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One-dimensional (1D) electron systems in the presence of Coulomb interaction are described by
Luttinger liquid theory. The strength of Coulomb interaction in the Luttinger liquid, as parametrized
by the Luttinger parameter K, is in general difficult to measure. This is because K is usually hidden
in power law dependencies of observables as a function of temperature or applied bias. We propose
a dynamical way to measure K on the basis of an electronic time-of-flight experiment. We argue
that the helical Luttinger liquid at the edge of a 2D topological insulator constitutes a preeminently
suited realization of a 1D system to test our proposal. This is based on the robustness of helical
liquids against elastic backscattering in the presence of time reversal symmetry.

I. INTRODUCTION

Since the motion of electrons is strongly geometrically
constrained in 1D conductors, Coulomb interactions have
particularly pronounced effects on transport properties.
The paradigm of quasi-free quasiparticles (as in the Fermi
liquid), valid in higher dimensions, is then replaced by a
collective description of electronic excitations in terms of
bosonic density waves in the Luttinger liquid picture.1–3

Due to their capacitive nature, Coulomb interactions can
be conveniently evidenced by radio frequency (RF) mea-
surements, as exemplified in the chiral edge states of
the quantum Hall effect.4–7 Similarly Quantum spin Hall
(QSH) insulators exhibit transport behavior, which is
governed by a pair of counter-propagating helical edge
states. The right and left movers at a given boundary
of the physical system carry opposite spin,8,9 rendering
them robust against elastic backscattering. So far, exper-
imental efforts have largely focused on the prospects for
topologically protected edge state transport10–13 or topo-
logical Josephson junctions.14–17 QSH insulators, how-
ever, also enable studies of Coulomb interaction in one-
dimensional conductors.18 The interplay of Coulomb in-
teraction and randomness in spin-orbit coupling, e.g. due
to rough edges, creates an additional source of inelastic
backscattering in helical liquids.19–24 Still, these correc-
tions to transport are usually suppressed at low energy
scales. Hence, unlike most other 1D conductors such as
carbon nanotubes or semiconducting nanowires, mobili-
ties in helical Luttinger liquids (hLLs) can be high, and
mean-free paths exceeding l ∼ 10µm have already been
observed.25 Additionally further realizations of QSH in-
sulators with large bulk gaps start to enter the stage13

and step edges on high symmetry surfaces of topologi-
cal crystalline insulators likewise give rise to novel sce-
narios of 1D helical edge channels.26 This pushes the
boundaries within which coherent 1D transport allows
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FIG. 1. Geometry proposed for measuring the interaction pa-
rameter K of a one-dimensional conducting channel of length
L connected to two Fermi leads reservoirs with K = 1. A gate
voltage VG(t) is applied via a gate of length w in the middle
of the channel. The signal is either read out as a current via
one of the leads or capacitively via a probe at the contact.

to be investigated. Recently proposals for new stud-
ies of dynamical transport in topological insulators have
been reported,27,28 which are inspired by analogous ex-
periments in the quantum Hall effect.29,30

In this article, we investigate the general problem of
inhomogeneous Luttinger liquids, in which the interac-
tion parameter K(x) is assumed to depend on the po-
sition coordinate x in the channel.31 The dynamics of a
Luttinger liquid can be characterized by the dispersion
of the excitations and interactions inside or between the
transport channels. In the particular case of hLLs, it
can be described by the renormalized Fermi velocity u
and the Luttinger parameter K. The dynamics of ho-
mogeneous hLLs have recently been investigated in sev-
eral theoretical works,32–35 with a focus on effects such
as spin-charge separation. Inhomogeneous Luttinger liq-
uids have first been studied in the context of investigating
the K dependence of the Landauer conductivity, which
was eventually concluded to be independent of K.36–38

Indeed, assuming a continuous spatial dependence of K
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at the scale of the Fermi wavelength,39 the conductance
between left and right leads is solely determined by the
contacts, which, being effectively non-interacting higher
dimensional Fermi liquids, feature K = 1. While reflec-
tions do occur due to variations of K, the DC amplitudes
sum up to the quantized conductance expected in the ab-
sence of interactions.38,40 The AC regime was shown to in
principle inherit aK dependence from the spatial interac-
tion profile in the wire.39 As a consequence, in DC exper-
iments, the Luttinger parameter does not surface in the
conductance value itself, and instead would have to be
tediously extracted as an exponent from the dependence

of the tunneling density of states ν(E) ∝ |E|(1−K)2/2K

on energy41, the temperature dependence of the conduc-
tance G(T ) ∝ T 2(1−K)/K through a tunnel barrier,42 or
optical absorption spectrum A(ω) ∝ (ω − ω0)K/2−1 of
tunnel coupled quantum dot43 or alternatively from DC
current asymmetries in three terminal devices.32,44 An
alternative possibility to determine the Luttinger param-
eter has been identified through the finite frequency cur-
rent noise,45,46 and by means of an AC driven quantum
point contact.47 Experiments along these lines have been
performed on the basis of cleaved-edge overgrowth quan-
tum wires48,49 and edge states of integer quantum Hall
systems.50 They have indeed been interpreted as evidence
for charge fractionalization in 1D. Hence, they have al-
lowed for a determination of K in those two systems.

We propose a new approach to measure the Luttinger
parameter K in 1D conductors in the geometry presented
in Fig. 1. Using top-gate electrodes, we define regions in
which interactions are efficiently screened with K ' 1
over a scale of a few tens of nanometers, much smaller
than l. Unscreened regions conserve an interaction pa-
rameter K 6= 1. Another narrower top-gate electrode is
capacitively coupled to the conducting channel to gen-
erate an AC excitation in the channel. We show, that
the AC conductance between the excitation gate and a
readout contact (ohmic or capacitive) exhibits a simple
K-dependence. Applying a time-dependent voltage to
the gate, as shown in Fig. 1, we create electron- and
hole-like excitations, which scatter on the spatial vari-
ations of K(x). The scattered charge pulses can be
detected via time-resolved measurements with realistic
sub-nanosecond resolution7 in the readout lead. Alter-
natively, we calculate the finite frequency admittance
g(ω), and demonstrate that it allows for a reliable ex-
traction of K in the edge channels. Both methods rely
on demonstrated microwave techniques, making this pro-
posal experimentally feasible. Furthermore, while QSH
insulators are a prototypical example to test our pro-
posal, it is not limited to QSH edge states, but applies
to any (non-chiral) Luttinger liquid. For QSH insula-
tors, we take advantage of the large mean free-path in
the QSH edge states, the absence of backscattering at
the center gate voltage, and the easiness to design on-
demand geometries. In terms of theoretical methodology,
we employ an equation of motion perspective as estab-
lished in Refs. 36 and 39, which proves ideally suited for

this task. Our setup uses a gate, which does not cover
the whole interacting region. This allows us also to probe
the interactions in the range of the spectrum between the
frequencies corresponding to the two length scales of the
system. We find non-trivial length dependent corrections
to the specific case of a gate that covers the whole helical
channel.40,51 The article is organized as follows. In Sec-
tion II, we recap the relevant properties of the inhomo-
geneous Luttinger liquid for our purposes. Subsequently,
in Section III, we describe the time-resolved transport
in the setup shown in Fig. 1. In further sections, we
go from time to frequency domain (Section IV) and dis-
cuss the influence of an arbitrary profile of K(x) on our
results (Section V) before we summarize our results in
Section VI. Some technical details of the calculations are
delegated to the Appendix.

II. INHOMOGENEOUS LUTTINGER LIQUID

Consider a one-dimensional interacting helical edge
channel. The bosonized Hamiltonian of the system with
space dependent interaction parameter K(x) and mode
velocity u(x), including the coupling to a gate potential
ϕ(x), introduced by a minimal coupling term, reads:

H =
1

2π

∫
dxu(x)

[
K(x)

(
πΠ(x)

)2
+

(
∂xΦ(x)

)2
K(x)

]

− e

π

∫
dxϕ(x)∂xΦ(x). (1)

The mode velocity u(x) and Luttinger parameter K(x)
are determined by the local momentum preserving
electron-electron interactions inside the 1D region3 (in
this section we work in units where ~ = 1, for sim-
plicity, but will restore physical units in subsequent sec-
tions). We neglect possible backscattering terms,19–24

as they are small at low energies and on length scales
shorter than the mean free path. Since the gate is ca-
pacitively coupled to the conducting channel, no charge
transfer is possible between gate and conducting chan-
nel, as reflected by the minimal coupling term. Note
that this approach neglects the effect of the geometri-
cal capacitance of the gate, which could be treated as
an additional quadratic term in the Hamiltonian.52 It is,
however, usually very large (against the quantum capaci-
tance, see Sec. IV), and is here taken as infinite. The val-
ues K < 1 (K > 1) correspond to repulsive (attractive)
interactions between electrons and the non-interacting
case corresponds to K = 1 and mode velocity equal to
the Fermi velocity u = vF . For Galilean invariant sys-
tems, the relation u(x)K(x) = vF holds, but we do not
require this identity for our results.

The charge and current densities can be expressed in
terms of the bosonic fields as ρ(x) = − 1

π∂xΦ(x) and
j(x) = u(x)K(x)Π(x), respectively. In order to derive
the Heisenberg equations of motion for the bosonic field
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operator we calculate the commutators with the Hamil-
tonian in Eq. (1), resulting in31,39

∂tΦ(x) = πu(x)K(x)Π(x) , (2)

∂tΠ(x) = ∂x

[
u(x)

K(x)

∂xΦ(x)

π
+
e

π
ϕ(x)

]
. (3)

Up to a spatial derivative, Eq. (2) looks like the conser-
vation of current ∂tρ(x) = −∂xj(x). Substituting Eq. (2)
into Eq. (3), we obtain an equation of motion for the field
Φ, which can be used as a starting point for the calcula-
tion of the response of the system to the gate voltage,

∂2t Φ(x) = u(x)K(x)∂x

[
u(x)

K(x)
∂xΦ(x) + eϕ(x)

]
. (4)

The boundary conditions for the equation of motion
require the continuity of the field Φ(x), which corre-
sponds to the spatial continuity of the current as ex-
pressed by Eq. (2), and the continuity of the expression
u(x)
K(x)∂xΦ(x) + eϕ(x). The latter condition implies the

continuity of the electrochemical potential µ = δH/δρ.
Note that the equation of motion is an operator identity,
as it was derived from the Heisenberg equations. Due to
linearity in the field operator Φ(x) it also yields an equa-
tion for the expectation value of the operator 〈Φ(x)〉 with
respect to the ground state of the system. Despite that
all calculations are done in the frequency domain we first
present real time results obtained by Fourier transform
for illustration purposes.

III. TIME-RESOLVED TRANSPORT IN GATED
HELICAL CHANNELS

The setup as shown in Fig. 1 consists of a 1D helical
channel with interaction parameter K and mode velocity
u in the interval from −L/2 to L/2 connected to 1D
Fermi liquid channels representing the non-interacting
higher dimensional leads, so that both u(x) and K(x)
change step-like at ±L/2. A time-dependent gate volt-
age is applied in the middle of the setup between −w/2
and w/2 so that ϕ(x, t) = VG(t)θ(w/2−|x|). As shown in
Fig. 2a), a positive voltage pulse VG(t) > 0 at w/2 creates
positive current pulses traveling right and left, whereas
at −w/2 negative current pulses traveling both direc-
tions are generated. When such a current pulse meets
a step-like change of the interaction parameter from K
to 1, it is partially reflected with a reflection coefficient
γ = 1−K

1+K and transmitted with a coefficient 1 + γ, as

shown schematically in Fig. 2b). Taking into account
the direction of motion, the reflection coefficient for the
charge is −γ. In the long time limit, transmission and
reflection of charge add up to unity, satisfying charge con-
servation. For an arbitrary gate voltage pulse VG(t), we
solve the equations of motion, Eq. (4), to determine the

a)

ϕ(x)

VG(t)

−w/2 w/20

x

b)

K(x)

L/2

x

c)

K(x)

L/2 L/2 + a

x

FIG. 2. Creation and propagation of excitations in a one di-
mensional helical channel: a) The voltage pulse creates the
current packets consisting of electron-like and hole-like exci-
tations at the edges of the gate. At the right edge positive
charges are accelerated to the right, negative ones to the left
leading to positive current pulses. The left edge behaves the
other way round. b) At the interface between the wire and
the lead an incoming current packet is transmitted with factor
1+γ and reflected with γ. c) For the smooth contact, the cur-
rent pulse is additionally smeared, but the total transmitted
current stays the same.

electrical current in the right lead IR(t) = −ej(L/2), i.e.

IR(t) =K e2

h (1 + γ)
∞∑
n=0

(−γ)n
(
VG

(
t− −w+(2n+1)L

2u

)
−VG

(
t− w+(2n+1)L

2u

))
. (5)

The gate voltage induces a current pulse (e2/h)KVG,
which travels between the contacts at ±L/2, as manifest
in the argument of VG. It is reflected multiple times with
the factor γ, before it is transmitted into the lead with
the factor 1 + γ, leading to Fabry-Pérot behavior.38,40 In
this case, K can be directly extracted by comparing the
ratio of successively detected pulses. Notably, Eq. (5) is
valid in a broad range of VG as long as the hLL model,
Eq. (1), is valid, i.e. for excitation energies that remain
within the bulk band gap of the QSH insulator.

IV. FREQUENCY-RESOLVED TRANSPORT IN
HELICAL CHANNELS

While time-resolved measurements are illustrative and
can be realized with sub-nanosecond resolution, it is
mostly easier to implement measurements in frequency
domain. In this regard, we now consider the response to
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FIG. 3. Absolute value of the conductance |g(ω)| between
gate and contact on a one dimensional conducting channel in
the Galilean case, i.e. vF = Ku. Here the values K = 0.5
inside the channel and L/w = 15 are taken. Inset: Compar-
ison of |g(ω)| (solid) and its RC approximation from Eq. (7)
(dashed) in the low frequency regime.

an oscillating signal VGe
−iωt. The linearity of Eq. (4) re-

sults in a solely linear response, namely the conductance
g(ω) such that IR(ω) = −IL(ω) = g(ω)VG(ω). Summing
the series in Eq.5 gives

g(ω) = K
e2

h
(1 + γ)

ei
L−w
2u ω − eiL+w

2u ω

1 + γei
L
uω

. (6)

The conductance g(ω) is illustrated in Fig. 3. It can be
detected between the excitation gate and an ohmic con-
tact, or alternatively between an excitation and a readout
gate,53 both being sensitive to I(ω) in the limit of a fast-
response detection. We distinguish two limits both of
which enable the determination of K.

For low frequencies ω � u/L, u/w, we provide a com-
parison with the so-called mesoscopic capacitor, a co-
herent series RC circuit first introduced in the context
of chiral edge channels of the quantum Hall effect.54–56

To this end, we factorize the phase factor ei
L−w
2u ω that

accounts for the propagation in the edge channels on a
length L−w

2 (usually not taken into account in the meso-
scopic capacitor), and perform an expansion in ω, which
yields:

g(ω) = ei
L−w
2u ω

(
iωC + ω2C2R+O(ω3)

)
, (7)

where

C =
e2K

h

w

u
, R =

h

2e2K

(
1− (1−K)

L

w

)
. (8)

We first observe that g(ω) → 0 for ω → 0, as expected
for a purely capacitive gate. In the first and second or-
der terms, one recognizes the quantum capacitance C
and the charge relaxation resistance R. In conventional
1D wires one can localize electrons in the quantum ca-
pacitor applying a bias voltage to a gate, which plays the
role of another capacitor plate. In the helical channel,

the excitations are always delocalized due to the spin-
momentum coupling. Nevertheless, the potential well
ϕ(x) affects not the sign, but the absolute value of the
momentum, forcing the excitations to spend more time
under the gate, inducing a change of charge density by

∆ρ ∼ e2

h
u
Kϕ [see the Eq. (4) for the static case and sub-

sequent discussion of the continuity]. The gate of width
w collects the total charge w∆ρ, what gives the expres-
sion for the capacitance in Eq. (8). When no interac-
tions are present (i.e. K = 1 and γ = 0), these expres-

sions reduce to C = w
vF

e2

h , R = h
2e2 . The system is then

equivalent to a non-interacting single-mode mesoscopic
capacitor, as the edge states are fully decoupled, and no
reflections occur at the boundaries ±L/2. In particu-
lar, we recover the universal charge relaxation resistance
R = RK/2, where RK = h/e2 is the von Klitzing quan-
tum of resistance.52,54,55,57 Similarly, in the limit where
the gate spans the whole interacting region, i.e. w = L,
we recover that R = RK/2 (independent of K), as was
known before.51 In a system with interactions and w 6= L,
however, both R and C are modified. First, vF renor-
malizes to u, and K appears in both R and C, as al-
ready known for interacting chiral edge channels.58 More
importantly, R exhibits a peculiar dependence on both
1 − K and the spatial dimensions L and w. This non-
universal charge relaxation resistance is a signature of
the Fabry-Pérot behavior of the bosonic excitation. It re-
flects the non-chirality of helical edge channels. Through
the measurement of R and C, similarly to Ref. 55, the
low frequency response, gives a direct access to both the
renormalized velocity u and the Luttinger parameter K.
In particular, the difference between gate width w and
length L of the helical channel enables a measurement of
u and K from g(ω) up to second order in ω, whereas the
case w = L requires third order measurements.51

For higher frequencies, resonance peaks in g(ω) signal
Fabry-Pérot behavior. As shown in Fig. 3, the functional
dependence of g(ω) is governed by two frequencies corre-
sponding to two different length scales, namely, the dis-
tance between the leads L and the width of the gate w.
Assuming the natural case in which w � L, one finds in
the intermediate regime ω ≈ 2πu/L � 2πu/w maxima
and minima of g at frequencies ωmax = (2n+1)πu/L and
ωmin = 2nπu/L, n ∈ Z, respectively. Analysing Eq. (6),
we can see, that for any two minima and maxima in this
regime, we find that

K =
ωmin
ωmax

∣∣∣∣g(ωmax)

g(ωmin)

∣∣∣∣ . (9)

This formula allows for a simple determination of K. For
larger frequencies, cancellations of g(ω) are visible and
correspond to the frequency scale ωmin = 2nπu/w, for
which the two current contributions created on each side
of the gate electrode have opposite phases and thus in-
terfere destructively.
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FIG. 4. Relative change of transmission of a sloped interac-
tion profile of width a at the contact between K = 0.5 and
a Luttinger liquid with K = 1. Galilean invariance implies
u(x) = vF /K(x).

V. DEVIATIONS FROM A STEP-LIKE K(x)

We consider corrections due to a non-step-like tran-
sition from an interacting K 6= 1 region to the non-
interacting leads.39 In such a case, we argue that the
frequency dependence g(ω) can also be used to probe the
quality of the contacts. As we elaborated in the previous
section, the transmission coefficient for a perfect step-
like change of the interaction is independent of frequency.
Any deviation from this idealistic model introduces a fre-
quency dependence, as shown in Fig. 4 for a linear spatial
dependence of K(x) in a Galilean invariant system.

As the charge is still a conserved quantity and the
total difference in interaction strength is fixed, the net
transmitted and reflected current will stay the same re-
gardless of the spatial variation of K(x). The form of
the current pulse, however, will be modified, as schemat-
ically shown in Fig. 2c). The scattering on the inter-
face will acquire a frequency dependence, which in the
limit of ω → 0 allows to recover the transmission coeffi-
cient for the step-like Luttinger parameter. We introduce
Trel(ω) = T (ω)/Tstep with Tstep = 1 + γ to better illus-
trate how the frequency-dependent transmission through
a sloped interaction profile differs from the transmission
at a perfect step-like interface, i.e. Tstep. Approximating
K(x) by a linear dependence on an interval of a length
a, where it changes from K1 to K2, we can solve Eq. (4)
analytically in the case of a Galilean invariant system for
which u(x)K(x) = vF . To leading order, the frequency
dependence of the transmission is then given by

T (ω)=TstepTrel(ω)≈ 2

1+K
−i2(1−K)(2+K)

3(1+K)2
aω

vF
. (10)

The full frequency dependence and details of the calcu-
lations are given in the Appendix. The relative change
of transmission and reflection coefficients with respect to
the step-like profile is shown in Fig. 4. As follows from
Eq. (10), the correction to the transmission coefficient
due to the soft edge of the lead is relevant at a frequency

scale ω & 2πu/a, which is much higher than the typical
frequency scales L/u and w/u that appear in our prob-
lem.

As the frequency dependence of g(ω) for the setup
shown in Fig. 1 gets complicated in this scenario, we il-
lustrate the effect in a simplified setup. If the second lead
is moved far away and the gate is very wide, such that
L,w →∞, but L− w remains finite, only the first pulse
in Eq. (5) contributes to the conductance g(ω), which
then takes the form:

g(ω) = K
e2

h
(1 + γ)Trel(ω)ei

L−w
2u ω. (11)

Unlike Eq. (6), where the strong frequency dependence
is created by multiple Fabry-Pérot-like reflection, the
frequency dependence for this simplified setup is solely
determined by Trel(ω), because the imaginary exponent
contributes to the phase only.

VI. DISCUSSION AND SUMMARY

Elaborating on the experimental implementation of
our proposal, the lowest characteristic frequency of the
system is ω ∼ 2πu/L. For a typical Fermi velocity of
order of u ∼ 1 × 105 m s−1, and a device length on the
order of a typical mean free path of a few 100 nm, this
characteristic frequency is of order of 1 THz, which is ex-
perimentally not easily accessible. Hence, long mean free
paths are crucial for the feasibility of our proposal. In the
helical edge states of 2D topological insulators, such as
Hg(Cd)Te quantum wells, the increased mean free path
(around 10µm) allows for a substantial decrease of the
characteristic frequency, down to experimentally acces-
sible 10 GHz. Our setup also allows for implementing a
capacitive probe, cf. in Fig. 1, instead of a direct mea-
surement via ohmic leads. Capacitive coupling may be
favorable for the high frequency transport measurements,
as it offers a well-defined coupling capacitance with de-
creasing impedance for higher frequencies.

From a theoretical methodological point of view, the
equation of motion perspective36,39 on a helical inhomo-
geneous Luttinger liquid offers a promising angle to ad-
dress manifold questions of DC and AC transport. For
example, the equations of motion can generically contain
further terms such as dissipative contributions, that are
not as convenient to include at the Hamiltonian level.

In summary, we have proposed a detailed scheme to
measure the Luttinger liquid interaction parameter K in
the helical edge states of a 2D topological insulator. The
application of a RF signal to a capacitive gate results in a
K-dependent current response. The corresponding signal
can be either measured through ohmic leads or a second
capacitive gate as a probe. We propose experimental
signatures in all frequency ranges. Interestingly, even in
the low-frequency regime, valuable information can be
extracted from such a time-of-flight experiment due to
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its relation to the quantum capacitance and the charge
relaxation resistance.
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Appendix A: Transmission of a sloped interaction
parameter region

Here, we would like to give some details on the calcu-
lation of transmission through a non step-like interaction
profile K(x) in a Galilean invariant system, i.e. the mode
velocity is given by the Fermi velocity and the interac-
tion profile as u(x) = vF /K(x). In particular, we want
to consider a linear slope in interaction strength from K1

to K2 over a length a, i.e.

K(x) =


K1 x < 0

(K2 −K1)x/a+K1 0 ≤ x ≤ a
K2 x > a.

(A1)

Assuming Φ(x, t) = Φ(x, ω)e−iωt, one can then separate
the time dependence in Eq. 4. For the sloped region
0 ≤ x ≤ a, the equation of motion, Eq. 4, becomes now
a Bessel differential equation

∂2yΦ(y)− 2

y
∂yΦ(y) +

ω2

v2F

(K2 −K1)2

a2
y2Φ(y) = 0, (A2)

where we introduced y = x + K1a/(K2 −K1). Left and
right of this region the parameters are constant and Eq. 4
can be solved by means of plane waves, leading to the
solution

Φ(x)=


A1e

i
ωK1
vF

x
+B1e

−iωK1
vF

x
x < 0

y3/2
(
A2J−3/4

(
(K2−K1)ω

2avF
y2
)

+B2J3/4

(
(K2−K1)ω

2avF
y2
))

0 ≤ x ≤ a
A3e

i
ωK1
vF

x
+B3e

−iωK1
vF

x
x > a.

(A3)

We want to consider a scattering problem, where no left
moving part of the field is incoming from the right, so
we set B3 = 0. Imposing the continuity of Φ(x, ω) and
u(x)
K(x)∂xΦ(x, ω) + eϕ(x), we can express B1, B2, A2 and

A3 in terms of A1. The relative change in transmission
Trel = T/Tstep with respect to the step-like case Tstep =
2K2/(K1 +K2) is then given by

Trel = −2i
√

2

π

√
K1K2(K2

2 −K2
1 )×

×
{
K2

1K
2
2

aω

vF

[(
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4 ,−
7
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+ I 3
4 ,−

3
4
− I− 7

4 ,−
1
4
− I− 3

4 ,
3
4

)
+

+ i
(
I 3

4 ,−
7
4

+ I− 1
4 ,−

3
4
− I− 7

4 ,
3
4

+ I− 3
4 ,−

1
4

)]
+

+ 3K2
1 (K1 −K2)

(
I− 1

4 ,−
3
4
− iI 3

4 ,−
3
4

)
+

+ 3K2
2 (K1 −K2)

(
I− 3

4 ,−
1
4
− iI− 3

4 ,
3
4

)}−1
(A4)

where Ia,b = Ja(c1aω/vF )Jb(c2aω/vF ) and c1/2 =
−K1/2

2(K1−K2)
. The expansion of Eq. A4 for small ω leads

to Eq. 10 in the main text.
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21 F. Crépin, J. C. Budich, F. Dolcini, P. Recher, and
B. Trauzettel, Phys. Rev. B 86, 121106 (2012).
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