobi identiy:[[∫

S
Λ̂I ,

∫
S′

Λ̂J
]
,
∫
S′′

Λ̂K
]

+
[[∫

S′
Λ̂J ,

∫
S′′

Λ̂K
]
,
∫
S

Λ̂I
]

+
[[∫

S′′
Λ̂K ,

∫
S

Λ̂I
]
,
∫
S′

Λ̂J
]

= 0. (24)

This is equivalent to the cyclic relation for the three-loop
braiding phase first derived by Wang and Levin in Ref.
30. An exactly solvable model was provided in Ref. 31

D. Quantization on a closed spatial manifold

In Sec. II C, the coupled BF theory on topologically
trivial spacetime is studied in the presence of background
quasiparticle and quasivortex currents. In this section,
we quantize the coupled BF theory on a spacetime mani-
fold wherein its spatial part Σ is topologically non-trivial.
(Our setting closely parallels with Ref. 15.) In particular,
we will focus on Σ which is formal. (See the definition
of manifolds being formal below.) The simplest case is
Σ = T 3.
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1. Mode decomposition and the zero-mode algebra

We Hodge decompose the gauge fields as aI and bI as

aI = dθI + ?dKI′ + αIl ωl,

bI = dKI + ?dθI′ + βIl ηl, (25)

where dθI , dKI and ?dK ′I , ?dθI′ are the exact and co-
exact parts of the decomposition, respectively, and {ωl}l
and {ηl}l are bases of harmonic one- and two-forms, re-
spectively. (dωl = d ? ωl = 0). The “zero modes”, αIl
and βIl , which appear in the Hodge decomposition, play
a crucial role later. Let {Lm} and {Sm} be a set of gener-
ators of the first and second homology groups, H1(Σ;Z)
and H2(Σ;Z), respectively. We define the linking matrix
by

Mmn = I(Sm, Ln) (26)

which counts the signed intersections Imn of Sm and Ln.
Furthermore,∫

Lm
ωl = δml ,

∫
Sm

ηl = δml ,

∫
Σ

ωl ∧ ηk = Mlk (27)

where Mlm is the inverse of the linking matrix of Σ.
For the reason which will become clear momentar-

ily, we will work on a spatial manifold which is formal.
Here, a Riemannian metric is called (metrically) formal
if all wedge products of harmonic forms are harmonic.
A closed manifold is called geometrically formal if it ad-
mits a formal Riemannian metric.32 In particular, we will
focus on one of the simplest formal manifolds; the three-
torus, Σ = T 3.

The Wilson loop/surface operators for Lm and Sm on
Σ are written in terms of the zero modes, αIl and βIl .
By noting

∫
Li
aI = Mmi

∫
Σ
aI ∧ ηm = αIi , the Wilson

operators for the gauge field aIl are given by

AIi := exp i

∫
Li
aI = exp iαIi . (28)

Similarly, one notes
∫
Sl
bI = M lm

∫
Σ
bI ∧ωm = βIl . Since

Σ is formal,∫
Sl
aI ∧ aJ = αIiα

J
j

∫
Sl
ωi ∧ ωjCijl (29)

where the product of the two harmonic one-form ωi ∧ωj
is given in terms of the harmonic two-form as ωi ∧ ωj =
Cijkηk. Thus, we consider the Wilson surface operators

W I
i := exp i

∫
Si

(
bI +

qĪ
2π
aI ∧ aĪ

)
= exp i

(
βIi +

qĪ
2π
Clmiα

I
l α

Ī
m

)
. (30)

In the following, we canonically quantize the theory,
and study the algebra obeyed by the Wilson operators.

We will focus on Σ = T 3, for which the linking matrix is
simply the 3× 3 identity matrix,

Mmn = δmn. (31)

We also take

Cijk = εijk (32)

Upon canonical quantization, the zero modes, α̂Ii and

β̂Ii , now denoted with hat to indicate they are quantum
operators, satisfy the commutator[

α̂Ii , β̂
J
j

]
=

2πi

K
δijδ

IJ . (33)

Correspondingly, we consider the set of Wilson operators

ÂIi = exp
(
iα̂Ii
)
, Ŵ I

i = exp
(
iΛ̂Ii
)
,

where Λ̂Ii = β̂Ii +
qĪ
2π
εijkα̂

I
j α̂

Ī
k, (34)

ÂIi and Ŵ I
i are large gauge invariant and similar to

(23), the triple commutators of Λ̂Ii encode topological
data, i.e., the three-loop-braiding phases. Here we simply
present the non-vanishing triple commutators and defer
the details of Wilson operator algebra and large gauge in-
variance to appendix A. The non-zero triple-linking phase
factors are:[[

Λ̂Ii , Λ̂
I
j

]
, Λ̂Īk

]
= −εijk

4πqĪ
K2

,[[
Λ̂1
i , Λ̂

2
j

]
, Λ̂1

k

]
=
[[

Λ̂2
i , Λ̂

1
j

]
, Λ̂1

k

]
= εijk

2πq2

K2
,[[

Λ̂1
i , Λ̂

2
j

]
, Λ̂2

k

]
=
[[

Λ̂2
i , Λ̂

1
j

]
, Λ̂2

k

]
= εijk

2πq1

K2
. (35)

E. Wave function in terms of Wilson operators

In the previous section, we introduced the Wilson op-
erators for non-contractible loops and surfaces on T 3. In
this section, we construct and label all the ground states
on T 3 in terms of these Wilson operators. These ground
states are large gauge invariant (even though the com-
mutator algebra of the Wilson operators are only large
gauge covariant). (See appendix A for details of large
gauge invariance.) Furthermore, we use these ground
states to calculate the modular T and S matrices, which
encode the spin and the braiding statistics of topological
excitations.17–22

For this purpose, it is advantageous to construct the
three-dimensional version of minimum entropy states
(MESs), which are a special choice of the basis for the
ground state multiplet.33 By calculating the overlap be-
tween MESs before and after applying the modular S and
T transformations, we can read off the braiding statis-
tics for particle-loop and three-loop braiding. The MES
basis has been constructed before in Refs. 17–20 for mi-
croscopic models defined on lattices. We will show that
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the S and T matrices that we are going to calculate are
the same as that for their model, and therefore we verify
that our model is the continuum version of the Dijkgraaf-
Witten model.28 These S and T matrices are also con-
sistent with those calculated from the partition functions
of the gapless boundary theory in our previous paper.26

1. The ordinary BF theory

Before we study the S and T matrices for the cou-
pled BF theory, as a warm up, we first demonstrate
our strategy for the ordinary BF theory on T 3. The
zero modes of the BF theory obey the commutation re-

lation [α̂i, β̂j ] = δij(2πi/K), [α̂i, α̂j ] = [β̂i, β̂j ] = 0, where
i, j = 1, 2, 3. The Wilson loop and surface operators for
non-contractible loops and surfaces on T 3 are given by

Âi = exp(iα̂i) and B̂i = exp(iβ̂i), and by taking powers
thereof. They satisfy

ÂiB̂j = δije
−2πi/KB̂jÂi. (36)

We define and choose a vacuum state (a reference

state) |0〉 such that all Âi’s are diagonal. All the other
ground states can be generated, starting from |0〉, by ap-

plying B̂i: B̂
a
3 B̂

b
2B̂

c
1|0〉. These states are the eigenstate

of Âi operator. The S and T matrices for this basis is
the Kronecker delta and do not tell us the information
about the spin and braiding statistics at all. To extract
the spin and braiding statistics, we construct the three-
dimensional version of MESs in z-direction by consider-
ing the eigenstates of the Wilson operators Â1, Â2 and
B̂3. Namely, we consider the set of states given by

|Ψn1,n2,n3
〉 =

1√
K

∑
λ

e
2πiλn3

K B̂λ3 B̂
n1
1 B̂n2

2 |0〉 (37)

where λ, n1, n2, n3 ∈ ZK. As we check momentarily, the
T matrix acts diagonally on these states – an expected
feature for states with definite “topological” or “anyonic”
charge.

The T transformation can be visualized as the shear
deformation in the xz plane (as its two-dimensional
counter part on T 2). Hence, under the T transformation,

B̂1 → B̂1B̂3. The MESs |Ψni〉 are transformed under T
as

T |Ψni〉 =
1√
K

∑
λ

e
2πiλn3

K B̂λ+n1
3 B̂n1

1 B̂n2
2 |0〉

= e−
2πin1n3

K |Ψni〉. (38)

Therefore, T matrix takes a diagonal form for the MESs,
and encodes information related to a (3+1)d analogue of
topological spin.

The modular S transformation is slightly more non-
trivial and can be decomposed into S13 and S12, which
are 90◦ rotation in the xz and xy planes, respectively.

Under the S13 transformation,

S13|Ψni〉 =
1√
K

∑
λ

e
2πiλn3

K B̂−λ1 B̂n1
3 B̂n2

2 |0〉. (39)

Therefore, the S13 matrix for the MES basis is calculated
as

〈Ψn′i
|S13|Ψni〉 =

1

K

∑
λ′,λ

〈0|e 2πi
K (−λ′n′3+λn3)

× B̂−n
′
2

2 B̂
−n′1
3 B̂λ

′

1 B̂
λ
3 B̂

n1
1 B̂n2

2 |0〉

=
1

K
δn2,n

′
2
e

2πi
K (n1n

′
3+n′1n3). (40)

In the above derivation, we use −λ′ = n1, λ = n′1 and
n2 = n′2. Combined with the S12 transformation, we can
write down the modular S matrix

S =
1

K
δn1,n′2

e−
2πi
K (n′3n2−n3n

′
1). (41)

We can easily generalize the above results to the two
decouple copies of BF theories on T 3. The commutators
among zero modes are

[α̂Ii , β̂
J
j ] = δijδIJ

2πi

K
, [α̂Ii , α̂

J
j ] = [β̂Ii , β̂

J
j ] = 0. (42)

The MES basis is given by

|Ψli
ni〉 =

1

K

∑
λ1,λ2

e
2πi
K (λ1n3+λ2l3)(B̂1

3)λ1(B̂1
1)n1(B̂1

2)n2

× (B̂2
3)λ2(B̂2

1)l1(B̂2
2)l2 |0〉. (43)

These states are an eigenstate of ÂI1, ÂI2, B̂I3 (I = 1, 2).
The modular T and S matrices are given by

T = δni ,n′iδli,l′ie
− 2πi

K (n1n3+l1l3),

S =
1

K2
δn1,n

′
2
δl1,l′2e

− 2πi
K (n′3n2−n3n

′
1)− 2πi

K (l′3l2−l3l
′
1). (44)

2. The coupled BF theory: wave functions in terms of α̂
and β̂

For the coupled BF theory realizing three-loop braid-
ing statistics defined in Eq. (12), the commutators be-
tween αIi and βIi are identical to those in the two decou-
pled copies of BF theories defined in Eq. (42). On the
other hand, if we consider ΛIi instead of βIi , the commu-
tators are

[α̂Ii , Λ̂
J
j ] = δijδIJ

2πi

K
, [α̂Ii , α̂

J
j ] = 0, [Λ̂Ii , Λ̂

J
j ] 6= 0.

(45)

In the next two subsections, we will construct two sets of
MESs in terms of βIi and ΛIi .

Let us first construct MESs using β̂iI . Similar to the

two decoupled copies of BF theories, ÂI1, ÂI2, B̂I3 (I =
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1, 2) commute with each other. Therefore, we define the
eigenstate for these operators as

|Ψli
ni〉 ∼

∑
λ1,λ2

e
2πiλ1

K (n3+ l×n
K )+

2πiλ2
K (l3+n×l

K )

× (B̂1
1)n1(B̂1

2)n2(B̂2
1)l1(B̂2

2)l2(B̂1
3)λ1(B̂2

3)λ2 |0〉, (46)

where l × n := l1n2 − l2n1. One verifies that the states
constructed in Eq. (46) are invariant under the large
gauge transformations (A4), up to a phase factor (which
can depend on ni and li). Here for simplicity, we con-
sider q1 = q2 = 1. Different from the two decoupled
copies of BF theories, we require λ1, λ2, ni, li ∈ ZK2 and
n3 (l3) is shifted by (l × n)/K ((n × l)/K). Because of
the extra factor of K−1 in l × n/K or n × l/K, it may
seem that there are K12 different eigenstates, as opposed
to K6, which is the expected number of ground states for
two copies of BF theories. This is however not the case
once we properly reorganize these wave functions. Let us
introduce

n1 ≡ Kt1 + n̄1, n2 ≡ Kt2 + n̄2

n̄3 ≡ n3 + s× n̄+ l̄ × t+ l̄2(s1 − t1) mod K

l1 ≡ Ks1 + l̄1, l2 ≡ Ks2 + l̄2

l̄3 ≡ l3 + t× l̄ + n̄× s+ n̄2(t1 − s1) mod K (47)

where n̄i, l̄i, t1, t2, s1, s2 ∈ ZK. In terms of these quantum
numbers, the wave functions depend only on (and are
labeled by) n̄i and l̄i, as they can be written as

|Ψl̄i
n̄i〉 =

1

K3

∑
λ1,2,t1,2,s1,2

e
2πiλ1

K

(
n̄3+ l̄×n̄

K

)
+

2πiλ2
K

(
l̄3+ n̄×l̄

K

)

× (B̂1
1)Kt1+n̄1(B̂1

2)Kt2+n̄2

× (B̂2
1)Ks1+l̄1(B̂2

2)Ks2+l̄2(B̂1
3)λ1(B̂2

3)λ2 |0〉. (48)

This construction of the ground states is analogous to the
construction of the surface partition functions realizing
the three-loop braiding phase in Ref. 26.

With respect to the ground states (48), the T trans-
formation is diagonal,

T |Ψl̄i
n̄i〉 = e

− 2πi
K n̄1

(
n̄3+ l̄×n̄

K

)
− 2πi

K n̄1

(
n̄3+ l̄×n̄

K

)
|Ψl̄i
n̄i〉 (49)

On the other hand, the S13 matrix is

〈Ψl̄′i
n̄′i
|S13|Ψl̄i

n̄i〉 =
1

K6

∑
λ1,2,λ

′
1,2,t1,2,t

′
1,2,s1,2,s

′
1,2

× 〈0|e−
2πiλ′1

K

(
n̄′3+ l̄′×n̄′

K

)
− 2πiλ′2

K

(
l̄′3+ n̄′×l̄′

K

)

× e+
2πiλ1

K

(
n̄3+ l̄×n̄

K

)
+

2πiλ2
K

(
l̄3+ n̄×l̄

K

)
× (B̂2

2)−(Ks′2+l̄′2)(B̂2
3)−(Ks′1+l̄′1)(B̂2

1)λ
′
2

× (B̂1
2)−(Kt′2+n̄′2)(B̂1

3)−(Kt′1+n̄′1)(B̂1
1)λ

′
1

× (B̂1
3)λ1(B̂1

1)Kt1+n̄1(B̂1
2)Kt2+n̄2

× (B̂2
3)λ2(B̂2

1)Ks1+l̄1(B̂2
2)Ks2+l̄2 |0〉

=
1

K2
δn̄2,n̄′2

δl̄2,l̄′2e
iθn̄
′
i,l̄
′
i,n̄i,l̄i (50)

where θn̄
′
i,l̄
′
i,n̄i,l̄i is given by

θn̄
′
i,l̄
′
i,n̄i,l̄i =

2π

K
(n̄3n̄

′
1 + n̄′3n̄1 + l̄3 l̄

′
1 + l̄′3 l̄1)

+
2π

K2

[
(l̄ × n̄)(n′1 − l′1) + (l̄′ × n̄′)(n1 − l1)

]
. (51)

From the calculation of S13, we can further calculate the
modular S matrix,

S =
1

K2
δn1,n′2

δl1,l′2e
− 2πi

K (n′3n2−n3n
′
1)− 2πi

K (l′3l2−l3l
′
1)

× e−
2πi
K2 [(n1+l1)(n2l

′
1+n′1l2)−2n2n

′
1l1−2n1l2l

′
1]. (52)

The S and T matrices obtained in this way are the same
as those obtained for the surface partition functions in
our previous work, and other bulk calculations.17–20,26

3. The coupled BF theory: wave function in terms of α̂
and Λ̂

While we have succeeded, by using BIi , in constructing
the ground state wave functions and in computing the T
and S matrices, it is also worth trying to use ΛIi instead of
BIi to construct wave functions. One motivation for this
is that exp iΛIi are the Wilson surface operators, while

exp iβIi are not. The commutators among α̂Ii and Λ̂Ii
are:

[
α̂Ii , α̂

J
j

]
= 0,

[
α̂Ii , Λ̂

J
j

]
=

2πi

K
δijδ

IJ

[
Λ̂Ii , Λ̂

I
j

]
=

2iqĪ
K

εijkα̂
Ī
k,[

Λ̂1
i , Λ̂

2
j

]
=
−iq2

K
εijkα̂

1
k −

iq1

K
εijkα̂

2
k. (53)

Although ΛIi may not commute with each other, Â1
1, Â1

2,

Ŵ 1
3 , Â2

1, Â2
2 and Ŵ 2

3 still commute with each other, and
we can write down the eigenstates for them,

|Ψli
ni〉 =

1

K

∑
λ1,2

e
2πi
K (λ1n3+λ2l3)

× (Ŵ 1
3 )λ1(Ŵ 2

3 )λ2(Ŵ 1
1 )n1(Ŵ 2

1 )l1(Ŵ 1
2 )n2(Ŵ 2

2 )l2 |0〉
(54)

where λ1, λ2, ni, li ∈ ZK. Since Ŵ I
i do not mutually com-

mute, the ordering of Ŵ I
i is important when generating

a set of wave functions. We choose this particular order
so that S and T matrices are the same as those calcu-
lated in the previous subsection. Notice that since Ŵ I

i

is invariant under the large gauge transformations, so is
this wave function.
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The matrix elements of S13 can be calculated as

〈Ψl′i
n′i
|S13|Ψli

ni〉 =
1

K2

∑
λ1,2,λ′1,2

e
2πi
K (−λ′1n

′
3−λ

′
2l
′
3+λ1n3+λ2l3)

× 〈0|(Ŵ 2
2 )−l

′
2(Ŵ 1

2 )−n
′
2(Ŵ 2

3 )−l
′
1(Ŵ 1

3 )−n
′
1(Ŵ 2

1 )λ
′
2(Ŵ 1

1 )λ
′
1

× (Ŵ 1
3 )λ1(Ŵ 2

3 )λ2(Ŵ 1
1 )n1(Ŵ 2

1 )l1(Ŵ 1
2 )n2(Ŵ 2

2 )l2 |0〉

=
1

K2
δn2,n′2

δl2,l′2e
iθn
′
i,ni,l

′
i,li , (55)

where θn
′
i,ni,l

′
i,li is the same as that in Eq. (51). One can

then check that the modular S matrix also matches with
the previous calculation in terms of BIi , Eq. (52).

As for the T transformation, since Ŵ I
1 and Ŵ I

3 do not
commute with each other, their transformation proper-
ties under the T transformation are more complicated.
Using the knowledge that Λ = β + α× α, we decompose
Ŵ I
i as

Ŵ I
i = B̂Ii Ĉ

I
i where ĈIi = exp

(
iqĪ
2π

εijkα̂
I
j α̂

Ī
k

)
. (56)

We propose that under the T transformation,

(B̂I1)n1(ĈI1 )n1 → (B̂I1)n1(B̂I3)n1(ĈI1 )n1(ĈI3 )n1 . (57)

The above result can be rewritten in terms of the Ŵ I
i

operators as

(Ŵ I
1 )n1 → (Ŵ I

3 )n1/2(Ŵ I
1 )n1(Ŵ I

3 )n1/2. (58)

According to this definition, under the T transformation,
|Ψli
ni〉 are transformed as

T |Ψli
ni〉 =

1

K

∑
λ1,2

e
2πi
K (λ1n3+λ2l3)

× (Ŵ 1
3 )λ1(Ŵ 2

3 )λ2(Ŵ 1
3 )n1/2(Ŵ 1

1 )n1(Ŵ 1
3 )n1/2

× (Ŵ 2
3 )l1/2(Ŵ 2

1 )l1(Ŵ 2
3 )l1/2(Ŵ 1

2 )n2(Ŵ 2
2 )l2 |0〉. (59)

Therefore, the T matrix is given by

T = δni,n′iδli,l′ie
− 2πi

K (n3n1+l3l1)− 2πi
K2 (l×n)(n1−l1). (60)

This also matches with the previous calculation Eq. (49).

We conclude this section with some comments. Above,
we read off the Wilson operators for the three-loop braid-
ing theory from the coupling to sources. Infinitesimal
gauge transformations could be derived directly from the
charge or Gauss law operators of the theory. As for the
large gauge transformations, they were obtained by de-
manding the invariance of the Wilson operators (Ap-
pendix A). We showed that the triple-commutator of
these Wilson operators encoded the three-loop braiding
phase. Although the commutator of Wilson-operators
themselves are large gauge covariant, the ground states
could be written down explicitly and were large gauge
invariant.

III. FOUR-LOOP BRAIDING THEORY

A. The quartic theory

In this section, we consider the following BF theory
with quartic coupling:

S =

∫
M

[
K

2π
δIJb

I ∧ daJ + εIJKL
p

4!
aI ∧ aJ ∧ aK ∧ aL

− δIJbI ∧ JJqv − δIJaI ∧ JJqp

]
, (61)

where I, J ∈ 1, 2, 3, 4. This action can be considered
as describing a discrete (lattice) gauge theory with the
gauge group ZK×ZK×ZK×ZK. p is a parameter of the
theory, and is given by

p =
qK3

(2π)3
, q = 0, 1, . . . ,K− 1. (62)

In order to gain some intuition about this quartic the-
ory, it is helpful to compare it to a very similar theory
in one lower dimensions; There is a topological field the-
ory in 2 + 1 dimensions with a very similar structure to
the quartic theory. This is the cubic theory (also known
as the type-III Dijkgraaf-Witten theory) with the TQFT
action given by

Scubic ∝
∫
M3

aI ∧ aJ ∧ aK . (63)

Clearly such a term could arise when there are three or
more flavors of gauge fields, i.e., when the discrete gauge

group is given by G =
∏k
i=1 ZNi , i ≥ 3. Although this is

a gauge theory built from an Abelian group, it is known
that it has an underlying non-abelian structure in dis-
guise. This can be understood by studying the spec-
trum of the theory within group cohomology models17,34

or by analyzing the Wilson operators35. In either case
one finds excitations with quantum dimension d > 1 and
non-trivial fusion channels. In analogy one expects the
quartic theory in 3 + 1 dimensions to have an underlying
non-abelian structure. This has been been studied par-
tially in18 by explicitly constructing representations for
this particular group cohomology model.

In the following, however, we will not go into the non-
abelian structure Although the theory is non-abelian one
can gain significant insight by studying its Wilson opera-
tor algebra. For example one can learn that the topolog-
ical invariant corresponding to this theory goes beyond a
spacetime Hopf link and in fact captures a spacetime Bor-
romean link34. Similarly in the analysis below, we show
that the quartic theory furnishes a topological invariant
that goes beyond three-loop braiding and can in fact be
understood as non-trivial four-loop braiding. Our reason-
ing presented below parallels our discussion on three-loop
braiding statistics realized in the cubic theory.
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1. Equations of motion

The first term in the action (61) describes the particle-
loop braiding process, as in the ordinary BF theory. On
the other hand, as we will discuss, the second term de-
scribes four-loop braiding process. To develop under-
standing of the four-loop braiding process, let us first
write down the equations of motion

K

2π
daI = JIqv,

K

2π
dbI +

p

6
εIJKLa

J ∧ aK ∧ aL = JIqp. (64)

Let us consider a fixed static quasiparticle and quasivor-
tex configuration and integrate the equation of motion
over space. By solving the first equation of motion as
aI = (2π/K)(d−1JIqv), plugging the solution to the other
equations of motion, and integrating over space Σ,

K

2π

∫
Σ

dbI =

∫
Σ

JIqp

− q

6
εIJKL

∫
Σ

(d−1JJqv) ∧ (d−1JKqv) ∧ (d−1JLqv). (65)

The second term on the right-hand side of the above
equation comes from

Borr(JIqv, J
J
qv, J

K
qv)

=

∫
Σ

(d−1JIqv) ∧ (d−1JJqv) ∧ (d−1JKqv). (66)

and involves three quasivortex loops. If any two of them
are mutually unlinked, i.e., d(aI ∧ aJ) = 0, this term de-
scribes the triple linking number of the Borromean ring
configuration and is a topological invariant.36,37 As in the
three-loop braiding theory, the equation of motion (65),
suggests the Borromean ring ‘dresses’ the I-th quasipar-
ticle (Fig. 1).

To see that Borr is a topological invariant, let us intro-
duce gK = εIJKaI ∧aJ . If we require that any two of the
flux loops are mutually unlinked, i.e., d(aI ∧aJ) = 0, this
constraint leads to gK = duK , where uK is a one-form
gauge field and describes the effective magnetic flux loop
formed by aI and aJ . Then, Borr can be written as∫

Σ

a1 ∧ a2 ∧ a3

=

∫
Σ

a1 ∧ du1 =

∫
Σ

a2 ∧ du2 =

∫
Σ

a3 ∧ du3. (67)

This is equivalent to a Chern-Simons integral and de-
scribes the Hopf linking number between dak and duk.

2. Gauge invariance

In the absence of sources, there are two sets of gauge
transformations that leave the action invariant: The

usual 1-form gauge transformation

bI → bI + dζI , aI → aI (68)

and a shifted 0-form gauge transformation

aI → aI + dϕI , bI → bI +
πp

3K
εIJKL(aJ ∧ aK)ϕL.

(69)

Formally, these transformations can be read off by iden-
tifying the operators that generate the Gauss law con-
straints.

Similar to the three-loop braiding theory described ear-
lier, it seems that the coupling to currents is gauge non-
invariant. However, by demanding gauge invariance, we
can read off the topological currents. The terms with
coupling to sources transform under the 0-form gauge
transformations as

aI ∧ JIqp + bI ∧ JIqv (70)

−→ aI ∧ JIqp + bI ∧ JIqv
− ϕId

[
JIqp − εIJKL

q

6
d−1JJqv ∧ d−1JKqv ∧ d−1JLqv

]
.

Hence we can read off the current conservation law

d
[
JIqp − εIJKL

q

6
d−1JJqv ∧ d−1JKqv ∧ d−1JLqv

]
= 0. (71)

If all the pair of quasivortex loops are mutually unlinked,
the first term on the right side describes the triple linking
number for the borromean ring configuration. The above
equations then indicate, as the equation of motion (65),
that the effective particle comes from two parts, the real
particle excitation and the Borromean ring configuration.
On the other hand, the 1-form gauge symmetry furnishes
the second ‘ordinary’ conservation law dJIqv = 0.

3. Four-loop braiding statistics

That the Borromean ring configuration can be treated
as an effective particle, as seen from the equation of mo-
tion (65) and the conservation law (71) suggests the the-
ory may realize non-trivial statistics involving four loop-
like excitations (four-loop braiding statistics). Following
three-loop braiding process, we postulate the four-loop
braiding process as shown in Fig. 2. In Fig. 2, we con-
sider the loop L1 and L2 form an effective base loop L12,
with loop 3 and 4 are linked to L12. Braiding L3 around
L4 gives rise to a non-trivial phase ∼ n1n2n3n4/K. Fur-
thermore, we can also understand this braiding process
by treating loop L1 as an base loop, with loops L2, L3

and L4 linked to L1 (Fig. 2 (a)). Loop L2 braids around
L3 and L4. We will verify this argument shortly by com-
puting the algebra of Wilson operators.

The last point of view can be better understood by
considering dimensional reduction to one lower dimension
as in Fig. 2 (c). The dimensional reduction of the (3 + 1)
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1

2

3 4

1

2 3 4
(a) (b)

2 3 4

2 3 4

(c)

1

FIG. 2. Four-loop braiding process in 3 + 1 dimensions.
(a) Loop 1, 2 and 3 form a Borromean ring configuration.
Similarly, loop 1, 2 and 4 form a Borromean ring configura-
tion. Alternatively, L1 and L2 form an effective loop L12,
with loop 3 and 4 are linked to L34. In this case, it is the
same as the three loop braiding process with L12 as the base
loop. Braiding L3 around L4 gives rise to a non-trivial phase
2πn1n2n3n4/K. (b) Loop L1 is the base loop. L2, L3 and L4

are linked with L1. This braiding process can be understood
by dimensional reduction to the (2 + 1) dimensions in Fig. 2
(c).

dimensional quartic theory leads to the following (2 + 1)
dimensional cubic theory,

S =

∫
M

[
K

2π
δIJb

I ∧ daJ + pa1 ∧ a2 ∧ a3

]
(72)

where I, J = 1, 2, 3, bI and aI are one-form, and p equals
to p = qK2/(2π)2 where q = 0, 1, . . . ,K − 1. The first
term is the BF theory and is related to the Hopf linking
number for the particle current loops in (2 + 1) dimen-
sions, which describes the particle-particle braiding pro-
cess. For the second term, if any two of particle current
loops are mutually unlinked, it is the Borromean ring and
describes the braiding process involving three particles.
This braiding process has been discussed in Ref. 17 and
can be understood as in Fig. 3.

B. The quadratic theory

As we did for the coupled BF theories realizing the
three-loop braiding, we can also consider an alternative
quartic theory instead of the quartic theory. Let us con-

(a) (b)

(c)

1 2 3

1 2 3

FIG. 3. Three-particle braiding in 2 + 1 dimensions. In
(a), particle 1, 2 and 3 are labeled by three different colors
red, green and blue. We braid particle 2 around 1 and 3 four
times. The Wilson loops for particles 1, 2 and 3 are mutually
unlinked. For instance, if there is no Wilson loop for particle
3, the braiding between 1 and 2 is trivial. Nevertheless, the
three Wilson loops 1, 2 and 3 together form a Borromean ring
in 2 + 1 dimensions. In (b), we treat particle 2 and 3 as an
effective particle and braid it around particle 1. This process
is topologically equivalent to (a). (c) is the projection of (a)
to the two dimensional spatial plane. The braiding of particle
2 around 1 is trivial if there is no particle 3.

sider:

S =
K

2π

∫
δIJb

I ∧ daI

−
∫
δIJa

I ∧ JJqp −
∫
δIJΛI ∧ JJqv (73)

where I, J = 1, . . . , 4 and

ΛI := bI − p

3!
εIJKLd−1

(
aJ ∧ aK ∧ aL

)
. (74)

The equations of motion are the same as Eq. (65). Here,
the precise meaning of the term

∫
d−1(aJ ∧aK∧aL)∧JIqv

can be understood by taking Jqv = δ(S), which gives rise
to for example

∫
S

[b1− pd−1(a2 ∧ a3 ∧ a4)]. Looking for a
volume V which satisfies ∂V = S, this can be written as∫
S
b1 − p

∫
V

(a2 ∧ a3 ∧ a4).

Using the quadratic theory, let us now discuss the al-
gebra of the Wilson operators. The canonical commuta-
tors are the same as the ordinary BF theory and hence[∫
C
aI ,
∫
S

ΛJ
]

= (2πi/K)δIJI(C, S). On the other hand,
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the multiple commutators among
∫
S

ΛI are

[∫
S1

ΛI ,
∫
S2

ΛJ
]

= (−pεIJPQ)

[
−2πi

K

] ∫
∂(V1]V2)

aP ∧ aQ,[[∫
S1

ΛI ,
∫
S2

ΛJ
]
,
∫
S3

ΛK
]

= (−4pεIJKQ)

[
−2πi

K

]2 ∫
∂(V1]V2)]S3

aQ,[[[∫
S1

ΛI ,
∫
S2

ΛJ
]
,
∫
S3

ΛK
] ∫

S4
ΛL
]

= (−4pεIJKL)

[
−2πi

K

]3

I(∂(V1]V2)]S3, S4), (75)

where we noted d(δ(V1)∧δ(V2)) = δ(S1)∧δ(V2)+δ(V1)∧
δ(S2). The four-loop braiding phase is encoded in the
following product of Wilson operators[

(W 2W 1)†W 1W 2 ·W 3 · (W 1W 2)†W 2W 1 ·W 3†]
·W 4 · [· · · ]† ·W 4†

= exp
([[[

i
∫
S1

Λ1, i
∫
S2

Λ2
]
, i
∫
S3

Λ3
]
, i
∫
S4

Λ4
])
. (76)

C. The Wilson operator algebra on T 3

It is also instructive to construct the Wilson opera-
tor algebra on a closed spatial manifold with non-trivial
topology, e.g., Σ = T 3. We will work in the setting iden-
tical to the previous section, and quantize the theory
on Σ = T 3. As before, we expand aI and bI by us-
ing the Hodge decomposition as aI = · · · + αIl ωl, and
bI = · · · + βIpηp, where αIl and βIl are the zero modes.
Also, as before, we consider Wilson operators associated
to the generators {Lm} and {Sm} of the first and second
homology groups. For Li, we consider the Wilson loop
operators

ÂIi := exp i

∫
Li
âI = exp iα̂Ii (77)

As for Sm’s, we consider Wilson surface operators

W 1
i := exp i

(∫
Si
b1 − p

∫
Σ

a2 ∧ a3 ∧ a4

)
etc. (78)

The cubic term can be written as, assuming Σ is formal,∫
Σ
aI ∧aJ ∧aK = αIiα

J
j α

K
k

∫
Σ
ωi∧ωj∧ωk = εijkα

I
iα

J
j α

K
k .

Hence, the Wilson surface operators associated to Si are

Ŵ I
i = exp iΛ̂Ii

where ΛIi = βIi − pεIJKLεijkα
J
i α

K
j α

L
k (79)

The Wilson operator algebra can be computed as

(Ŵ 2
2 Ŵ

1
1 )†Ŵ 1

1 Ŵ
2
2

= exp([iΛ1
1, iΛ

2
2]),

(Ŵ 2
2 Ŵ

1
1 )†Ŵ 1

1 Ŵ
2
2 · Ŵ 3

3 · (Ŵ 1
1 Ŵ

2
2 )†Ŵ 2

2 Ŵ
1
1 · Ŵ

3†
3

= exp([[iΛ1
1, iΛ

2
2], iΛ3

3]),[
(Ŵ 2

2 Ŵ
1
1 )†Ŵ 1

1 Ŵ
2
2 · Ŵ 3

3 · (Ŵ 1
1 Ŵ

2
2 )†Ŵ 2

2 Ŵ
1
1 · Ŵ

3†
3

]
× Ŵ 4

1 × [· · · ]† × Ŵ 4†
1

= exp([[[iΛ1
1, iΛ

2
2], iΛ3

3], iΛ4
4]), (80)

where the repeated commutators are given by

[Λ1
1,Λ

2
2] =

2πip

K

(
−α3

1α
4
3 + α3

2α
4
3 + α3

3α
4
1 − α3

3α
4
2

)
,

[[Λ1
1,Λ

2
2],Λ3

3] =
4π2p

K2
(α4

1 − α4
2),

[[[Λ1
1,Λ

2
2],Λ3

3],Λ4
4] =

8π3ip

K3
. (81)

The last equation in Eq. (80) with the quadruple commu-
tator is related to the four-loop braiding statistical pro-
cess. This four-loop braiding process after dimensional
reduction becomes three-particle braiding process and is
described by the cubic term defined in Eq. (63). As we
discussed before, this three-particle braiding process is
due to the non-abelian braiding statistics between the
gauge flux excitations and is shown in Ref. 17. There-
fore we expect that the four loop braiding process is also
related with the non-abelian property of the gauge flux
loop. We leave studying the non-abelian structure of this
quartic theory as future work.

IV. CONDENSATION PICTURE

We have so far discussed the coupled BF theories re-
alizing three-loop or four-loop braiding statistics in iso-
lation from physical contexts. In this section, we try to
develop physical pictures of the topological field theories
discussed above.

A. The BF theory

Let us start with the condensation picture of the single
copy of the ordinary BF theory:

S =
iK

2π

∫
b ∧ da. (82)

(In this section, we will work with the Euclidean action.)
The BF theory can be thought of as describing the zero
correlation length limit of a gapped (topologically or-
dered) system, which may arise as a result of some sort of
condensation.14,38–40 There are two complimentary pic-
tures that describe the condensation, which are dual to
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each other. In the following, we will develop these pic-
tures by using the duality transformations. (We will use
the equations of motion and integration over fields for
convenience, but will treat the compactification condi-
tions on the fields somewhat loosely. If necessary, the
compactification conditions can be treated rigorously by
using the generalized Poisson identity. See Ref. 40 and
references therein.)

To discuss the first picture, let us take the equation of
motion δS/δb = 0 of the BF theory, which sets da = 0.
This suggests the Meissner effect and hence the Higgs
phase. An convenient action, in which this picture is
manifest, can be derived by integrating over b. It is con-
venient to perturb the BF theory to go away from the
strict topological limit by adding

1

2λ
db ∧ ?db+

1

g2
da ∧ ?da+ i

Θ

8π2
da ∧ da. (83)

Here, the second and third terms are the Maxwell and
axion terms for a, respectively, and the first term is a two-
form analogue of the Maxwell term for b. The integration
over b can be done by making use of the equation of
motion derived by taking the functional derivative δ/δb
of the perturbed BF theory, and plug the solution back
into the action. The equation of motion can be solved as

db = − iλ
2π

? (dθ + Ka), (84)

where the scalar field θ arises as an ambiguity when in-
tegrating the equation of motion to express b in terms of
a. Formally, the above manipulation is equivalent to du-
alizing the two form b to the zero-form θ. The resulting
effective Lagrangian is

L =
λ

8π2
(dθ + Ka)2 +

1

g2
da ∧ ?da+ i

Θ

8π2
da ∧ da. (85)

This is nothing but the Abelian Higgs model.14,38,41

Alternatively, taking the equation of motion δS/δa = 0
of the BF theory sets db = 0. This suggests a two-form
analogue of the Meissner effect, which can be interpreted
as arising from the condensation of monopoles in the dual
gauge field v of a. As before, we can integrate over a
in the presence of the kinetic term (83). Solving the
equation of motion δS/δa = 0, da can be expressed in
terms of b as

da = τ̃1(Kb+ dv) + iτ̃2 ? (Kb+ dv). (86)

Here, τ̃1 and τ̃2 are the dual coupling constants and re-
lated to the original coupling constants as

τ̃1 = − τ1
τ2
1 + τ2

2

, τ̃2 =
τ2

τ2
1 + τ2

2

,

τ1 =
Θ

2π
, τ2 =

4π

g2
. (87)

The one form v in (86) arises formally as an ambiguity
in solving da in terms b. Plugging the solution back to

the action, we obtain the effective Lagrangian for b and
v as

L =
τ̃2
4π

(Kb+ dv) ∧ ?(Kb+ dv)

+
iτ̃1
4π

(Kb+ dv) ∧ (Kb+ dv) +
1

2λ
db ∧ ?db. (88)

This is the Julia-Toulouse-Quevedo-Trugenberger effec-
tive action that describes the condensation of monopoles
of the dual gauge field v.42,43

It is also instructive to have a comparison with a
slightly more microscopic model, which can realize the
situation described above. For example, let us consider
the Cardy-Rabinovic model44

Z = Tra,n,s
∏
r

δ[∂µnµ(r)] exp(−S), (89)

where aµ (µ = 1, . . . , 4) is a compact U(1) gauge field (an
angular variable) defined on the links of the hypercubic
lattice, and nµ and sµν are integer-valued fields defined
on links and plaquettes, respectively. The integer-valued
two-form gauge field sµν amounts to allowing multivalued
configurations of the gauge field. The sum on sµν corre-
sponds to a sum over topologically non-trivial configura-
tions with magnetic monopoles.45 In fact, the monopole
current is given explicitly by mµ = (1/2)εµνλσ∂νsλσ,
where ∂µ is the lattice difference operator in the µ-
direction. On the other hand, we interpret nµ as the
electric current of a charge field. The discrete delta func-
tion δ[∂µnµ(r)] enforces current conservation. The Boltz-
mann weight is given by

S = −iK
∑
L

nµaµ +
1

2g2

∑
P

ΓµνΓµν

− iKθ

32π2

∑
r,r′

f(r − r′)εµνλσΓµν(r)Γλρ(r
′), (90)

where Γµν = ∂µaν − ∂νaµ − 2πsµν is the field strength.
The second and third terms are the Maxwell and axion
terms, respectively. (The precise nature of the smearing
function f(r − r′) is not important here.) The sum over
nµ has the effect of constraining aµ to take its values
restricted to the abelian cyclic group ZK, aµ = (2π/K)kµ.
Because the sum over nµ is constrained, we can always
add any total divergence to aµ. Thus, the restriction to
aµ = (2π/K)kµ represents a partial fixing of the gauge.

For the Cardy-Rabinovic model, in the deconfined
phase (charge condensation), there are 2π/K flux and the
braiding with the charge leads to the fractional statistics.
The effective theory is described by the BF theory.

B. The three-loop braiding theories

For the three-loop braiding theories, we can repeat the
duality transformation, which we carried out for the ordi-
nary BF theory (82) to obtain the Abelian-Higgs model
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(85). Dualizing the two-form gauge fields bI to scalars
φI , we obtain an analogue of the Abelian-Higgs model

L =
∑
I

λI
8π2

(aI + dθI)2 + CIJKa
I ∧ aJ ∧ daK+

+
∑
I

[
1

g2
I

daI ∧ ?daI + i
ΘI

8π2
daI ∧ daI

]
+ · · · (91)

where we have introduced the coupling constants
λI , gI ,ΘI for each flavor. CIJK describes the cubic cou-
pling and takes different forms for the two- and three-
flavor theories.

One can also consider an analogue of the Cardy-
Rabinovic theory for the three-loop braiding theories.
For example, for the cubic three-flavor theory (5), it may
be considered as arising from the following extension of
the Cardy-Rabinovic theory:

S =
1

2g2

∑
I=1,2,3

∑
P

ΓIµνΓIµν + iK
∑
I=1,2

∑
L,µ

aIµn
I
µ

+ iK
∑
L,µ

a3
µ

(
n3
µ −

p

K
εµνλρa

1
ν∂λa

2
ρ

)
. (92)

The charge condensation phase of this extended Cardy-
Rabinovic theory (92) is described by the coupled BF
theory (5).

Alternatively, one may try to dualize the gauge fields
aI ; as we have seen, in the ordinary BF theory, dualizing
the gauge field a leads to the Julia-Toulouse-Quevedo-
Trugenberger effective action (88), and allows us to de-
scribe the charge condensation phases as the monopole
condensation phase for the dual gauge field v. Due to the
cubic coupling, dualizing aI appears to be rather compli-
cated. The electromagnetic duality exchanges the field
strength da and its dual dv, but this does not neces-
sarily mean it works at the level of the connection and
exchanges a and v. In the coupled BF theories, the ac-
tion is not written entirely in terms of the field strength
daI , but the connections aI appear directly.

While it seems not possible to dualize all aI , we can
nevertheless dualize some of aI . For example, let us con-
sider the three-flavor theory with cubic coupling defined
in (5). The action is written in terms of the field strength
da3, and hence one can dualize a3. As for the first and
second flavors, one can dualize bI=1,2. The resulting ac-
tion is

L =
τ̃2
4π

(KΛ3 + dv3) ∧ ?(KΛ3 + dv3)

+
iτ̃1
4π

(KΛ3 + dv3) ∧ (KΛ3 + dv3) +
1

2λ3
db3 ∧ ?db3

+
∑
I=1,2

[ λI
8π2

(aI + dθI)2

+
1

g2
I

daI ∧ ?daI + i
ΘI

8π2
daI ∧ daI

]
(93)

where

Λ3 = b3 +
2πp

K
a1 ∧ a2. (94)

Thus, after the dualization, the cubic coupling a1 ∧ a2 ∧
da3 disappears, but the magnetic condensation for the
dual gauge field v3 is ”dressed” by a1 and a2.

The duality transformations can be also applied to the
four-loop braiding theory, where the magnetic monopoles
for the dual gauge field (v4, say) are dressed by the Bor-
romean ring formed by a1, a2 and a3. Similar physical
picture has been applied in constructing the wave func-
tions for symmetry protected topological (SPT) phases,
which can be realized by proliferating domain walls dec-
orated with an SPT phase in one lower dimension.46 In
this respect, our models here are actually the gauged ver-
sion of SPT phases.

V. CONCLUSION AND REMARKS

In conclusion, we canonically quantize the multi-flavor
BF theories with cubic and quartic coupling. We study
the algebra of Wilson operators to understand the three-
loop and four-loop braiding processes. Using these Wil-
son operators, we also construct the multiplet of ground
states of the three-loop braiding field theory on T 3, and
calculate the S and T matrices, which encode the frac-
tional braiding and spin statistics. We also discuss the
topological field theory as the condensation of composite
particles from some parent U(1) gauge theory.

We close with a few comments on open issues.
– In (3+ 1)d, apart from the particle-loop braiding de-

scribed by the ordinary BF theory, there can be more
exotic braiding, including three-loop braiding and four-
loop braiding process. In this paper, we study the topo-
logical field theory describing the three-loop braiding and
four-loop braiding process. By checking the equation of
motion in Eqs. (4) and (65), these multiple-loop braid-
ing process can all be understood as an effective particle
braiding around the loop excitation. This effective parti-
cle can be a Hopf linking configuration, Borromean ring
configuration or even more complicated knot configura-
tion.

K

2π

∫
Σ

dbI =

∫
Σ

JIqp + “Knot configuration” (95)

It would be interesting to study more complicated knot-
loop braiding process in the future.

– In this paper, we mostly limit ourselves to T 3 as our
spatial manifold, which is formal. It would be interest-
ing to study more general cases in which the coupled BF
theories are considered on the spacetime or spatial man-
ifolds which are not formal. The coupled BF theories
may be able to detect topological aspects (topological
invariants) of these manifolds, which cannot be captured
by the ordinary BF theory.
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– We have carried out constructions of the multiplet
of ground states on T 3 and calculated the modular S
and T matrices, by using the basis of minimal entropy
states for the ground state multiplet. Alternatively, the
S and T matrices may be calculated by first construct-
ing ground states for generic (holomorphic) polarization
in geometric quantization. The action of the mapping
class group of T 3, SL(3,Z), on the ground state mul-
tiplet can then be calculated by adiabatically changing
polarization. We have so far constructed ground states
only for the Hodge polarization. (See Appendix B for the
definition and more details.) Construction of the ground
states for more generic polarization is left as a future
problem.

–Finally, we focussed throughout this work on the cases
when the level K of BF theory was an integer greater
than one. A few comments about the K = 1 case are
in order. When K = 1, there is no topological order,
hence there is a unique groundstate on any closed mani-
fold. Furthermore there are no fractionalized excitations
therefore no three-loop or four loop braiding for a theory
with cubic or quartic interactions.

Given these facts, it seems that K = 1 BF theories
and their cubic and quartic interacting versions are quite
uninteresting and featureless, however this is not true.
K = 1 BF theories are interesting in their own right and
are indeed related to the physics of short-range-entangled
phases of matter. For example it is possible to model
symmetry protected topological phases of matter using
level K = 1 BF theories. These theories may have global
G symmetries in which case they can be coupled to a flat
background G-gauge field A. The partition function in
the presence of A is not trivial and can infact distinguish
different SPT phases. For onsite symmetry G with action
labelled by [ω] ∈ H4(BG,U(1)), the partition function
turns out to be

Zω[M,A] = exp
{
i
〈
M,A?ω

〉}
(96)

where A?ω ∈ H4(M,U(1)), the pull-back of ω to the
spacetime manifold and 〈 , 〉 is the pairing with the fun-
damental homology cycle.

Note added : Upon completion of this manuscript, we
became aware of a recent work by J. Wang, et al.21, which
also discusses, among others, the four-loop braiding pro-
cess and the connection of the quartic theory.
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Appendix A: Wilson operator algebra and large
gauge invariance in three-loop braiding field theory

In this appendix, we detail some important properties
of the zero-mode Wilson operators introduced in section
II D 1.

1. The Wilson operator algebra and three-loop
braiding statistics

The three-loop braiding phase can be read off from
the algebra of Wilson surface operators. To compute the
algebra of Wilson operators, we use the Baker-Campbell-
Hausdorff formula:

eÂeB̂ = exp
(
Â+ B̂ +

1

2
[Â, B̂]

+
1

12

[
Â− B̂,

[
Â, B̂

]]
+ · · ·

)
. (A1)

Thus, for the products of Wilson operator,

Ŵ I†
i Ŵ J†

j Ŵ I
i Ŵ

J
j

= exp
(

[iΛ̂Ii , iΛ̂
J
j ]
)
,

(Ŵ J†
j Ŵ I†

i Ŵ J
j Ŵ

I
i )ŴK†

k (Ŵ I†
i Ŵ J†

j Ŵ I
i Ŵ

J
j )ŴK

k

= exp
(

[[iΛ̂Ii , iΛ̂
J
j ], iΛ̂Kk ]

)
. (A2)

The triple commutator is a phase and the above algebra
of Wilson surface operator describes the three-loop braid-
ing phase. This is consistent with previous work on three-
loop braiding statistics.29 To have a non-zero three-loop
braiding phase, I, J,K cannot be all equal. i, j, k cannot
be all equal neither. We list non-zero triple-linking phase
factors below:[[

Λ̂Ii , Λ̂
I
j

]
, Λ̂Īk

]
= −εijk

4πqĪ
K2

,[[
Λ̂1
i , Λ̂

2
j

]
, Λ̂1

k

]
=
[[

Λ̂2
i , Λ̂

1
j

]
, Λ̂1

k

]
= εijk

2πq2

K2
,[[

Λ̂1
i , Λ̂

2
j

]
, Λ̂2

k

]
=
[[

Λ̂2
i , Λ̂

1
j

]
, Λ̂2

k

]
= εijk

2πq1

K2
. (A3)

a. Large gauge invariance

Unlike the infinitesimal gauge transformations, the
large gauge transformations cannot be derived from the
conserved charges or Gauss law constraints of the action.
However, the large gauge invariance can be deduced by
demanding the invariance of the Wilson operators ÂIi and

Ŵ I
i . (Or vice versa: once the large gauge transformations

are properly defined, the Wilson operators are defined as
those that are invariant under the large gauge transfor-
mations.) Hence the correct large gauge transformations
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are

α̂Ii → α̂′Ii = α̂Ii + 2πnIi ,

β̂Ii → β̂′Ii = β̂Ii − qĪεijk

[
nIj α̂

Ī
k + α̂Ijn

Ī
k + 2πnIjn

Ī
k

]
.

(A4)

It is worth noticing that, since β̂Ii transforms non-linearly

under large gauge transformations, the
[
β̂Ii , β̂

J
j

]
commu-

tator is not preserved. In fact,[
β̂′Ii , β̂

′I
j

]
= −4πiqĪ

K
εijkn

Ī
k,[

β̂′1i , β̂
′2
j

]
=

2πi

K
εijk

(
q1n

2
k + q2n

1
k

)
, (A5)

However the algebra of observables, i.e the Wilson alge-
bra transforms covariantly under large gauge transforma-
tions. E.g.,[

Λ̂′1i , Λ̂
′1
j

]
=
−2iq2

K
εijk(α̂2

k + 2πn2
k) =

−2iq2

K
εijkα̂

′2
k .

(A6)

Therefore, the operator algebra is preserved under the
large gauge transformations.

As for the Wilson operators ÂIi and Ŵ I
i , they are in-

variant under the large gauge transformations (A4) by
construction. Nevertheless, it should be noted that their

product may not be so, as seen in Ŵ I†
i Ŵ J†

j Ŵ I
i Ŵ

J
j in

Eq. (A2) (note the commutators in Eq. (53)), although
the algebra of the Wilson operators is gauge covariant;
The algebra of the Wilson operators generated by ÂIi and

Ŵ I
i and that generated by ÂI′i and Ŵ I′

i are isomorphic.

While Ŵ I†
i Ŵ J†

j Ŵ I
i Ŵ

J
j is not gauge invariant, the prod-

uct (Ŵ J†
j Ŵ I†

i Ŵ J
j Ŵ

I
i )ŴK†

k (Ŵ I†
i Ŵ J†

j Ŵ I
i Ŵ

J
j )ŴK

k and

the triple commutator [[iΛ̂Ii , iΛ̂
J
j ], iΛ̂Kk ] are large gauge

invariant, and so is the three-loop braiding phase.

Appendix B: Ground state wave functionals by
geometric quantization

In this section, we will construct (ground state) wave
functions (functionals) of the coupled BF theories. The
ground state wave functionals of topological quantum
field theories such as the (2+1)-dimensional Chern-
Simons theories and BF theories can be constructed by
using the method of geometric quantization.15,47,48

In geometric quantization, one endows the phase space
with a complex line bundle E with curvature Ω (the sym-
plectic two-form) and connection A (the symplectic con-
nection) such that Ω is expressed as Ω = dA (at least lo-
cally). Sections of this line bundle form the pre-quantum
Hilbert space with element Ψ. To obtain the “physical”
Hilbert space which implements unitarity and irreducibil-
ity on the Poisson bracket, one further needs to impose a
constraint on Ψ. This procedure is called choosing polar-
ization. For more details of geometric quantization, see,
Ref. 48, for example.

b. two-flavor v.s. three-flavor theories

In the following, we will construct the ground state
wave functions of the coupled BF theories on Σ = T 3.
We will focus on the quadratic avatar of the three flavors
of BF theories coupled by a cubic term.

S =

∫
M

{ K

2π
δIJb

I ∧ daJ − δIJaI ∧ JJqp

−
[
b1 +

q1

2π
a2 ∧ a3

]
∧ J1

qv

−
[
b2 +

q2

2π
a3 ∧ a1

]
∧ J2

qv

−
[
b3 +

q3

2π
a1 ∧ a2

]
∧ J3

qv

}
. (B1)

Furthermore, we will focus on the zero mode sector. (The
wave functions of the “oscillator” part of the theory is
identical to those in the ordinary BF theory, and can be
constructed by following, e.g., Ref. 15.

Working with the three-flavor theory has a technical
advantage than the two-flavor theory. To explain the
advantage, we split the construction of the ground state
wave functions in the following two steps:

(i) One first identifies the symplectic structure of the
zero mode phase space. Then, following the generic pro-
cedure of the geometric quantization, one chooses the
polarization (i.e., the choice of variables to use to write
down wave functions). One can then identify the generic
structure of the wave functions, inner product, etc. We
call the set of wave functions obtained this way the
“large” Hilbert space.

(ii) The “large” Hilbert space is not yet of our physical
relevance, since they are not invariant under large gauge
transformations. To further write down ground state
wave functions explicitly, we need to demand the large
gauge invariance (the Gauss law constraint). (Since sys-
tems of our interest are topological and there is no Hamil-
tonian. The large gauge invariance is the only guidance
to construct physical ground state wave functions.) We
demand the set of the wave functions are gauge-singlet
(or in fact one can relax this condition a little bit; one
may demand the wave functions to form a projective rep-
resentation of the algebra of the gauge transformations.
Such “generalized” gauge invariance is in particular rel-
evant when the level K is a rational number K = k1/k2.
Here, we will focus on the simplest case when K = integer
or k2 = 1).

For the two-flavor theory, the main difficulty is that,
the large gauge transformations cannot be represented as
a unitary operator within the “large” Hilbert space. This
can be seen from the fact that the set of commutators are
not preserved by the large gauge transformations. (See
Sec. A 1 a.) In other words, the symplectic two-form is
not preserved under the large gauge transformation. This
should be contrasted to the case of the (2+1)-dimensional
Chern-Simons theory and the ordinary BF theories in
(3+1) dimensions. That the large gauge transformations
cannot be represented as unitary operators within the
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large Hilbert space does not mean that it is impossible
to construct the “small” or restricted Hilbert space which
is gauge invariant. Nevertheless, this difficulty adds some
complication in constructing the ground state wave func-
tions.

For the three-flavor theory, there is no such difficulty;
the symplectic two-form is manifestly large gauge invari-
ant; the technical reason why we will work with the three-
flavor theory in this section.

c. choice of polarization

There is another complication in quantizing and con-
structing wave functions in coupled BF theories, which
is associated to the choice of polarization. In the (2+1)-
dimensional Chern-Simons theories and BF theories, it is
convenient to choose a generic holomorphic polarization.
In the case of the Chern-Simons theory, this is convenient
when making a contact with (1+1)-dimensional confor-
mal field theories. In the coupled BF theory, however,
we will focus on a specific polarization, the “Hodge” po-
larization following the terminology in Ref. 49. In this
polarization, we construct wave functions in terms of the
zero modes αIi . One reason for this is that we found it
is somewhat technically involved to construct the wave
function by using the holomorphic polarization. How-
ever, on the other hand, the comparison with wave func-
tions constructed in Sec. II E can be easily made for the
wave functions in the Hodge polarization.

1. Geometric quantization of the BF theory

We now move on to the construction of wave functions
by geometric quantization. We start by taking the ordi-
nary BF theory on M = T 3 × R as an example. Our
setting is described in Sec. II D. As mentioned earlier, we
will focus on the zero mode sector. The zero modes of
the BF theory satisfy the Poisson bracket

{αi, βj} =
2π

K
δij . (B2)

a. the holomorphic polarization

Let us first construct wave functions in the holomor-
phic polarization following Ref. 15. In the holomorphic
polarization, we introduce complex coordinates

γi := αi + ρijβj ,

γ̄i := αi + ρ̄ijβj , (B3)

where ρ is an arbitrary symmetric 3× 3 complex-valued
matrix, whose imaginary part is negative-definite. ρ can
be thought of as parametrizing a complex structure on

H1(Σ;R)⊕H2(Σ;R) forming the multi-dimensional com-
plex space of the γ variables.15 The inverse transforma-
tions are

βi =
1

2i
Rij(γ − γ̄)j ,

αi =
−1

2i
(ρ̄Rγ − ρRγ̄)i, (B4)

where we introduced the notation

(Im ρ)−1
ij = Rij (B5)

The complex coordinates satisfy the Poisson bracket

{γi, γ̄j} =
2π

K
(−2iIm ρij). (B6)

The symplectic 2-form is

Ω = − iK
4π
Rijdγ̄i ∧ dγj (B7)

We choose the symplectic potential as

A = +
K

8π
(γ̄ − γ)iRij(ρ̄Rdγ − ρRdγ̄)j , (B8)

which satisfies dA = Ω.
As a first step of constructing ground state wave func-

tions, we choose a particular polarization and impose the
condition:(

∂

∂γ̄i
+ iAγ̄i

)
Ψ = 0

⇒
(
∂

∂γ̄i
− i K

8π
[(γ̄ − γ)RρR]i

)
Ψ = 0. (B9)

Solutions to this constraint are given by

Ψ(γ, γ̄) = exp

[
−i K

16π
(γ̄ − γ)RρR(γ̄ − γ)

]
f(γ), (B10)

where f is a function of γ only. The set of all wave func-
tions of the above form constitute what we have called
the “large” Hilbert space.

We now construct a set of ground state wave functions
by imposing the invariance under large gauge transfor-
mations

γ → γ + 2π(n+ ρm). (B11)

In the following, we present two slightly different con-
struction of the wave functions.

In the first construction, we note, under the large gauge
transformations, the symplectic potential is transformed
as

A → A+ dΛ

where Λ = −Ki

2
m · (ρ̄Rγ − ρRγ̄) + const. (B12)
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where the constant term can depend on m and n. Physi-
cal wave functions, which are gauge invariant, then must
satisfy

Ψ(γ + 2π(n+ ρm), γ̄ + 2π(n+ ρ̄m)) = eiΛΨ(γ, γ̄)
(B13)

This condition is translated into the condition on f :

e+iKm·γ+iπKm·ρ·mf(γ + 2π(n+mρ)) = f(γ) (B14)

up to an unknown phase factor mentioned above. The
solution can be constructed by using the Jacobi theta
function:

Ψq(γ) = Θ

(
c+q
K
d

)(
K

2π
γ| −Kρ

)
, (B15)

where c and d are arbitrary parameters (“twisting an-
gles”). Here, the Jacobi theta function is defined by

Θ

(
c
d

)
(z|Π) :=

∑
n`∈Zp

exp
[
iπ(n+ c)`Π`k(n+ c)k + 2πi(n+ c)`(z + d)`

]
(B16)

where c`, d` ∈ [0, 1] and z` ∈ C. The theta function satisfies

Θ

(
c
d

)
(z` + s` + Π`kt

k|Π) := exp
[
2πic`s` − iπt`Π`kt

k − 2πit`(z + d)`
]

Θ

(
c
d

)
(z|Π) (B17)

for integers sl and tl, and

Θ

(
c
d

)
(z` + CΠ`kt

k|Π) = exp
[
−iπC2t`Π`kt

k − 2πiCt`(z + d)`
]

Θ

(
c+ Ct
d

)
(z|Π) (B18)

for any non-integer C ∈ R. We note, in particular,

Θ

(
c+q
K
d

)(
K

2π
[γ + 2π(n+ ρm)]| −Kρ

)
= exp [2πic · n+ iπm ·Kρ ·m+ i2πm · d] exp(iKm · γ)Θ

(
c+q
K
d

)(
K

2π
γ| −Kρ

)
(B19)

In the second construction, we implement the large
gauge transformation by using unitary operators, which
we call Um,n. This operator sends α → α + 2πn and
β → β + 2πm:

Um,nαU
†
m,n = α+ 2πn, Um,nβU

†
m,n = β + 2πm.

(B20)

The unitary operator can be identified, up to a constant
phase factor, as

Um,n = exp [−iK(miαi − niβi)] . (B21)

Noting γ̄i = −(4π/K)R−1
ij (∂/∂γj), the operator imple-

menting the large gauge transformations can be written
as

Um,n = exp

[
2π(n+m · ρ) · ∂

∂γ
+

K

2
(n+m · ρ̄) ·R · γ

]
= e

πK
2 (n+mρ̄)R(n+mρ)+ K

2 (n+mρ̄)Rγ

× exp

[
2π(n+mρ)

∂

∂γ

]
(B22)

The action of U on wave functions is

Um,nΨ(γ) = e
πK
2 (n+mρ̄)R(n+mρ)+ K

2 (n+mρ̄)Rγ

×Ψ(γ + 2π(n+ ρm)) (B23)

The wave functions that solve this constraint are given
by

Ψq(γ) = e−
K
8π γiRijγjΘ

(
c+q
K
d

)(
K

2π
γ| −Kρ

)
, (B24)

where c and d are arbitrary parameters (“twisting an-
gles”).

b. the Hodge polarization

We have so far constructed wave functions by using the
holomorphic polarization (B3). We now try a different
poloarization, which we call the Hodge polarization, fol-
lowing, Ref. 49. In this polarization, we attempt to write
down the wave function in terms of αi: Ψ(α). Given the
canonical commutation relation [αi, βj ] = (2πi/K)δij , βi
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acts on the wave functions as βi = −i(2π/K)∂/∂αi. De-
manding (B20), the unitary transformations that imple-
ment large gauge transformations can be represented as

Um,n = exp [−iKm · α+ iKn · β]

= e−πiKm·n−iKm·α exp

[
2πn · ∂

∂α

]
. (B25)

Physical wave functions can be constructing by demand-
ing large gauge invariance:

Um,nΨ(α) = eiΘm,nΨ(α) (B26)

where Θm,n is a constant phase, which can depend on m
and n. I.e.,

Um,nΨ(α) = e−πiKm·n−iKm·αΨ(α+ 2πn)

= eiΘm,nΨ(α) (B27)

This constraint can be solve by an ansatz

Ψ(α) =
∑
k∈Z3

C(k)eik·α. (B28)

From the large gauge invariance, C must satisfy the con-
straint

C(p+ Km) = eiθC(p), (B29)

which can be solved by

Cq(p) =

{
eiθl when p = q + Kl
0 otherwise

(B30)

To summarize, the solutions are

Ψq(α) = eiθ·αeiq·α
∑
l

eiKl·(α+φ/K)

= eiθ·αeiq·α
2π

K

∑
m

δ

(
α+

φ

K
+

2π

K
m

)
. (B31)

The free parameter φ and θ are the twisting angle.
The states we have constructed are eigen states of

Bi = exp iβi = exp[(2π/K)∂/∂αi]. On the other hand,
applying Ai changes the label q as AiΨq = Ψq+n̂i , where
n̂i = (0, · · · , 1, · · · , 0).

2. Three-loop braiding theory with three flavors

We now move on to the construction of wave func-
tions of the quadratic three loop braiding BF theory
with three flavors. The zero modes of the three-flavor
theory satisfy the Poisson bracket{

αIi , β
J
j

}
=

2π

K
δijδ

IJ . (B32)

The symplectic form and potential (I, J = 1, 2, 3) are
given by

Ω =
K

2π
dβIi ∧ dαIi , A =

K

2π
βIi dα

I
i . (B33)

In the quadratic three-flavor BF theory, the funda-
mental Wilson surface operators are defined by taking
the exponential of

ΛIi = βIi + rεIJKijk αJj α
K
k , (B34)

as exp iΛIi , where we have introduced εIJKijk = εIJKεijk.
Generic Wilson surface operators are given by taking
products thereof. The parameter r plays a role similar
to q1,2 in the two-flavor theory,

There is a set of large gauge transformations that pre-
serve ΛIi :

αIi → αIi + 2πnIi

βIi → βIi − 4πrεIJKijk nJj α
K
k − 4π2rεIJKijk nJj n

K
k (B35)

The symplectic form is invariant under these large gauge
transformations. Under the large gauge transformations,
the symplectic form is transformed as

A → A+ dΛ

Λ = +KmI
iα

I
i −KrεIJKijk nJj α

K
k α

I
i

− 2πKrεIJKijk nJj n
K
k α

I
i + const. (B36)

In the following, we will write down a set of ground
state wave functions for the quadratic three-flavor BF
theory. We present two different constructions. In the
first construction, we choose to work with αIi and ΛIi . Fol-
lowing the previous section, we introduce a holomorphic
polarization for these variables. A merit of this construc-
tion is that the large gauge transformations act on these
variables in a simple fashion. In the second construction,
we choose to work with αIi and βIi , and use the Hodge
polarization. Unlike ΛIi , the large gauge transformations
act on βIi non-trivially.

a. using Λ as a variable

Following the holomorphic polarization of the ordinary
BF theory (B3), we introduce

γIi = αIi + ρijΛ
I
j ,

γ̄Ii = αIi + ρ̄ijΛ
I
j . (B37)

The wave functions can be constructed by demanding(
∂

∂γ̄Ii
+ iAγ̄Ii

)
Ψ(γ, γ̄) = 0. (B38)

The solutions to this constraint are given by

Ψ(γ, γ̄) = exp

[
iK

16π
ΛIi ρijΛ

I
j −

iKr

6π
εIJKijk αIiα

J
j α

K
k

]
f(γ),

(B39)

where f(γ) is a function of γ only.
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We now impose the large gauge invariance. Up to a
constant phase factor, f must transform as

e+iKmI ·γI+iπKmI ·ρ·mI− 4iπ2Kr
3 εIJK(nI ·nJ×nK)

× f(γ + 2π(n+ ρ ·m))

= f(γ) (B40)

Up to the phase factor, this constraint is the same as
the one in the ordinary BF theory. Hence, the solutions
to the gauge constraint are given in terms of the theta
function.

b. the Hodge polarization

We now attempt to construct the wave functions by us-
ing the Hodge polarization, in which the wave functions
are constructed as a function of αIi . On these wave func-
tions, βIi acts as βIi = −i(2π/K)∂/∂αIi . We first look for
unitary operators Um,n that implement the large gauge
transformations (B35). Up to a phase factor, the unitary
operators Um,n are identified as

Um,n = exp
[
− iKmI · αI + iKnI · βI

+ iKrεIJKnI · αJ × αK
]
. (B41)

Um,n can also be written as

Um,n = eiφn,meAeB (B42)

where

A = −iKmI · αI + 2πiKrεIJKnI · nJ × αK

+ iKrεIJKnI · αJ × αK ,

B = +2πnI · ∂

∂αI
,

φn,m = −iπKmI · nI +
4π2i

3
KrεIJKnI · (nJ × nK)

(B43)

The physical wave functions are constrained by the
large gauge invariance and must satisfy: Um,nΨ(α) =
eiΘm,nΨ(α). This large gauge constraint can be solved
by the ansatz

Ψ(α) = e−
iKr
6π ε

IJKαI ·(αJ×αK)
3∏
I=1

∑
kI

CI(kI)e
ikI ·αI

(B44)

Observe that this wave function can be also written as

Ψ(α) =

3∏
I=1

∑
kI

CI(kI)e
i(kI− Kr

18π ε
IJKαJ×αK)·αI

=
∑
k

C1(k1)ei(k
1−Kr

π α
2×α3)·α1

2∏
I=1

∑
kI

CI(kI)e
ikI ·αI .

(B45)
The large gauge invariance constrains CI to satisfy

CI(p+ Km) = eiθCI(p), (B46)

which can be solved by the same ansatz as in the ordinary
BF theory,

CIq(p) = eiθl when p = q + Kl (B47)
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