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We study a model fractional quantum Hall (FQH) wavefunction called the Gaffnian state, which
is believed to represent a gapless, strongly correlated state that is very different from conventional
metals. To understand this exotic gapless state better, we provide a representation based on work
of Halperin in which the pairing structure of the Gaffnian state becomes more explicit. We em-
ploy the single-mode approximation introduced by Girvin, MacDonald, and Platzman (GMP), here
extended to three-body interactions, in order to treat a neutral collective exitation mode in order
to clarify the physical origin of the gaplessness of the Gaffnian state. We discuss approaches to
extract systematically the relevant physics in the long-distance, large-electron-number limit of FQH
states using numerical calculations with relatively few electrons. In an appendix, we provide sec-
ond quantized expressions for many-body Haldane pseudopotentials in various geometries including
the plane, sphere, cylinder, and the torus based on the proper definition of the relative angular
momentum.

PACS numbers: 73.43.-f

I. INTRODUCTION

The fractional quantum Hall effect (FQHE) has been
a topic of deep and continuing interest since its discov-
ery in 19821. Placed in a strong magnetic field, a two-
dimensional electron gas (2DEG) exhibits an exotic order
that cannot be described by the conventional Ginzburg-
Landau symmetry breaking paradigm. Incompressible
states are characterized by different kinds of topological
order2 created by strong electron-electron interactions.
Solving this strongly interacting many-body quantum
problem is a daunting task in general, but the model
wavefunction approach in many cases successfully cap-
tures all the universal features of a many-body electron
state in the FQHE.

The model wavefunction approach amounts to simply
writing down a trial ground state wavefunction, which,
although not the true ground state of the Coulomb in-
teraction Hamiltonian, may have the same topological
order as the true ground state. The Laughlin state3 and
the composite fermion (CF) states4,62 are standard ex-
amples of model wavefunctions which are of experimen-
tally relevance. Beside these abelian states, nonabelian
states including the Pfaffian state and the Read-Rezayi
states appear as model wavefunctions in the FQHE. Non-
abelian states can serve as platforms for topological quan-
tum computation15. A model wavefunction is often iden-
tified as a conformal block12 of a conformal field theory
(CFT)13. The CFT associated with the bulk wavefunc-
tion also describes the edge excitations via the bulk/edge
correspondence17, and the braiding statistics12,16 among
quasi-particles. Even though the model wavefunctions
are not eigenstates of the Coulomb interaction, in many
cases, there exist parent Hamiltonian based on the Hal-

dane pseudopotential approach40,45.
In this paper, we focus on a model wavefunction called

the Gaffnian state11. Unlike other model FQH states, the
Gaffnian state is believed to represent a quantum criti-
cal point11,21,31, or possibly a gapless phase, rather than
an incompressible (gapped) state. Our interest in the
Gaffnian state is as a likely example of gapless matter
with some remnant of topological physics, even though
precisely what “topological” means in a gapless state
is difficult to define. Unlike the ν = 1/2 state6,7 in
which there has recently been a resurgence of interest,
the Gaffnian does not currently have an interpretation
as a metal of composite fermions. The Gaffnian state
can be written as a conformal block of a minimal model
CFTM(5, 3), which is a nonunitary CFT, unlike the uni-
tary CFTs corresponding to known incompressible states.
Like the Pfaffian state, it is the exact ground state of
a parent Hamiltonian involving three-body interactions.
In the bosonic case, the parent Hamiltonian is a sum
of projectors of the relative angular momentum of three
particles onto ` = 0 and ` = 2:

H = AP 0
3 +BP 2

3 (1)

with pseudopotential coefficients A,B > 0. We exam-
ine possible gap closing in the neutral sector as we ap-
proach the Gaffnian from the nearby composite fermion
state with the same filling. In order to look for an ex-
citation becoming gapless in the thermodynamic limit,
we employ the single-mode approximation (SMA)27,34 by
Girvin, MacDonald, and Platzman to test gaplessness of
the Gaffnian state.

The paper is organized as follows. In Sec. II, we in-
troduce the Gaffnian state and show it is equivalent to
a Halperin-type paired state, which is perhaps surpris-
ing as there is no obvious pairing in the standard wave-
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function of the Gaffnian. In Sec. III, we consider the
neutral excitations of the Gaffnian state via the single-
mode approximation which has a well-defined thermo-
dynamic limit. We also show how to compute density
correlation functions efficiently given the second quan-
tized wavefunction of a few electrons. A torus geometry
is used to compute the SMA gap function of the Gaffnian
state in order to minimize finite-size effects. We conclude
in Sec. IV with a brief summary of our results and pos-
sible future extensions. Most of the technical aspects are
reviewed in detail in the Appendix, which starts by fix-
ing our conventions for physics in the lowest Landau level
(LLL) and guiding-center variables. We then construct
many-body pseudopotential projectors in a plane, cylin-
der, torus, and sphere using the guiding-center second
quantized language only. We also give the more familiar
coordinate and momentum space representation of the
pseudopotential projectors. We end with formulas for
the the SMA for three-body interactions that are rele-
vant for the Gaffnian state.

II. THE MODEL WAVEFUNCTIONS

A planar lowest-Landau-level wavefunction for Ne par-
ticles, which we will call electrons, in the FQHE can be
written as

ΨNe(r1, . . . , rNe) = P (z1, . . . , zNe)e
−

∑
i |zi|

2/4, (2)

where zj = (xj + iyj)/lB is the dimensionless complex

coordinate of particle j, lB =
√
~c/eB is the magnetic

length, and P is a (anti-)symmetric polynomial if the
electrons are identical bosons (fermions). For simplicity,
we will often drop the exponential factor in Eq. (2) and
only specify the polynomial part of the wavefunction.

In the following, we review the model wavefunction
called the Gaffnian state11 and see how can it be identi-
fied as a paired wavefunction of the Halperin type8,9. The
(bosonic) Gaffnian state is the unique highest-density
zero energy ground state of a three-body interaction
AP 0

3 +BP 2
3 (A,B > 0). P 0

3 and P 2
3 are examples of Hal-

dane’s three-body pseudopotential projectors40,45, and
they are projectors of three-body relative angular mo-
mentum 0 and 2. The precise definition and explicit
expressions can be found in Appendix B. The Gaffnian
state11 is given by

ΨGf = S̃

[
Ne/2∏
a<b

(za − zb)2+q
Ne∏

Ne
2 <c<d

(zc − zd)2+q

×
Ne∏

e≤Ne2 <f

(ze − zf )1+q
Ne/2∏
g=1

1

(zg − zg+Ne/2)

]
,

(3)

where q = 0 (q = 1) and S̃ is a (anti-)symmetrization
among electron indices for bosonic (fermionic) elec-
trons. The Gaffnian state, unlike the Pfaffian12 and the

Haffnian state, cannot be understood as a BCS type
paired state14,18 of composite fermions. To see this,
suppose that the (fermionic) Gaffnian wavefunction is a
BCS-type paired state. Then the wavefunction can be
written as38

ΨGf = Pf[g(ri − rj)]
∏
i<j

(zi − zj)2, (4)

where Pf stands for the Pfaffian of a matrix and g(r) is
an antisymmetric function in z. (In the bosonic case, use
(zi − zj) instead of (zi − zj)

2.) Let’s assume g(r) has
an asymptotic behavior g(r) → Czα as r → 0, where
C is some constant and α can be negative. After fac-
toring out the ν = 1/2 Laughlin state (the Jastrow fac-
tor squared) from the wavefunction, let us bring z3 to
z4, z5 to z6, until zNe−1 to zNe . Finally, the (factored)
wavefunction has an asymptotic Pf[g(ri − rj)]→ g(r1 −
r2)g(r3− r4) · · · g(rNe−1− rNe) ∼ (z3− z4)α · · · (zNe−1−
zNe)

αg(r1 − r2). In contrast, the same clustering among
particles in the Gaffnian state gives the asymptotic (z3−
z4)−1 · · · (zNe−1 − zNe)−1

(
1

z1−z2
∏Ne/2
a=2 (z1 − z2a−1)(z2 −

z2a−1)
∏Ne/2
b=a+1(z2a−1 − z2b−1)2

)
, which cannot be cast

into the form of a paired wavefunction of the BCS type.
Hence the nature of the Gaffnian state is very different

from other paired FQH states, and it is worthwhile to
find an equivalent form of the wavefunction in which the
pairing structure of the Gaffnian is more explicit than in
Eq. (3). After a bit of algebra, one can first see that the
Gaffnian wavefunction in Eq. (3) is equal to the perma-
nent wavefunction in Ref. 19, as was pointed out in the
previous literature, e.g., in Ref. 21.

ΨGf =
∏
i<j

(zi − zj)1+q

× S̃

[
Ne/2∏
a<b

(za − zb)
Ne∏

Ne
2 <c<d

(zc − zd)perm[M ]

]
,

where Mi,j = (zi − zj+Ne/2)−1 is the Ne/2 by Ne/2 ma-

trix and perm[A] =
∑
σ∈Sn

∏n
k=1Ak,σ(k) is the perma-

nent of an n-by-n matrix A.
This permanent wavefunction was early on used for a

trial wavefunction for ν = 2/5 state10. In fact, Halperin
had earlier suggested a seemingly different trial wave-
function for ν = 2/5 state based on the idea of pair-
ing. In a well-known Helv. Phys. Acta. paper8, he
presented three different kinds of model wavefunctions
- the Halperin paired wavefunction, hierarchy wavefunc-
tion, and bilayer wavefunction. Strictly speaking, the
paired wavefunction presented in Ref. 8 is not a scalar
under rotations in the sphere. The scalar version of this
wavefunction, which is invariant under the rotations of
the sphere, first appeared in Ref. 9 slightly before the in-
troduction of the permanent wavefunction19, and we will
now show that these are actually the same.

To compare the Gaffnian wavefunction and the
Halperin paired state, let’s define two classes of wave-
functions - “model paired” (MP) state and the “Halperin
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paired” (HP) state. We present only the bosonic case in
the following. The corresponding fermionic wavefunction
follows after multiplying a Jastrow factor by the bosonic
wavefunction. The model paired (MP) state is defined as

Ψ
(p,q,r)
MP = S

[ Ne/2∏
1≤a<b

(za − zb)p
Ne∏

Ne/2<c<d

(zc − zd)p

×
Ne/2∏
a,c=1

(za − zc+Ne/2)q
Ne/2∏
g=1

(zg − zg+Ne/2)−r
]
,

(5)

where p, q, r are positive integers satisfying q ≥ r and S
is the symmetrization over electron indices. By counting
the total power in zi, we get Nφ =

(
p
2 + q

2

)
Ne − (p + r)

which implies the filling factor ν = 2/(p+q) and the shift
S = p + r. The MP state is a proper generalization of
the Gaffnian wavefunction where the Gaffnian state cor-
responds to (p, q, r) = (2, 1, 1). It is also worth mention-
ing that (p, q, r) = (2, 0, 0), the complete symmetrization
of the (2, 2, 0) bilayer state, corresponds to the Pfaffian
state4,39. The Halperin paired (HP) state can be defined
as

Ψ
(s,t,u)
HP =S

[ Ne∏
i<j

(zi − zj)s
Ne/2∏
n=1

(z2n−1 − z2n)−t

×
Ne/2∏

1≤n<m

(z2n−1z2n + z2m−1z2m − 2ZnZm)u
]
,

(6)

where s, t, u are positive integers satisfying s ≥ t and
Zn = (z2n−1 + z2n)/2 is the center of mass coordinate
between the electron pairs (z2n−1, z2n). The last term
in Eq. (6) is motivated by the Laughlin state between
pairs, i.e. (Zn−Zm)2u. The last term in Eq. (6) can also
be written as 1

2

(
(z2n−1 − z2m−1)(z2n − z2m) + (z2n−1 −

z2m)(z2n − z2m−1)
)
. The Halperin paired state has the

filling factor ν = 2/(2s+u) and the shift S = s+t+u. At
(s, t, u) = (1, 1, 1)9, the state has the same filling factor
and the shift as the Gaffnian state. In the following, we
show that the HP state at (s, t, u) = (1, 1, 1) is indeed
equal to the Gaffnian state; to the best of our knowledge,
this equivalence has not been noted in the literature be-
fore.

To show Ψ
(1,1,1)
HP is the Gaffnian state, it suffices to

show that (a) the wavefunction has the same filling fac-
tor and shift as the Gaffnian state, (b) it does not van-
ish as we cluster two particles to the same point, but
(c) it vanishes as three or more powers as we cluster
three particles to the same point11,63. The property
(a) follows immediately. (b) can be proved by showing
the wavefunction does not vanish at (z1, z2, . . . , zNe) =
(w1, w1, w2, w2, . . . , wNe/2, wNe/2), i.e., the wavefunction
does not vanish even after clustering all the pairs. Be-
cause of the first term in the RHS of Eq. (6), most of
the terms vanish when we permute the electron indices.

TABLE I. Equivalence between Ψ
(s,t,u)
HP and Ψ

(p,q,r)
MP .

FQH state Ψ
(s,t,u)
HP Ψ

(p,q,r)
MP

Pfaffian (1,1,0)
(2,0,0)

(1,1,1)

Gaffnian (1,1,1)
(2,1,1)

(1,2,2)

Haffnian (1,1,2)
(2,2,2)

(1,3,3)

However, there are non vanishing terms, which are all

identical and equal to
∏Ne/2

1≤a<b(wa − wb)6 which implies

the condition (b).
Finally, when we cluster three particles to the same

point, the first two terms in Eq. (6) together vanish at
least 2 powers and the last term vanishes at least 1 power,
so the state vanishes at least 3 powers. We conclude that

a Halperin paired state Ψ
(1,1,1)
HP is indeed the Gaffnian

state. Further equivalences between the Halperin paired
states and the model paired states can be found and are
summarized in TABLE I. It is very surprising that the
simple idea of pairing leads to so many exotic nonabelian
FQH states. Similar results are pointed out recently in
Ref. 36, 35, and 37. In Ref. 36 and 35, equivalences
of the Read-Rezayi states and the model paired (MP)
states in the torus geometry were found, and in Ref. 37,

equivalence between the Haffnian state and Ψ
(4,0,0)
MP was

found, which adds one more entry in TABLE I.

III. NEUTRAL EXCITATIONS IN THE
GAFFNIAN STATE

Another description of the Gaffnian wavefunction11 is
a conformal block of a conformal field theory13. The
Gaffnian wavefunction can be expressed as

ΨGf = 〈0|O(z1) · · ·O(zNe)Obg|0〉, (7)

where O(z) = ψ(z)eiφc(z)/
√
ν with φc being the free bo-

son of a U(1) CFT and ψ(z) being a field with scaling
dimension ∆ψ = 3/4 in the minimal model M(5, 3).
The background charge operator Obg is introduced to
impose charge neutrality condition so that the confor-
mal block does not vanish. A CFT used to construct
a bulk wavefunction also describes the edge excitations,
quasi-hole excitations, and the braidings of the quasi-
holes11,12,16. This is a manifestation of the bulk/edge
correspondence17, which requires a bulk gap in order to
have well-defined gapless edge and quasi-hole excitations
constructed from the CFT.

The CFT for the Gaffnian state is nonunitary resulting
in a nonunitary braiding among quasi-holes20, which is
not physically sensible. There has been an argument30,
numerical evidence in the sphere geometry21, and even
a proof31 that the Gaffnian state represents a gapless
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state, but the physical picture of how the Gaffnian state
becomes gapless remains elusive so far. To understand its
gaplessness better, we focus on the neutral excitations of
the Gaffnian state and examine the physical mechanism
of closing of the gap.

The neutral excitations of a FQH state are collective
excitations of quasi-electron and quasi-hole pairs. In an
incompressible state, there is typically a well-defined low-
lying neutral excitation mode, which is called the mag-
netoroton mode22,27,34. In a seminal paper33, Girvin,
MacDonald, and Platzman (GMP) modeled the magne-
toroton mode by the single-mode approximation (SMA)
which is the (projected) density-wave excitation above
the ground state. This trial excitation wavefunction cor-
rectly captures the qualitative and quantitative behavior
of the magnetoroton mode, especially the location and
the size of the gap33,34.

It should be noted that (a) the Gaffnian state is known
to become gapped in a thin cylinder43,44, and (b) the
ν = 2/3 (bosonic) Jain composite fermion (CF) state4,62

is a nearby phase of the Gaffnian state, as the Jain state
is an incompressible state which belongs to the same uni-
versality class as the ground state of a pseudopotential
projector P 0

2 with the same filling factor and shift as the
Gaffnian. Starting from the Hamiltonian AP 0

3 + BP 2
3

(A,B > 0) for which the Gaffnian state is the ground
state, one can perturb the Hamiltonian by P 0

2 so that
the ground state belongs to the same universality class
as the CF state after the gap opens. Conversely, we can
adiabatically change the Hamiltonian from the CF state
to the Gaffnian state and close the gap along the way.
Together with the gapped nature in the thin cylinder ge-
ometry, the Gaffnian state seems to represent a quantum
critical point with a neighboring CF state.

Guided by a recent Exact Diagonalization (ED)
study21, we argue that the gap closing happens at the
wave vector q = 0 at the Gaffnian state. (This kind
of gap closing scenario has been studied before24–26 in
the FQHE in various other situations.) To this end,
we employ the SMA33,34 of the magnetoroton mode to
capture the possible gap closing nature of the Gaffnian
state. Even though the magnetoroton mode is not very
well-defined in the non-abelian FQH states as it gener-
ally contains several low-lying excitation modes35, the
SMA can still serve as a trial model or upper bound for
the low-lying excitation modes. Also, it was pointed out
recently34 that the SMA becomes a better and better
approximation as we approach to the 0 wave vector. So
SMA provides a way to test the scenario of a gap to
neutral excitations closing at q = 0. In the following,
we review the basics of the SMA and provide the full
expressions generalizing it for a three-body interaction,
with details relegated to Appendix E.

A. Single-mode approximation

The single-mode approximation (SMA) is constructed
by applying the guiding-center (projected) density oper-
ator to the ground state |Ψ〉:

|ΨSMA
q 〉 =

1√
Ne

ρ̂†q|Ψ〉, (8)

where ρ̂q =
∑
i e
−q·Ri is the guiding-center density oper-

ator with Ri = (Xi, Yi) being the guiding-center coordi-
nate of particle i, and q 6= 0. The guiding-center density
operator satisfies nontrivial commutation relations called
the GMP or magnetic translation algebra33,42,48:

[ρ̂q1
, ρ̂q2

] = 2i sin
(1

2
l2Bq1 ∧ q2

)
ρ̂q1+q2

(9)

The SMA is orthogonal to the ground state (for q 6=
0) if the ground state |Ψ〉 is homogeneous, i.e., it has a
constant one-particle density64. Using Eq. (8), the gap
function is given by33

∆(q) =
〈ΨSMA

q |(H − EGS)|ΨSMA
q 〉

〈ΨSMA
q |ΨSMA

q 〉
=
f̂(q)

ŝ(q)
, (10)

where ŝ(q) is the (guiding-center) structure factor,

f̂(q) = 1
2Ne
〈ΨSMA

q |
[
ρ̂q,
[
H, ρ̂†q

]]
|ΨSMA

q 〉, and H is the in-

teraction Hamiltonian. (The kinetic part of the Hamilto-
nian is quenched since we are only interested in the states
in the LLL. O denotes the LLL projection of an operator
O.)

The Gaffnian state is a zero energy ground state of a
three-body interaction

V (k1,k2) = A(2π)2 +B(2π)2
(
L2

( l21|k1|2

2

)
+ L1

( l21|k1|2

2

)
L1

( l22|k2|2

2

)
+ L2

( l22|k2|2

2

))
,

(11)

where A,B > 0, Lm(x) is the m-th Laguerre polynomial,

and (l1, l2) =
(√

2lB ,
√

3
2 lB
)
. The Jacobi-coordinate sys-

tem used in Eq. (11), which is explained in Appendix B.

In the case of two-body interaction, f̂(q) in the gap
function Eq. (10) is given by33

f̂(q) =

∫
d2(l1k)

(2π)2

(
v(k + q)− 2v(k) + v(k− q)

)
× 2 sin2

(1

2
l2Bq ∧ k

)
ŝ(k), (12)

where v(k) = V (k)e−
1
4 l

2
1|k|

2

with V (k) being the Fourier
transformation of a two-body interaction V (r1−r2), and
ŝ(k) is the (guiding-center) structure factor. So the gap
function depends only on (a) the interaction Hamiltonian
and (b) the structure factor of the ground state, which
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encodes essential information of the state in the ther-
modynamic limit. Generalization to the three-body in-
teraction is straightforward but requires lengthy algebra.
Rather than going into these cumbersome steps, which
are done in detail in Appendix E, we simply mention that
for three-body interaction we need one additional ingre-
dient to compute the gap function: (c) the three-density
correlation function. The density correlation functions
are interesting in their own right as they contain infor-
mation about the state in the thermodynamic limit.

B. Density correlation functions

In this section, we review density correlation functions
and discuss how one can compute them from the state
written in terms of a (occupation number) second quan-
tized basis. We work in the plane and use the symmetric
gauge. The simplest example of a density correlation
function is the one-particle density, which measures the
probability of finding a particle at position r:

ρ(r) = 〈ψ̂†(r)ψ̂(r)〉

= Ne

∫
d2r2 . . . d

2rNe |Ψ(r, r2, . . . , rNe)|2, (13)

where ψ̂(r) =
∑
m φm(r)cm is the annihilation opera-

tor at r, φm(r) = 1√
2π2mm!l2B

zme−
1
4 |z|

2

is the normalized

wavefunction of orbital m in the symmetric gauge, and
cm is the annihilation operator associated with orbital
m. The next example is the pair-correlation function:

g(R,u) = ρ−2〈ψ̂†(r1)ψ̂†(r2)ψ̂(r2)ψ̂(r1)〉

=
Ne(Ne − 1)

ρ2

∫
d2r3 . . . d

2rNe |Ψ(r1, . . . , rNe)|2, (14)

where ρ = ν
2π is the density of the (homogeneous) ground

state and (R,u) and (u1,u2) are related by the two-
body Jacobi coordinates: (r1, r2) =

(
R + u

2 ,R −
u
2

)
.

The third density correlation function is the three-density
correlation function:

h(R,u1,u2) = ρ−3〈ψ̂†(r1)ψ̂†(r2)ψ̂†(r3)ψ̂(r3)ψ̂(r2)ψ̂(r1)〉

=
Ne(Ne − 1)(Ne − 2)

ρ3

∫
d2r4 . . . d

2rNe |Ψ|2, (15)

where we have used the three-body Jacobi coordinates:
(r1, r2, r3) =

(
R+ u1

2 + u2

3 ,R−
u1

2 + u2

3 ,R−
2
3u2

)
. In the

thermodynamic limit, the state we are mainly interested
in becomes homogeneous and all the density correlation
functions are independent of the CM coordinate:

ρ(r)→ ρ

g(R,u)→ g(u)

h(R,u1,u2)→ h(u1,u2)

as Ne → ∞. In the case of a three-body interaction,
g(u) and h(u1,u2) enter in the expression of the SMA
gap function.

The Fourier transformation of the pair-correlation
functions is called the structure factor:

s(k) = 1 +

∫
d2ueik·uρ

(
g(u)− 1

)
. (16)

The Fourier transformation of the three-density correla-
tion function is given by:

Λ(k1,k2) =− 2 + s
(
k1 +

1

2
k2

)
+ s
(
− k1 +

1

2
k2

)
+ s(k2)

+

∫
d2u1d

2u2e
ik1·u1eik2·u2ρ2

(
h(u1,u2)− g

(1

2
u1 + u2

)
− g
(
− 1

2
u1 + u2

)
− g(u1) + 2

)
. (17)

The guiding-center (or projective) analog of Eq. (16) and (17) are given by

ŝ(k) = 1 + e
1
4 l

2
1|k|

2

∫
d2ueik·uρ

(
g(u)− 1

)
(18)

and

Λ̂(k1,k2) = −
(
e
i
2 l

2
Bk1∧k2 + e−

i
2 l

2
Bk1∧k2

)
+ e

i
2 l

2
Bk1∧k2 ŝ(k2) + e−

i
2 l

2
Bk1∧k2 ŝ

(
k1 +

1

2
k2

)
+ e

i
2 l

2
Bk1∧k2 ŝ

(
− k1 +

1

2
k2

)
+ e

1
4 l

2
1|k1|2e

1
4 l

2
2|k2|2

∫
d2u1

∫
d2u2e

ik1·u1eik2·u2ρ2
(
h(u1,u2)− g

(1

2
u1 + u2

)
− g
(
− 1

2
u1 + u2

)
− g(u1) + 2

)
,

(19)

where we have used k1 ∧ k2 = (k1)x(k2)y − (k1)y(k2)x. Because Eq. (19) lacks explicit symmetries, we often use the
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symmetrized version of Eq. (19):

Λ̂sym(k1,k2) =
1

6

[
Λ̂(k1,k2) + Λ̂(−k1,k2) + Λ̂

(1

2
k1 +

3

4
k2,k1 −

1

2
k2

)
+ Λ̂

(
− 1

2
k1 +

3

4
k2,−k1 −

1

2
k2

)
+ Λ̂

(
− 1

2
k1 −

3

4
k2,k1 −

1

2
k2

)
+ Λ̂

(1

2
k1 −

3

4
k2,−k1 −

1

2
k2

)]
= 2 cos

(1

2
l2Bk1 ∧ k2

)(
− 1 +

1

2
ŝ(k2) +

1

2
ŝ
(
k1 +

1

2
k2

)
+

1

2
ŝ
(
− k1 +

1

2
k2

))
+ e

1
4 l

2
1|k1|2e

1
4 l

2
2|k2|2

∫
d2u1d

2u2e
ik1·u1eik2·u2ρ2

(
η(u1,u2)− g

(1

2
u1 + u2

)
− g
(
− 1

2
u1 + u2

)
− g(u1) + 2

)
.

(20)

A detailed explanation of density correlation functions
and their symmetries is presented in Appendix D.

Given the model wavefunction, the conventional
method for computing the pair-correlation function
(which is a two-density correlation function) is to numeri-
cally compute the integral in Eq. (14) using the Metropo-
lis Monte Carlo algorithm51. This works well for many
model FQH states including the Laughlin state33, the
composite fermion states4,24, and the Pfaffian state23 -
all of which have an efficient way of computing the wave-
function modulus squared. Because of numerically ex-
pensive symmetrization in the Gaffnian state Eq. (3), the
Metropolis Monte Carlo algorithm requires exponential
computing time in the number of particle in order to com-
pute the pair-correlation function. Rather than sticking
with this conventional method, we present an alternative
route to computing the density-correlation functions us-
ing the expressions of a state in the second-quantization
using the occupation number basis. It is known that
the Gaffnian state can be written as the Jack polyno-
mial56–59 for which the second quantized expression can
be computed efficiently60,61. Expressing the ground state
in terms of the occupation number basis is a common out-
come of the exact diagonalization (ED), however when it
comes to the Jack polynomial, the same outcome could

be achieved with much less numerical cost. In the follow-
ing, we present expressions for density correlation func-
tions in the plane geometry which can be computed ef-
ficiently. Given the wavefunction in second quantization
(to be more precise, in the occupation number basis), we
consider the following combination33:

ρ
(
g(u)− 1

)
=

1

ν

Nφ∑
p=0

|φp(u)|2
(
〈(cpc0)†(cpc0)〉

− 〈c†pcp〉〈c
†
0c0〉+

(
〈c†0c0〉 − ν

)
δp,0

)
,

(21)

where ρ = ν
2π is the one-particle density of the system

(in the thermodynamic limit) and we are considering the
case of a finite number of particles: Nφ = 1

νNe− S. This
particular combination imposes the sum rules33:∫

d2uρ
(
g(u)− 1

)
= −1 (22)∫

d2u
(u2

2

)
ρ
(
g(u)− 1

)
= −1, (23)

which ensures the structure factor has an expansion

s(k) = k2

2 + O(k4). The three-density correlation func-
tion also has a similar expression:

ρ2
(
h(u1,u2)− g

(1

2
u1 + u2

)
− g
(
− 1

2
u1 + u2

)
− g(u1) + 2

)

=
1

ν

Nφ∑
p1,p2,q1,q2=0
p1+p2=q1+q2

φp1(−u1)φ∗q1(−u1)φp2

(
− 1

2
u1 − u2

)
φ∗q2

(
− 1

2
u1 − u2

)
Cp1,p2;q1,q2 , (24)

where

Cp1,p2;q1,q2 =〈(cq1cq2c0)†(cp1cp2c0)〉 − 〈(cq1cq2)†(cp1cp2)〉〈c†0c0〉

+
(
− 〈(cp1c0)†(cp1c0)〉〈c†p2cp2〉 − 〈(cp2c0)†(cp2c0)〉〈c†p1cp1〉+ 2〈c†p1cp1〉〈c

†
p2cp2〉〈c

†
0c0〉

)
δp1,q1 . (25)
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Eq. (24) satisfies the following sum rule:∫
d2u2 ρ

2

(
h(u1,u2)− g

(1

2
u1 + u2

)
− g
(
− 1

2
u1 + u2

)
− g(u1) + 2

)
= −2ρ

(
g(u1)− 1

)
. (26)

FIG. 1. (color online). The pair correlation function g(r) =

ρ−2〈ψ̂†(0)ψ̂†(r)ψ̂(r)ψ̂(0)〉 of the ν = 1/2 Laughlin state in a
plane for Ne = 6, 7, 8 particles.

FIG. 2. (color online). The pair correlation function g(r) of
the ν = 1 Pfaffian state for Ne = 10, 12, 14 particles.

There are several advantages in using second quan-
tized expressions. First of all, it is a numerically-exact
method. The final expression is the sum of the expecta-
tion values of certain operators so an exact computation
is possible. Also, the expectation values entering in the
expressions in Eq. (21) and in Eq. (25) can be efficiently
evaluated, as one only needs to compute states given by
acting annihilation operators on the (ground) state and
expectation values of these states, which significantly re-
duces the computing time. Another advantage is that
the result with few particles already well approximates
the thermodynamic limit function as shown in Fig. (1)
and (2). The Monte-Carlo evaluation in a sphere28 also

FIG. 3. (color online). The pair correlation function g(r) of
the ν = 2/3 Gaffnian state for Ne = 6, 8, 10 particles.

gives a quite good approximation even for a few num-
ber of particle, however, it suffers from a finite cut-off,
i.e., the pair correlation function ends at finite value of
r, due to its compact geometry. Also, the evaluation of
the three-density correlation function is challenging using
Monte Carlo.

C. Gap function of the Gaffnian state

Using the three-body interaction Eq. (11) and the two-
and three-density correlation functions, the gap func-
tion of the SMA of the Gaffnian state can be computed.
However, it turns out that the interaction potential in
Eq. (11) is extremely sensitive to the sub-leading terms
in the two- and three-density correlation functions which
are small in the original correlation functions but largely
amplified in the gap function when using Eq. (11) as
an interacting Hamiltonian. To overcome such difficul-
ties, we calculate the gap function using the SMA of
the Gaffnian state in the torus geometry. The Gaffnian
state in the torus geometry is obtained by the exact di-
agonalization (ED), and the SMA is constructed from
the obtained Gaffnian state following the prescription in
Ref. 34. We employ the torus geometry in particular be-
cause it was demonstrated34 that the finite size effects are
significantly reduced when computing to the gap function
in the torus geometry.

The bosonic Gaffnian state (or to be more precise, the
Hamiltonian AP 0

3 + BP 2
3 with A,B > 0) has 6-fold de-

generate zero energy ground states in the torus geom-
etry. With considerations of the many-particle transla-
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FIG. 4. (color online). The gap function ∆
(
|k|
)

of the SMA of
the Gaffnian state in the torus v.s. momentum |k| in a torus
with an aspect ratio 1 and zero twisting angle. (Ne, Nφ) =
(10, 15) is used to plot the gap function associated with P 0

3

and P 2
3 using the SMA. P 0

3 has a quadratic gap closing at
k = 0 with all data points lying in a fitted curve. The shaded
region indicates the error in the fitting function and we note
that the error in fitting is not visible around k = 0. P 2

3

suggests a finite gap at k = 0 with data points not lying in
a single curve believed to be due to finite size effects. Similar
tendency was found for 12 electrons (data not shown).

tional symmetries, the Gaffnian state has 2-fold degen-
eracy in (kx, ky) = (0, 0) sector and other ground states
are obtained by acting with many-particle translational
symmetries to this 2-fold ground states. We lift the 2-
fold degeneracy by adding a small perturbation P 0

2 , the
two-body relative angular momentum 0 projector. When
the perturbation becomes large, this ground state eventu-
ally belongs to the same universality class as the bosonic
ν = 2/3 composite fermion state. The construction of
the Hamiltonian in the torus geometry is extensively re-
viewed in Appendix. B and relevant many-particle trans-
lational symmetries are well explained in Ref. 5, 41, and
42.

The numerical result is summarized in Fig. (4) in which
Ne = 10 electrons in a torus with an aspect ratio 1 and
zero twisting angle are used. The gap functions ∆(|k|)
presented in Fig. (4) are the expectation values of the
pseudopotential projectors P 0

3 and P 2
3 with respect to the

SMA, i.e. the gap function in Eq. (10) with (H − EGS)
being equal to P 0

3 and P 2
3 and the single-mode approxi-

mation (SMA) |ΨSMA
q 〉 in the torus geometry34. Recall-

ing that the Hamiltonian AP 0
3 +BP 2

3 with A,B > 0 has
the Gaffnian as the zero energy ground state, weighted
sum of two gap functions gives the upper bound of the ac-
tual low-lying excitations of the Gaffnian state. The gap
function of the SMA gives quadratic gap closing at k = 0
under the pseudopotential projector P 0

3 , but it seems to
give a finite gap for the accessible particle numbers when
the pseudopotential projector P 2

3 is nonzero. Although
the SMA doesn’t give conclusive evidence of the gapless-
ness of the Gaffnian state, it has its gap minimum at (or

around) k = 0.

IV. CONCLUSION

In this paper, we have studied an exotic FQH state
called the Gaffnian state, which is believed to represent
a quantum critical point. We have shown that the pairing
structure of the Gaffnian state, which cannot be under-
stood in terms of the BCS pairing, can be understood
in terms of a pairing of the Halperin type. It is also
shown that nonabelian states including the Pfaffian and
the Haffnian state can also be cast into the Halperin
paired state form. As the density correlation functions
contain useful information about the state in the thermo-
dynamic limit, we present an efficient way to computing
those. Our method relies on the second quantized ex-
pression of the state, which works well for the state for
which the second quantized expression can be computed
efficiently, including the Gaffnian state.

To test the gap closing scenario at k = 0 of the
Gaffnian state as we approach from a nearby compos-
ite fermion state, we employed the single-mode approxi-
mation to compute the gap function associated with the
Gaffnian state. We used the torus geometry, in the hope
of reducing finite-size effects, with up to 10 electrons to
estimate the gap of the Gaffnian state. This approach
did not give conclusive evidence for the gaplessness of
the Gaffnian state. However, our numerical results do
seem to support the scenario of a gap closing at k = 0.
We hope that the three-body SMA approach developed
here will be useful for the many interesting quantum Hall
states, either gapped or gapless, that arise naturally in
the presence of three-body interactions.
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Appendix A: The lowest Landau level physics in
various gauge/geometry

1. The guiding-center coordinates

In this Appendix, we introduce the guiding-center de-
grees of freedom, which are true physical degrees of free-
dom in the lowest Landau level (LLL). Consider electrons
with charge −e (< 0) moving in a 2D (infinite) plane in
a strong magnetic field −Bẑ (B > 0). The Hamiltonian
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of N electrons is

H =
1

2m

N∑
i=1

(
pi +

e

c
Ai

)2
+ V (r1, . . . , rN )

=
1

2m

N∑
i=1

π2
i + V (r1, . . . , rN ), (A1)

where π = p + e
cA is the dynamical momenta, A is the

vector potential associated with the magnetic field −Bẑ,
and V is the interaction. Due to the presence of the
magnetic field, dynamical momenta have nontrivial com-

mutation relation [πx, πy] = i~2/l2B , where lB =
√

~c
eB is

the magnetic length. Without interaction, the Hamilto-
nian reduces to the one dimensional quantum harmonic
oscillator Hamiltonian. It is then useful to define cre-
ation/annihilation operator,

a =
i√
2

πx + iπy
~/lB

a† =
−i√

2

πx − iπy
~/lB

, (A2)

which satisfy the commutation relation [a, a†] = 1. Us-
ing these operators, (the kinetic part of) the Hamiltonian

becomes H = ~ωc
∑
i

(
a†iai + 1

2

)
, where ωc = eB

mc is the
cyclotron frequency. Eigen subspaces form the Landau
levels (LLs), which are determined by the dynamical mo-
menta degrees of freedom only. Each LL has extensive
degeneracy that can be distinguished by the considera-
tion of the guiding-center coordinates,

R = (X,Y ) =
(
x+

l2B
~
πy, y −

l2B
~
πx

)
. (A3)

The guiding-center coordinates are chosen in such a way
that they are linear combinations of coordinate operators
and the dynamical momenta, while having trivial com-
mutation relations with the dynamical momenta. The
guiding-center coordinates have the commutation rela-
tion [X,Y ] = −il2B . It is convenient to introduce opera-
tors

b =
1√
2

X − iY
lB

b† =
1√
2

X + iY

lB
, (A4)

which have the commutation relation [b, b†] = 1. We
define an angular momentum operator by

Lz = ~
(
b†b− a†a

)
(A5)

which commutes with (the kinetic part of) the Hamil-
tonian. The above definition of angular momentum is
different from the usual definition of the angular momen-
tum xpy − ypx65. However, this definition allows us to
express the physical operators, such as relative angular

momentum operators, using the second quantized opera-
tors only without referring to a specific gauge. Together
with a and b, we can construct the complete basis

|n,m〉 =
(b†)m+n√
(m+ n)!

(a†)n√
n!
|0, 0〉, (A6)

where |0, 0〉 is the vacuum state annihilated by a and
b, n ∈ {0, 1, 2, . . . } is the Landau-level index, and m ∈
{−n,−n + 1, . . . , 0, 1, . . . } is the angular momentum in-
dex. Without interaction, the Landau-level index n de-
termines the eigenenergy

(
n+ 1

2

)
~ωc, and the energy gap

~ωc is proportional to B.
In the limit of strong magnetic field, electrons in the

FQH sit only in the lowest Landau level (LLL) and the
guiding-center coordinates are the only relevant physical
degrees of freedom. These degrees of freedom provide
a faithful representation to describe interactions in the
LLL. We share the same point of view as previous litera-
ture48–50,52–54 in that the guiding-center degrees of free-
dom are the necessary and sufficient degrees of freedom
to describe electron states in the (idealized) FQH. (Es-
sentially we do not want to go back to the full electron
Hilbert space which requires additionally specification of
the dynamical momenta degrees of freedom52–54.)

The interaction Hamiltonian should be expressed in
terms of second quantized (guiding-center) operators.
Haldane’s pseudopotential projectors40, which are rela-
tive angular momentum projectors, span the (sub)space
of interaction Hamiltonians. The notion of pseudpoten-
tial makes sense without ever specifying the gauge of the
magnetic field since it is built upon the relative angu-
lar momentum. As an exception, the symmetric gauge
will be used to find coordinate representations46 of pseu-
dopotential projectors, as it requires specification of the
action of the interaction Hamiltonian in the full (posi-
tion) electron Hilbert space.

2. Orbitals in various gauges and geometries

Second-quantized expressions are already sufficient to
capture the physics of the FQHE, but it is often more
intuitive to use first-quantized expressions. The first step
towards using the first-quantized language is to specify
the gauge.

We start with the most familiar one, the symmetric
gauge A = B

(
y
2 ,−

x
2

)
. The complete eigenstates are

given by4

〈r|n,m〉 =
(−1)n√

2πl2B

√
n!

2m(m+ n)!
zmLmn

( |z|2
2

)
e−

1
4 |z|

2

,

where we have defined a dimensionless complex coordi-
nate z = (x + iy)/lB , Lmn is the associated Laguerre
polynomial, and n = 0 corresponds to a familiar LLL

orbitals φm(r) = 1√
2π2mm!l2B

zme−
1
4 |z|

2

. In this gauge,

the usual rotational symmetry becomes the symmetry of
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the Hamiltonian and the angular momentum Eq. (A5)
becomes identical to the angular momentum in the usual
sense, Lz = ~

(
b†b− a†a

)
= xpy − ypx.

The second gauge is the Landau gauge A = B(0,−x).
This gauge is useful when considering a cylinder obtained
by compactifying a plane in the y-direction. After the
gauge transformation from the symmetric gauge to the
Landau gauge, a LLL basis can be written as

φLandaum (r) =
1√

2π2mm!l2B

(
x+ iy

lB

)n
e
− 1

4
x2+y2

l2
B

+ i
2
xy

l2
B ,

(A7)
where m is an angular momentum eigenvalue of Eq. (A5).
(We often drop the superscript “Landau” whenever the
gauge choice is clear.) In addition, since the Landau
gauge has translational symmetry in y-direction, it is use-
ful to consider eigenstates of LLL given by

〈r|ψk〉 = ψk(r) =
1

π1/4lB
eikye

− (x−kl2B)2

2l2
B , (A8)

where klB ∈ R. This basis satisfy the orthonormal-
ity condition

∫
d2rψ∗k′(r)ψk(r) = 2πδ(lB(k′ − k)) and

form a completeness basis of the LLL
∫ d(lBk)

2π |ψk〉〈ψk| =
11|HLandau

LLL
. The basis transformation matrix element be-

tween Eq. (A7) and Eq. (A8) is given by

〈ψk|φm〉 =

√
π1/2

2m−1m!
Hm

(
lBk
)
e−

1
2 l

2
Bk

2

. (A9)

When compactifying y-direction of a plane via y ∼
y + Ly, we get a cylinder together with the basis

〈r|ψn〉 = ψn(r) =

√
κ√

2π3/2l2B
e
iκn y

lB e
− (x−κnlB)2

2l2
B ,

where κ = 2πlB
Ly

is the dimensionless inverse radius of the

cylinder and n ∈ Z. We have the orthonormality condi-
tion

∫
cyl
d2rψ∗n1

(r)ψn2(r) = δn1,n2 and the completeness

relation
∑∞
n=−∞ |ψn〉〈ψn| = 11|Hcyl

LLL
.

The torus geometry requires further compactification
in x-direction via x ∼ x + Lx. A basis is given by
the linear superposition of the orbitals of the cylinder:∑
s∈Z ψn+sNφ , where Nφ =

LxLy
2πl2B

∈ Z is the total flux

through torus and equals the total number of orbitals.
Unlike other geometries, the spherical geometry has

full rotational symmetry generated by L+, L−, Lz, which
is defined in Eq. (B28). When a magnetic monopole
with magnetic charge 2S is placed in the origin, the
LLL is spanned by normalized orbitals φM (θ, φ) =√

2S+1
4π [u]SM

4,40,62, where M ∈ {−S,−S + 1, . . . , S} and

[u]SM =

√
(2S)!

(S +M)!(S −M)!
(u1/2)S+M (u−1/2)S−M

(A10)

with

um(θ, φ) =


cos(θ/2)eiφ/2, m = 1

2

sin(θ/2)e−iφ/2, m = − 1
2

.

{[u]SM}M=−S,...,S forms a SU(2) spin S representation

under the generators L±, Lz, where ~L = ~r × ~π + ~SΩ̂

and Ω̂ is the unit normal vector on the sphere. We often
identify Nφ ≡ 2S as the total flux of the sphere. A
stereographic projection from sphere to plane amounts
to mapping from φM (θ, φ) to φm(z) via M = m − S up
to normalization factors.

Appendix B: Pseudopotential projectors

We now systematically construct and classify the
Haldane’s pseudopotential projectors40 in terms of the
second-quantization, which gives a faithful representation
using the guiding-center degrees of freedom only. We de-
fer a more familiar representations involving the position
and momentum coordinates to section (B 8).

While our construction essentially gives identical re-
sults to the previous literature on pseudopotentials45–47,
we strictly follow the (canonical) construction of pseu-
dopotential projectors in Ref. 45 in which the first quan-
tized orbitals in the symmetric gauge are used to con-
struct pseudopotential projectors. Our construction can
be viewed as the second-quantized analog of Ref. 45, so
that we explicitly show the one-to-one correspondence of
pseudopotential projectors in various geometries.

1. Jacobi coordinate system

We are interested in classifying the translationally in-
variant many-body interactions which depend on the rel-
ative motion degrees of freedom only. We employ the Ja-
cobi coordinate system to systematically express many-
body interactions. In order to motivate the Jacobi trans-
formation, we momentarily go back to coordinate repre-
sentations by restoring the dynamical momenta degrees
of freedom. One can skip the following discussion and
jump directly to Eq. (B6), if one only cares about the
guiding-center degrees of freedom.

The Jacobi coordinates associated with N particles
with coordinates r1, . . . , rN is given by

RCM = r1+···+rN
N

u1 = r1 − r2
u2 = r1+r2−2r3

2
...

uN−1 = r1+···+rN−1−(N−1)rN
N−1 ,

(B1)

which consist of the center-of-mass (CM) coordinate and
the relative coordinates. Let’s denote the coordinate
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transformation matrix between the ordinary coordinates
and the Jacobi coordinates by M, i.e., ui =

∑
j [M]ijrj .

(We may identify uN ≡ RCM.) For sake of simplicity,
we momentarily assume the gauge is given by the sym-
metric gauge. Using the coordinate transformation and
∂
∂ri

=
∑
j [M

T ]ij
∂
∂uj

, the kinetic part of the Hamiltonian

becomes4,46

Hkin =
~ωc
2

N∑
i=1

[(
lB
i

∂

∂xi
+

yi
2lB

)2

+

(
lB
i

∂

∂yi
− xi

2lB

)2]

=
~ωc
2

N∑
i=1

[(
li
i

∂

∂(ui)x
+

(ui)y
2li

)2

+

(
li
i

∂

∂(ui)y
− (ui)x

2li

)2]
, (B2)

where we have introduced the CM and rel length scales
(lCM; li) = (

√
λCMlB ;

√
λ1lB , . . . ,

√
λN−1lB) with λCM =

1
N and λn = n+1

n . Note that the CM length scale depends
on the number of particles N , while rel length scales are
independent of N . We broadly follow the notations in
Ref. 46 but differences occur due to our explicit coordi-
nate choice. In the Jacobi coordinates, the normalized
LLL orbitals are given by

φCM
M (RN ) =

(
ZN/
√
λCM

)M√
2π2MM !l2CM

e−
1
4 |RN |2/l2CM (B3)

φrelm (ui) =

(
zi/
√
λi
)m√

2π2mm!l2i
e−

1
4 |ui|

2/l2i , (B4)

where ZN =
(
(RN )x + i(RN )y

)
/lB and zi =

(
(ui)x +

i(ui)y)/lB .

Moreover, a operators are transformed as

aCM =
1√
λCM

( 1

N
a1 + · · ·+ 1

N
aN
)

areli =
1√
λi

N∑
j=1

[M]ijaj , (B5)

and the same formulas hold for b:

bCM =
1√
λCM

( 1

N
b1 + · · ·+ 1

N
bN
)

breli =
1√
λi

N∑
j=1

[M]ijbj . (B6)

All operators satisfy the canonical commutation relation
[a, a†] = [b, b†] = 1. Let’s now forget about the Jacobi co-
ordinates, and define the Jacobi transformation of second
quantized operators as Eq. (B6) from the onset. Length
scales (lCM; li) are chosen in such a way that the oper-
ators satisfy the canonical commutation relation. This
definition doesn’t require any restrictions on the gauge
choice. We use this transformed Jacobi guiding-center
degrees of freedom to construct many-body pseudopo-
tential projectors.

2. Clebsch-Gordan coefficients

There exist two basis for the Hilbert space of N elec-

trons - one is the ordinary orbital basis,
{
|m1, . . . ,mN 〉 =

(b†1)
m1

√
m1!
· · · (b

†
N )mN√
mN !

|0, . . . , 0〉
}

and the other is the

Jacobi transformed basis,
{
|M,m′1, . . . ,m

′
N−1〉 =

(bCM†)M√
M !

(brel†1 )m
′
1√

m′1!
· · · (b

rel†
N−1)

m′N−1√
m′N−1!

|0, . . . , 0〉
}

with

mi,M,m′i ∈ {0, 1, 2, . . . }. The basis change matrix,
which we call the Clebsch-Gordan coefficients, is given
by 〈M,m′1, . . . ,m

′
N−1|m1, . . . ,mN 〉. The nomenclature

becomes clear once we compare the Clebsch-Gordan
coefficient of the plane and that of the sphere, which
is done in Eq. (B37). Using Eq. (B6), the two-body
Clebsch-Gordan coefficient is given by

〈M,m|m1,m2〉 = 〈0, 0| 1√
M !

(b1 + b2√
2

)M 1√
m!

(b1 − b2√
2

)m
|m1,m2〉

= δM+m,m1+m2

√
m1!m2!

2M+mM !m!

M∑
K=0

m∑
k=0

(−1)k
(
M

K

)(
m

k

)
δK+k,m2

= δM+m,m1+m2

√
m1!m2!

2M+mM !m!

M !

m2!
2F1(−m,−m2;M −m2 + 1,−1)

Γ(M −m2 + 1)

= δM+m,m1+m2

√
M !m!

2M+mm1!m2!
P (m1−m,−m1−m2−1)
m (3), (B7)

where δ is the Kronecker delta, 2F1 is the hypergeometric function having Γ function in the denominator as a regulator,

and P
(α,β)
n is the Jacobi polynomial. After similar computations, the three-body Clebsch-Gordan coeficient is given
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by

〈M,m′1,m
′
2|m1,m2,m3〉 = δM+m′1+m

′
2,m1+m2+m3

√
m1!m2!m3!

2m
′
1+m

′
23M+m′2M !m′1!m′2!

M !

m3!
2F1(−m′2,−m3;M −m3 + 1,−2)

Γ(M −m3 + 1)

× (M +m′2 −m3)!

m2!
2F1(−m2,−m′1;M +m′2 −m2 −m3 + 1,−1)

Γ(M +m′2 −m2 −m3 + 1)

= δM+m′1+m
′
2,m1+m2+m3

√
m1!m2!m3!

2m
′
1+m

′
23M+m′2M !m′1!m′2!

M !m′2!

m3!(m1 +m2 −m′1)!

×P (M−m3,−M−m′2−1)
m′2

(5)P
(m1−m′1,−m1−m2−1)
m2 (3). (B8)

3. Relative angular momentum eigenstates

Haldane’s pseudopotential projectors40,45 are identi-
fied as the projections onto the relative angular momen-
tum eigenstates. In the following, we give a precise defini-
tion of the relative angular momentum eigenstates which
in turn are the eigenstates of the relative angular mo-
mentum operator. From now on, we set ~ = 1.

The total angular momentum operator for N electrons

is Ltot
z =

∑N
i=1 b

†
i bi. After the Jacobi transformation

Eq. (B6), the total angular momentum operator becomes

Ltot
z = (bCM)†bCM +

∑N−1
i=1 (breli )†breli . It is then natural

to define the relative angular momentum operator of N -
particle by

Lrel
z =

N−1∑
i=1

(breli )†breli , (B9)

and the CM angular momentum operator of N -particle
by LCM

z = (bCM)†bCM. The eigenstates of the relative
angular momentum operators are precisely the Jacobi
transformed basis states |M,m′1, . . . ,m

′
N−1〉 with the rel-

ative angular momentum m′1 + · · · + m′N−1. (The CM
angular momentum is M in this case.) However, compli-
cations arise when considering the bosonic (or fermionic)
nature of identical electrons. This restricts the basis to
be symmetric (antisymmetric) under the exchange of the
bosonic (fermionic) electrons. From now on, we consider
the bosonic case only, while the fermionic case can be
considered analogously.

Let’s work in the the CM angular momentum 0 sector
and find the relative angular momentum eigenstates in
this sector. Upon applying 1√

M !
(bCM†)M , we get the cor-

responding relative angular momentum eigenstate with
CM angular momentum M . Since we already know
unsymmetrized relative angular momentum eigenstates,

the symmetrized eigenstates follow from symmetrization.
For example, from a relative angular momentum eigen-
state |0,m′1, . . . ,m′N−1〉 which has a relative angular mo-
mentum m = m′1 + · · ·+m′N−1, the symmetrized eigen-
state is given by

S
[
|0,m′1, . . . ,m′N−1〉

]
∝S
[
(b†1 − b

†
2)m

′
1(b†1 + b†2 − 2b†3)m

′
2 . . .

]
|0, . . . , 0〉,

where S symmetrizes the particle indices in b†. So the
relative angular momentum eigenstates are obtained by
acting homogeneous symmetric polynomials of creation

operators {b†i} on the vacuum state. Since we are working
in the M = 0 sector, the homogeneous symmetric poly-
nomials creating relative angular momentum eigenstates
are precisely the translationally invariant homogeneous
symmetric polynomials, which are classified in Ref. 45.
Ref. 45 uses the advantage of the polynomial structure
of the orbital basis in the coordinate representation using
the symmetric gauge, but in our work, the same structure
arises at the level of second quantized operators without
ever specifying the gauge. Let’s denote an orthonormal-
ized relative angular momentum eigenstate by |m, a〉rel
(which depends on N , the number of particles forming
the eigenstate and we often drop the subscript “rel”),
where a ∈ {1, . . . , Dm,N} accounts for the degeneracy.
Using the prescription in Ref. 45, we list the first few
relative angular momentum eigenstates in TABLE II.

The second quantized operators bj and b†j used so far
are associated with the orbital basis of particle j. When
dealing with the system of identical particles, it is con-
venient to use the creation and annihilation operators
cm and c†m associated with occupation number basis,
where m ∈ {0, 1, 2, . . . } and the operators satisfy the

commutation relation [cm, c
†
m′ ] = δm,m′ . For example,

the total angular momentum operator can be written as:

Ltot
z =

∑N
i=1 b

†
i bi →

∑∞
m=0mc

†
mcm.

4. Pseudopotential projectors in the second
quantization

Having defined the relative angular momentum eigen-
states, one can construct associated projection operators,

so-called the Haldane pseudopotential projectors40,45.
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Eigenvalue
Eigenstates

|m′1〉 |m1,m2〉

m |m〉 1√
2m

m∑
k=0

(−1)k
√
m!√

k!(m− k)!
|m− k, k〉

(a) N = 2

Eigenvalue
Eigenstates

|m′1,m′2〉 |m1,m2,m3〉
0 |0, 0〉 |0, 0, 0〉
2 1√

2
|2, 0〉+ 1√

2
|0, 2〉

√
2
3
|2,0,0〉+|0,2,0〉+|0,0,2〉√

3
−
√

1
3
|1,1,0〉+|1,0,1〉+|0,1,1〉√

3

3
√
3

2
|2, 1〉 − 1

2
|0, 3〉

√
2

3
|3,0,0〉+|0,3,0〉+|0,0,3〉√

3
− 1√

3

|2,1,0〉+|2,0,1〉+|0,2,1〉+|1,2,0〉+|1,0,2〉+|0,1,2〉√
6

+ 2
3
|1, 1, 1〉

(b) N = 3

TABLE II. Relative angular momentum eigenenstates in the Jacobi and the product basis in the CM angular momentum 0
sector of two and three particles. We suppress the CM angular momentum index in the Jacobi basis. Only even m gives a
nonvanishing state when N = 2.

The pseudopotential projectors form complete basis in
the sense that any symmetric N-body interaction VN ,
which commutes with the CM angular momentum op-
erator and the rel angular momentum operator (so the
angular momenta remain good quantum numbers) and
acts trivially in the CM sector, can be written as sums
of pseudopotential projectors:

VN =

∞∑
m=0

Dm,N∑
a,b=1

〈m, a|VN |m, b〉11HCM
LLL
⊗ |m, a〉〈m, b|,

(B10)
where 11HCM

LLL
=
∑∞
M=0 |M〉〈M | is the identity operator in

the CM sector. The N -body pseudopotential projector
is given by

P
(m,a)
N =

1

N !

∞∑
M=0

T †MTM , (B11)

where we have defined TM =
[
T

(m,a)
N

]
M

=∑∞
mi=0〈M ; (m, a)|m1, . . . ,mN 〉cm1

· · · cmN and a ∈
{1, . . . , Dm,N} accounts for the degeneracy in the N -
body relative angular momentum m subspace.

A systematic procedure for constructing the pseudopo-
tential projectors can be summarized as follows: (a) Find
the rel angular momentum eigenstate |m; a〉 in the CM
angular momentum 0 sector. (b) Find the correspond-
ing rel angular momentum eigenstate in the CM angular

momentum M sector by applying 1√
M !

( b†1+···+b†N√
N

)M
to

|m, a〉 or using the Clebsch-Gordan coefficients to con-
struct TM . (c) The pseudopotential projector follows
from Eq. (B11).

For the sake of completeness, we also present the
occupation number operator based construction of the
pseudopotential projectors. The idea is to represent
bCM = b1+···+bN√

N
in terms of the occupation number op-

erators. The N -body CM angular momentum operator

can be written as

LCM
z =

1

N
LCM
+ LCM

−

LCM
+ =

∞∑
m=0

√
m+ 1c†m+1cm

LCM
− =

∞∑
m=0

√
m+ 1c†mcm+1, (B12)

where the operators LCM
z and LCM

± do not satisfy the
SU(2) algebra. (We could construct operators satisfy-
ing the SU(2) algebra in analogy with the sphere at the
expense of introducing a finite cut-off in the orbitals.)

Starting from T0 =
[
T

(m,a)
N

]
0
, which is expressed in terms

of occupation number operators, the following recursion
relation holds:

T †M+1 =
1√
N

[
LCM
+ , T †M

]
. (B13)

The (normalized) angular momentum eigenstate is given

by |M, (m, a)〉 = 1√
N !
T †M |0〉.

Suppose we want to find a zero energy ground state
wavefunction |ΨNe〉 (whereNe is the number of electrons)

of a Hamiltonian H =
∑l
α=1 P

(mα,aα)
Nα

. As the Hamilto-
nian is written in terms of sums of positive projectors, a
zero energy state would be annihilated by individual pro-
jectors in the Hamiltonian. If we further assume to have
maximum possible orbital, say Nφ+1, finding the ground
state amounts to solving a system of homogeneous linear

equations55:
[
T

(mα,aα)
Nα

]
M
|ΨNe〉 = 0, ∀α ∈ {1, 2, . . . , l},

∀M ∈ {0, 1, 2, . . . , Nφ −mα}. This is a great simplifica-
tion compared to numerically expensive exact diagonal-
ization.
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5. Pseudopotential projectors in the cylinder
geometry

In this section, we derive the second quantized Hamil-
tonian in the cylinder geometry. For this purpose, we

rewrite the pseudopotential projectors in Eq. (B11) in
terms of the basis in Eq. (A8). Expressions for the cylin-
der geometry follows when compactifying the plane prop-
erly. During the computation of the matrix element of
the Hamiltonian, we encounter

∞∑
M=0

〈k′1, . . . , k′N |M,m′1, . . . ,m
′
N−1〉〈M,m1, . . . ,mN−1|k1, . . . , kN 〉

=

( N∏
i=1

∫
d2r′iψ

∗
k′i

(r′i)

∫
d2riψki(ri)

)( ∞∑
M=0

φCM
M (R′)

(
φCM
M (R)

)∗)(N−1∏
j=1

φrel,jm′j
(u′j)

(
φrel,jmj (uj)

)∗)

=

( N∏
i=1

∫
d2r′iψ

∗
k′i

(r′i)

∫
d2riψki(ri)

)(
N

2πl2B
e
N(Z∗Z′−i(Z)x(Z)y+i(Z′)x(Z′)y)

2 −N4 (|Z|2+|Z′|2)
)(N−1∏

j=1

φrel,jm′j
(u′j)

(
φrel,jmj (uj)

)∗)
=
√
Ne

l2B

(
k1+···+kN√

N

)2
e−l

2
B(k21+···+k

2
N )2πδ

(
lB(k1 + · · ·+ kN )− lB(k′1 + · · ·+ k′N )

)
×
N−1∏
i=1

(
2π1/2√

2mi+m
′
imi!m′i!

Hmi

( lB(k1 + · · ·+ ki − iki+1

)√
i(i+ 1)

)
Hm′i

( lB(k′1 + · · ·+ k′i − ik′i+1

)√
i(i+ 1)

))
, (B14)

where {R,u} and {r} are related by the Jacobi coordinate transformation Eq. (B1), Z =
(R)x+i(R)y

lB
, (Z)x = (R)x/lB ,

and so on, and Hm is the m-th Hermite polynomial. In Eq. (B14), |M,m1, . . . ,mN−1〉 is the Jacobi transformed basis
and φ and ψ are eigenstates in Landau gauge, i.e., (Jacobi transformed) Eq. (A7) and Eq. (A8).

We again emphasize that the pseudopotential projector in Eq. (B11) is independent of the gauge choice. Whereas, we
used the Landau gauge to calculate matrix element in Eq. (B14). Alternatively, one can simply think of Eq. (B14) as an
abstract unitary basis transformation from the relative angular momentum basis to another basis guided by the unitary
transformation given in Eq. (A9). This particular unitary transformation gives expressions for the pseudopotential
projectors which can be interpreted as interaction Hamiltonians in the cylinder and the torus geometry, i.e., respect
desired symmetries.

In the following, we present explicit expressions for the two-body and the first few three-body pseudopotential
projectors in a cylinder. The cylinder is obtained by compactifying a plane in y-direction via y ∼ y + Ly. Further
pseudopotential projectors can be systematically derived using Eq. (B14) starting from the pseudopotential projectors
in the plane geometry. The two-body pseudopotential projector is given by

Pm2 =
1

2!

∑
R∈Z/2

T †RTR, (B15)

where

TR =
[
Tm2
]
R

=
( 2

π

)1/4√
κ

∑
−∞<r<∞
r+R∈Z

1√
2mm!

Hm

(
κ
√

2r
)
e−κ

2r2cR+rcR−r. (B16)

We present the three-body pseudopotential projectors for m = 0, 2, 3. This can be derived using Eq. (B14) and
Table II (b). The three-body pseudopotential projector, Pm3 (m = 0, 2, 3), in the cylinder geometry is

Pm3 =
1

3!

∑
R∈Z/3

T †RTR, (B17)
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where TR =
[
Tm3
]
R

and

[
T 0
3

]
R

=
( 3

π2

)1/4
κ

∑
−∞<r1,r2<∞
r1+R,r2+R∈Z

e−κ
2
(
r21+r

2
2+r1r2

)
cR+r1cR+r2cR−r1−r2 (B18)

[
T 2
3

]
R

=
( 3

π2

)1/4
κ

∑
−∞<r1,r2<∞
r1+R,r2+R∈Z

(
1

4
H2

(κ(r1 − r2)√
2

)
+

1

4
H2

(√3κ(r1 + r2)√
2

))

× e−κ
2
(
r21+r

2
2+r1r2

)
cR+r1cR+r2cR−r1−r2 (B19)[

T 3
3

]
R

=
( 3

π2

)1/4
κ

∑
−∞<r1,r2<∞
r1+R,r2+R∈Z

(√
3

8
H2

(κ(r1 − r2)√
2

)
H1

(√3κ(r1 + r2)√
2

)
− 1

8
√

3
H3

(√3κ(r1 + r2)√
2

))

× e−κ
2
(
r21+r

2
2+r1r2

)
cR+r1cR+r2cR−r1−r2 . (B20)

All pseudopotential projectors respect translational symmetry.

6. Pseudopotential projectors in the torus geometry

Pseudopotential projectors in the torus geometry follow directly from the cylinder geometry by compactifying
x-direction via x ∼ x+ Lx. The two-body pseudopotential projector is given by

Pm2 =
1

2!

2Nφ∑
2R=1

T †RTR, (B21)

where m is the two-body relative angular momentum and

TR =
( 2

π

)1/4√
κ

∑
0≤r<Nφ
r+R∈Z

[∑
s∈Z

1√
2mm!

Hm

(√
2κ(r + sNφ)

)
e−κ

2(r+sNφ)
2

]
cR+rcR−r. (B22)

We have used the identification cm+Nφ = cm. The three-body pseudopotential projector is given by

P
(m,a)
3 =

1

3!

3Nφ∑
3R=1

T †RTR, (B23)

where

TR =
( 3

π2

)1/4
κ

∑
0≤r1,r2<Nφ
r1+R,r2+R∈Z

[ ∑
s1,s2∈Z

t
(m,a)
3 e−κ

2
(
(r1+s1Nφ)

2+(r2+s2Nφ)
2+(r1+s1Nφ)(r2+s2Nφ)

)]
cR+r1cR+r2cR−(r1+r2),

(B24)
with the identification cm+Nφ = cm and

t03 = 1 (B25)

t23 =
1

4
H2

(κ(r1 − r2 + (s1 − s2)Nφ
)

√
2

)
+

1

4
H2

(√3κ
(
(r1 + r2) + (s1 + s2)Nφ

)
√

2

)
(B26)

t33 =

√
3

8
H2

(κ(r1 − r2 + (s1 − s2)Nφ
)

√
2

)
H1

(√3κ
(
(r1 + r2) + (s1 + s2)Nφ

)
√

2

)
− 1

8
√

3
H3

(√3κ
(
(r1 + r2) + (s1 + s2)Nφ

)
√

2

)
. (B27)

Further pseudopotential projectors can be obtained by
starting from the corresponding expressions of the cylin-

der geometry. All the pseudopotential projectors respect
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many-body translational symmetries in the torus5,41,42.

7. Pseudopotential projectors in the sphere
geometry

Pseudopotential projectors in the sphere are projec-
tions to the (relative) angular momentum eigenstates in
the sphere. Because of the appreciated SO(3) (or SU(2))
symmetry, relative angular momentum eigenstates of N
particles with relative angular momentum m correspond

to SU(2) spin N
Nφ
2 −m representations of N electrons.

Using second quantization language, the angular momen-
tum operators can be written as

Lz =

S∑
M=−S

Mc†McM

L+ =

S∑
M=−S

√
S(S + 1)−M(M + 1)c†M+1cM

L− =

S∑
M=−S

√
S(S + 1)−M(M − 1)c†M−1cM , (B28)

where cM (c†M ) is a creation (annihilation) operator as-
sociated with φM and it satisfies the commutation rela-

tion
[
cM , c

†
M ′

]
= δM,M ′ . Angular momentum operators

satisfy the canonical angular momentum commutation
relations: [

L+, L−
]

= 2Lz[
Lz, L±

]
= ±Lz.

In the following, we construct pseudopotential projec-
tors in terms of the second quantization. Unlike the
plane geometry, relative angular momentum eigenstates
and the pseudopotential projectors are dependent on the
underlying monopole strength 2S = Nφ. The two-body
pseudopotential projector is given by

Pm2 =
1

2!

J∑
M=−J

T †J,MTJ,M , (B29)

where J = 2S −m and

TJ,M =

S∑
m1,m2=−S

〈J,M |S,m1;S,m2〉cm1
cm2

. (B30)

〈J,M |S,m1;S,m2〉 is the usual Clebsch-Gordan coeffi-

cient of SU(2) representation. 1√
2!
T †J,M acting on a vac-

uum creates a normalized two-particle state with relative
angular momentum m and CM angular momentum M .
Due to the bosonic nature of operators, only even m is
allowed (or non-vanishing).

The three-body pseudopotential projector is given by

P
(m,a)
3 =

1

3!

J∑
M=−J

T †J,MTJ,M , (B31)

where a denotes the possible degeneracy and J = 3S −
m. The degeneracy (for a sufficiently large S) exactly
matches with the degeneracy of the (infinite) plane45.
The first three T3S−m,3S−m are as follows:

T3S,3S =
(
cS
)3

(B32)

T3S−2,3S−2 =

√
12S

6S − 1

(
cS
)2
cS−2 −

√
3(2S − 1)

6S − 1
cS
(
cS−1

)2
(B33)

T3S−3,3S−3 =

√
6S2

(3S − 1)(3S − 2)

(
cS
)2
cS−2 −

√
18S(S − 1)

(3S − 1)(3S − 2)
cScS−1cS−2 +

√
2(S − 1)(2S − 1)

(3S − 1)(3S − 2)

(
cS−1

)3
. (B34)

Given TJ,J , other operators can be computed using the
lowering operator:

T †J,M−1 =
1√

J(J + 1)−M(M − 1)

[
L−, T

†
J,M

]
. (B35)

Using the stereographic projection, which maps a
sphere to an infinite plane, the annihilation operators
are mapped as

sphere: cm−S ↔ plane: cm

and the relative eigenstates in the sphere maps to the

relative eigenstates in the sphere:

T
(a)
NS−m,−(NS−m)+M −−−−→S→∞

[
T

(m,a)
N

]
M

(B36)

Finally, the Clebsch-Gordan coefficient of the sphere re-
duces to the Clebsch-Gordan of the plane,

〈2S −m,−(2S −m) +M |S,−S +m1;S,−S +m2〉
−−−−→
S→∞

〈M,m|m1,m2〉, (B37)

and the similar relations hold for three- and many-
particle cases.
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8. Pseudopotential projectors in the coordinate
representation

So far, we have expressed operators using only the
guiding-center degrees of freedom which capture all the
physics in the LLL. On the other hand, it is sometimes
useful to find a more familiar coordinate representation
of interactions. However, going back to coordinate repre-
sentation of interactions requires the knowledge of the ac-
tion of an interaction in the higher LLs. Two very differ-
ent potentials can have the same effect in the LLL. With
this caveat, we present representatives of the two-body
pseudopotential projectors and the first two of three-
body pseudopotential projectors. We choose the sym-
metric gauge as we require an explicit gauge in order to
specify the action of the operator in the position Hilbert
space.

We demand our interaction V (r1, . . . , rN ) to be trans-
lationally invariant and symmetric under the exchange
of particle indices. The Jacobi coordinate in Eq. (B1) is
again useful for this purpose as V becomes a function of
u1, . . . ,uN−1 only. It is convenient to work in the mo-
mentum space,

V (u1, . . . ,uN−1)

=

N−1∏
i=1

(∫
d2(liki)

(2π)2
eiki·ui

)
V (k1, . . . ,kN−1).

In this section, we share the notation of Ref. 46, but
our explicit coordinate choice results in some differences.
Also, we make our potential as symmetric as possible.
The LLL projections and the matrix elements appearing
in this section can also be found in Ref. 48.

Using the LLL projection of the following operator:

eiki·ui = ei(ki)x
(
Xi−

l2
i
~ (πi)x

)
+i(ki)y

(
Yi+

l2
i
~ (πi)y

)
= e

i
ili√

2
(k∗i ai+kia

†
i )e

ili√
2
(k∗i b

†
i+kibi)

= e−l
2
i |ki|

2/2e
i
ili√

2
k∗i aie

i
ili√

2
kia
†
i e

ili√
2
k∗i b
†
i e

ili√
2
kibi

= e−l
2
i |ki|

2/2e
ili√

2
k∗i b
†
i e

ili√
2
kibi , (B38)

the LLL projected V is given by

V (u1, . . . ,uN−1) =

N−1∏
i=1

(∫
d2(liki)

(2π)2
e−l

2
i |ki|

2/2

)
V (k1, . . . ,kN−1)

(
11HCM

LLL
⊗
N−1∏
i=1

(
e
ili√

2
k∗i b
†
i e

ili√
2
kibi
))

. (B39)

From now on, we suppress 11HCM
LLL

factor. The matrix element associated with the LLL-projected interaction can be

evaluated using (when mi ≥ m′i):

〈mi|e
ili√

2
k∗i b
†
i e

ili√
2
kibi |m′i〉 =

mi∑
p=0

m′i∑
q=0

〈mi|
1

p!

(
i√
2
lik
∗
i b̂
†
i

)p
1

q!

(
i√
2
likib̂i

)q
|m′i〉

=

mi∑
p=mi−m′i

m′i∑
q=0

〈mi|
1

p!

(
i√
2
lik
∗
i b̂
†
i

)p
1

q!

(
i√
2
likib̂i

)q
|m′i〉

=

(
i√
2
lik
∗
i

)mi−m′i√mi!

m′i!

m′i∑
p′=0

m′i∑
q=0

1

(p′ + (mi −m′i))!
1

q!
〈mi|

(
i√
2
lik
∗
i b̂
†
i

)p′(
i√
2
likib̂i

)q
|m′i〉

=

(
i√
2
lik
∗
i

)mi−m′i√mi!

m′i!

m′i∑
q=0

1

(q + (mi −m′i))!q!
m′i!

(m′i − q)!

(
− l2i |ki|2

2

)q
=

(
i√
2
lik
∗
i

)mi−m′i√m′i!

mi!
L
mi−m′i
m′i

( l2i |ki|2
2

)
, (B40)

and similarly when mi ≤ m′i,

〈mi|e
ili√

2
k∗i b
†
i e

ili√
2
kibi |m′i〉 =

(
i√
2
liki

)m′i−mi√mi!

m′i!
L
m′i−mi
mi

( l2i |ki|2
2

)
.
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The matrix element is given by:

〈m1, . . . ,mN−1|V |m′1, . . . ,m′N−1〉 =

N−1∏
i=1

(∫
d2(liki)

(2π)2
e−l

2
i |ki|

2/2

)
V (k1, . . . ,kN−1)

(N−1∏
i=1

〈mi|e
ili√

2
k∗i b
†
i e

ili√
2
kibi |m′i〉

)

=

N−1∏
i=1

(∫
d2(liki)

(2π)2
e−l

2
i |ki|

2/2

(
i√
2
lik
∗
i

)mi−m′i√m′i!

mi!
L
mi−m′i
m′i

( l2i |ki|2
2

))
V (k1, . . . ,kN−1). (B41)

The following identity provides a guiding principle in choosing a representative interaction.

∫
d2(lk)

(2π)2
Ln

( l2|k|2
2

)(
lk
)m′−m

Lm
′−m

m

( l2|k|2
2

)
e−

1
2 l

2|k|2 =
1

2π
δn,mδm,m′ (B42)

The two-body pseudopotential projector Pm2 can be rep-
resented as

V (k1) = 2πLm

(
l21|k1|2

2

)
, (B43)

where m (≥ 0) is an even integer for the bosonic case and
an odd integer for the fermionic case. Note that this rep-
resentation gives translationally invariant potential and
symmetric under the exchange of particles, i.e. satisfies
V (−k1) = V (k1) in the momentum space of the Jacobi
coordinates.

We demand that the three-body interaction pseudopo-
tential projectors are translationally invariant interac-
tion, i.e., V is a function of relative coordinates, and
remains invariant under the particle exchanges. The lat-
ter condition is equivalent to V (k1,k2) = V (−k1,k2) =
V ( 1

2k1 + 3
4k2,k1 − 1

2k2). In the following, we present
the first two three-body pseudopotential projectors. The
higher angular momentum and/or N(> 3)-body inter-
actions can also be constructed using similar considera-
tions. The first two relative angular momentum eigen-
states of three particles in the relative angular mo-
mentum basis |m′1,m′2〉 are |0〉rel = |0, 0〉 and |2〉rel =
1√
2

(
|2, 0〉 + |0, 2〉

)
. Then a representative expression for

P 0
3 is

V (u1,u2) = (2π)2L0

( l21|k1|2

2

)
L0

( l22|k2|2

2

)
, (B44)

and for P 2
3 is

V (u1,u2) = (2π)2
(
L2

( l21|k1|2

2

)
L0

( l22|k2|2

2

)
+

L1

( l21|k1|2

2

)
L1

( l22|k2|2

2

)
+ L0

( l21|k1|2

2

)
L2

( l22|k2|2

2

))
.

(B45)

The Gaffnian state11 is the (highest density) zero-energy
ground state of the Hamiltonian AP 0

3 +BP 2
3 (A,B > 0).

Appendix C: Density Operator Algebra

In the LLL, we quench the dynamical momenta and
use only the guiding-center degrees of freedom to de-
scribe physics. This yields nontrivial commutation re-
lation among LLL-projected density operators. We fol-
low the modernized definition of the guiding-center (pro-
jected) density operator48–50.

The density operator and its Fourier transformation

are given by ρ(r) =
∑Ne
i=1 δ

(2)(r − ri) and ρk =∑Ne
i=1 e

−ik·ri . We are interested in the LLL-projected ver-
sion of them. Using a similar technique as in Eq. (B38),

ρk =

Ne∑
i=1

e−ik·ri = e−l
2
B |k|

2/2
Ne∑
i=1

e−k·Ri ≡ e−l
2
B |k|

2/2ρ̂k,

where we have defined the guiding-center density opera-

tor ρ̂k =
∑Ne
i=1 e

−k·Ri . Note that ρ̂0 = Ne and ρ̂†k = ρ̂−k.
The LLL projection of a product of two density operators
is given by

ρq1
ρq2

=e−
1
4 l

2
B(|q1|2+|q2|2)ρ̂q1

ρ̂q2

+

(
1− e i2 l

2
Bq1∧q2e

1
2 l

2
Bq1·q2

)
ρ̂q1+q2

. (C1)

Exchanging the role of q1 and q2 gives the commutation
relation between the density operators which is the GMP
algebra27:

[ρ̂q1
, ρ̂q2

] = 2i sin
(1

2
l2Bq1 ∧ q2

)
ρ̂q1+q2

(C2)

When it comes to a three-body interaction, we need the
LLL projection of a product of three density operators.
After some tedious algebra, we get
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ρq1+q2
ρ∗q1

ρ∗q2
=e−

1
4 l

2
B |q1+q2|2e−

1
4 l

2
B |q1|2e−

1
4 l

2
B |q2|2 ρ̂q1+q2

ρ̂†q1
ρ̂†q2

+
(

1− e 1
2 l

2
Bq
∗
1q2
)
e−

1
2 l

2
B |q1+q2|2 ρ̂q1+q2

ρ̂†q1+q2

+
(

1− e− 1
2 l

2
Bq
∗
1q2e−

1
2 l

2
B |q2|2

)
e−

1
2 l

2
B |q1|2 ρ̂q1

ρ̂†q1
+
(

1− e− 1
2 l

2
Bq1q

∗
2 e−

1
2 l

2
B |q1|2

)
e−

1
2 l

2
B |q2|2 ρ̂q2

ρ̂†q2

+

((
e

1
2 l

2
Bq
∗
1q2 + e

1
2 l

2
Bq1q

∗
2

)
e−

1
2 l

2
B |q1+q2|2 − e− 1

2 l
2
B |q1+q2|2 − e− 1

2 l
2
B |q1|2 − e− 1

2 l
2
B |q2|2 + 1

)
Ne. (C3)

Appendix D: Density Correlation Functions

Density correlation functions contain useful informa-
tion of the system in the thermodynamic limit. We will
see later that the single-mode approximation is expressed
in terms of the density correlations. In this section, we re-
view the density correlation functions - from one-density
to three-density correlation function - and discuss how
they enter in the expressions for single-mode approxima-
tion of a three body interaction. We consider the infinite
plane geometry and use the symmetric gauge in this sec-
tion.

1. Density correlation functions in the
thermodynamic limit

The one-particle density is a density correlation func-
tion defined by

ρ(r) = 〈ψ̂†(r)ψ̂(r)〉

= Ne

∫
d2r2 . . . d

2rNe |Ψ(r, r2, . . . , rNe)|2, (D1)

where ψ̂(r) =
∑
m φm(r)cm is the annihilation operator

at r and cm is the annihilation operator associated with
orbital m. We are mainly interested in a homogeneous
liquid: ρ(r)→ ρ = ν

2π in the thermodynamic limit.
The pair-correlation function is a two-density correla-

tion function defined by

g(R,u) = ρ−2〈ψ̂†(r1)ψ̂†(r2)ψ̂(r2)ψ̂(r1)〉

=
Ne(Ne − 1)

ρ2

∫
d2r3 . . . d

2rNe |Ψ(r1, . . . , rNe)|2,

(D2)

where (R,u) and (u1,u2) are related by the two-
body Jacobi coordinates: (r1, r2) =

(
R + u

2 ,R −
u
2

)
.

The pair-correlation function remains invariant under
the exchange of particle indicies, which gives the rela-
tion g(R,−u) = g(R,u). For a homogeneous state,

g(R,u) → g(u) in the thermodynamic limit. The sym-
metry becomes g(u) = g(−u) and if we further assume
the rotation symmetry, the pair-correlation function be-
comes rotationally symmetric: g(u) = g(|u|).

The three-density correlation function is defined by

h(R,u1,u2) = ρ−3〈ψ̂†(r1)ψ̂†(r2)ψ̂†(r3)ψ̂(r3)ψ̂(r2)ψ̂(r1)〉

=
Ne(Ne − 1)(Ne − 2)

ρ3

∫
d2r4 . . . d

2rNe |Ψ|2,

(D3)

where we have used the three-body Jacobi coordinates:
(r1, r2, r3) =

(
R+ u1

2 + u2

3 ,R−
u1

2 + u2

3 ,R−
2
3u2

)
. The

expression remains invariant upon exchanging the indi-
cies in r, which gives the symmetries: h(R,u1,u2) =
h(R,−u1,u2) = h(R, 12u1 + u2,

3
4u1 − 1

2u2). For a ho-
mogeneous state, h(R,u1,u2) → h(u1,u2) in the ther-
modynamic limit and the symmetries reduce to:

h(u1,u2) = h(−u1,u2) = h(
1

2
u1 + u2,

3

4
u1 −

1

2
u2).

(D4)

2. Structure factors in the thermodynamic limit

The static structure factors are the Fourier trans-
form of the density correlation functions. In defin-
ing these structure factors, there exist potential diver-
gences for which we need to regularize. For example, the
one-particle density becomes a constant function in the
thermodynamic limit (for a homogeneous state), so its
Fourier transformation is a Dirac delta function peaked
at 0, i.e., divergence at the momentum equals zero. The
structure factor is defined as

s(k) =
1

Ne
〈ρkρ∗k〉 − ρ(2π)2δ(2)(k), (D5)

where the delta function in the second term compensates
the divergences of the first term at k = 0. The structure
factor can be simplified as
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s(k) = 1 +
Ne(Ne − 1)

Ne

( Ne∏
i=1

∫
d2ri

)
eik·(r1−r2)|Ψ(r1, . . . , rNe)|2 − ρ(2π)2δ(2)(k)

= 1 +
ρ2

Ne

∫
d2R

∫
d2reik·ug(r)− ρ

∫
d2reik·r

= 1 +

∫
d2ueik·uρ

(
g(u)− 1

)
, (D6)

where we have used the Jacobi coordinate transform and the fact
∫
d2R → Ne

ρ as Ne → ∞. The symmetry of

g, g(−u) = g(u), now translates into the symmetry of s as s(−k) = s(k). If we assume the state is rotationally
symmetric, then we have: s(k) = s(|k|). Since the structure factor vanished at k = 0, it gives the following sum rule:

∫
d2ueik·uρ

(
g(u)− 1

)
= −1 (D7)

The three-point structure factor is defined by

Λ(k1,k2) =
1

Ne
〈ρk2

ρ∗k1+
1
2k2

ρ∗−k1+
1
2k2
〉 − s(k1)ρ(2π)2δ(2)(k2)− s(k2)ρ(2π)2δ(2)

(
k1 +

1

2
k2

)
− s(k2)ρ(2π)2δ(2)

(
k1 −

1

2
k2

)
− ρ(2π)2δ(2)(k1)ρ(2π)2δ(2)(k1), (D8)

where all the possible divergences at k2 = 0, k1 + 1
2k2 = 0, and k1 − 1

2k2 = 0 are canceled by Dirac delta functions.
Using the similar methods in Eq. (D6), the three-point structure factor can be expressed as

Λ(k1,k2) =− 2 + s
(
k1 +

1

2
k2

)
+ s
(
− k1 +

1

2
k2

)
+ s(k2)

+

∫
d2u1

∫
d2u2e

ik1·u1eik2·u2ρ2
(
η(u1,u2)− g

(1

2
u1 + u2

)
− g
(
− 1

2
u1 + u2

)
− g(u1) + 2

)
. (D9)

After a bit of work, we can check that the three-point structure factor has the relevant symmetries:

Λ(k1,k2) = Λ(−k1,k2) = Λ
(1

2
k1 +

3

4
k2,k1 −

1

2
k2

)
. (D10)

Since Λ(k1,k2) vanished at k2 = 0, it gives the following sum rule:∫
d2u2 ρ

2

(
h(u1,u2)− g

(1

2
u1 + u2

)
− g
(
− 1

2
u1 + u2

)
− g(u1) + 2

)
= −2ρ

(
g(u1)− 1

)
. (D11)

3. Guiding-center (projected) structure factors in the thermodynamic limit

Let’s define guiding-center (projected) structure factors and express them in terms of the ordinary structure factors.
The projected structure factor is defined by

ŝ(k) =
1

Ne
〈ρ̂kρ̂†k〉 − ρ(2π)2δ(2)(k)

= e
1
2 l

2
B |k|

2
( 1

Ne
〈ρkρ∗k〉 − ρ(2π)2δ(2)(k)

)
−
(
e

1
2 l

2
B |k|

2

− 1
)

= e
1
2 l

2
B |k|

2

s(k)−
(
e

1
2 l

2
B |k|

2

− 1
)
, (D12)

where we have used Eq. (C1) from line 2 to line 3. (The state is assumed to be in the LLL so that the overall
projection can be removed.) The projected structure factor has the same symmetry as s(k): ŝ(−k) = ŝ(k), and when
the state is rotationally invariant: s(k) = s(|k|).
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The guiding-center (projected) three-point structure factor can be expressed as

Λ̂(k1,k2) =
1

Ne
〈ρ̂k2

ρ̂†
k1+

1
2k2

ρ̂†−k1+
1
2k2
〉 − ŝ(k1)ρ(2π)2δ(2)(k2)− ŝ(k2)ρ(2π)2δ(2)(k1 +

1

2
k2)

− ŝ(k2)ρ(2π)2δ(2)(k1 −
1

2
k2)− ρ(2π)2δ(2)(k1)ρ(2π)2δ(2)(k1)

= −
(
e
i
2 l

2
Bk1∧k2 + e−

i
2 l

2
Bk1∧k2

)
+ e

i
2 l

2
Bk1∧k2 ŝ(k2) + e−

i
2 l

2
Bk1∧k2 ŝ

(
k1 +

1

2
k2

)
+ e

i
2 l

2
Bk1∧k2 ŝ

(
− k1 +

1

2
k2

)
+ e

1
4 l

2
1|k1|2e

1
4 l

2
2|k2|2

∫
d2u1

∫
d2u2e

ik1·u1eik2·u2ρ2
(
h(u1,u2)− g

(1

2
u1 + u2

)
− g
(
− 1

2
u1 + u2

)
− g(u1) + 2

)
,

(D13)

where we have used k1 ∧ k2 = (k1)x(k2)y − (k1)y(k2)x. Symmetries are restored by introducing the symmetrized
version of three-point structure factor:

Λ̂sym(k1,k2) =
1

6

[
Λ̂(k1,k2) + Λ̂(−k1,k2) + Λ̂

(1

2
k1 +

3

4
k2,k1 −

1

2
k2

)
+ Λ̂

(
− 1

2
k1 +

3

4
k2,−k1 −

1

2
k2

)
+ Λ̂

(
− 1

2
k1 −

3

4
k2,k1 −

1

2
k2

)
+ Λ̂

(1

2
k1 −

3

4
k2,−k1 −

1

2
k2

)]
= 2 cos

(1

2
l2Bk1 ∧ k2

)(
− 1 +

1

2
ŝ(k2) +

1

2
ŝ
(
k1 +

1

2
k2

)
+

1

2
ŝ
(
− k1 +

1

2
k2

))
+ e

1
4 l

2
1|k1|2e

1
4 l

2
2|k2|2

∫
d2u1d

2u2e
ik1·u1eik2·u2ρ2

(
η(u1,u2)− g

(1

2
u1 + u2

)
− g
(
− 1

2
u1 + u2

)
− g(u1) + 2

)
. (D14)

Which has the following symmetries analogous to Eq. (D10):

Λ̂sym(k1,k2) = Λ̂sym(−k1,k2) = Λ̂sym
(1

2
k1 +

3

4
k2,k1 −

1

2
k2

)
. (D15)

Appendix E: Single-Mode Approximation of the
magnetoroton Mode

In the seminal paper27 by Girvin, MacDonald, and
Platzman, the ansatz wave excitation function |ΨSMA

q 〉 =

N
−1/2
e ρ̂†q|Ψ〉 is used to approximate the magnetoroton

mode, the low-lying neutral excitation mode. Using this
ansatz wavefunction, we gap function can be computed
as

∆(q) =
〈ΨSMA

q |(H − EGS)|ΨSMA
q 〉

〈ΨSMA
q |ΨSMA

q 〉
=
f̂(q)

ŝ(q)
, (E1)

where ŝ(q) is the guiding-center structure factor, V is the
interaction Hamiltonian, and

f̂(q) =
1

2Ne
〈ΨSMA

q |
[
ρ̂q,
[
V , ρ̂†q

]]
|ΨSMA

q 〉. (E2)

In the following, we first review the SMA for two-body

interaction and then derive the results for three-body in-
teraction.

1. Two-body interaction

The interaction potential of two-body interaction in
Ne electrons can be written as

V (r1, . . . , rNe) =
1

2

∑
i6=j

V (ri − rj)

=
1

2

∫
d2(l1k)

(2π)2
V (k)(ρkρ

∗
k −Ne),

where we used the length scale l1 =
√

2lB of (a Jacobi-
coordinate) u1 = r1 − r2. After the LLL projection, the

potential becomes V = 1
2

∫ d2(l1k)
(2π)2 v(k)(ρ̂kρ̂

†
k−Ne), where

v(k) = V (k)e−
1
4 l

2
1|k|

2

. Using the GMP algebra Eq. (C2),
we get

[V , ρ̂†q] =
1

2

∫
d2(l1k)

(2π)2
(
v(k)− v(k− q)

)
2i sin

(1

2
l2Bq ∧ k

)
ρ̂−q+kρ̂−k

[ρ̂q, [V , ρ̂
†
q]] =

1

2

∫
d2(l1k)

(2π)2
(
v(k + q)− 2v(k) + v(k− q)

)
2 sin2

(1

2
l2Bq ∧ k

)
ρ̂kρ̂−k,
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and finally the gap function is given by ∆(q) = f̂(q)/ŝ(q), where

f̂(q) =

∫
d2(l1k)

(2π)2

(
v(k + q)− 2v(k) + v(k− q)

)
2 sin2

(1

2
l2Bq ∧ k

)
ŝ(k). (E3)

2. Three-body interaction

We demand that the three-body interaction that appears in the potential is translationally invariant and sym-
metric under the exchange of particles. Then a three-body interaction becomes V (r1, r2, r3) = V (u1,u2), where
u1 and u2 are the relative Jacobi-coordinates in Eq. (B1). Particle exchange symmetries are equivalent to
V (u1,u2) = V (−u1,u2) = V ( 1

2u1 + u2,
3
4u1 − 1

2u2). The Fourier transformation of V (u1,u2) is V (u1,u2) =∫ d2(l1k1)
(2π)2

∫ d2(l2k2)
(2π)2 V (k1,k2)eik1·u1eik2·u2 and the symmetry conditions become V (k1,k2) = V (−k1,k2) = V

(
1
2k1 +

3
4k2,k1 − 1

2k2

)
.

A three-body interaction of N electrons in the coordinate representation is

V (r1, . . . , rN ) =
∑

1≤i<j<k≤N

V (ri, rj , rk) =

N∑
i,j,k=1

(i,j,k):distinct

V
(
ri − rj ,

ri + rj − 2rk
2

)

=
1

6

∫
d2(l1k1)

(2π)2

∫
d2(l2k2)

(2π)2
V (k1,k2)

(
ρk2ρ

∗
k1+

1
2k2

ρ∗−k1+
1
2k2
− ρk2ρ

∗
k2
− ρk1+

1
2k2

ρ∗k1+
1
2k2

+ ρ−k1+
1
2k2

ρ∗−k1+
1
2k2

+ 2Ne

)
(E4)

and its LLL projection is

V =
1

6
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, (E5)

where we have introduced v(k1,k2) = V (k1,k2)e−
1
4 l

2
1|k1|2e−

1
4 l

2
2|k2|2 . Using the symmetries of v(k1,k2), we can simplify

the expression further:

V =
1
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where we have defined v2(k2) =
∫ d2(l1k1)

(2π)2 v(k1,k2)e
i
2 l

2
Bk1∧k2 . Eq. (E2) for three-body interaction can be computed

using the GMP algebra Eq. (C2). After very lengthy algebra, the final expression for the gap function of three-body
interaction is

f̂(q) =
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where
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