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We define a class of “diagonal” t-J ladders rotated by π/4 relative to the canonical lattice di-
rections of the square lattice, and study it using density matrix renormalization group (DMRG).
Here, we focus on the two-leg cylinder with a doped hole concentration near x = 1/4. At exactly
x = 1/4, the system forms a period 4 charge density wave (CDW) and exhibits spin-charge separa-
tion. Slightly away from 1/4 doping we observe several topologically distinct types of solitons with
well defined fractionalized quantum numbers. Remarkably, given the absence of any obvious small
parameter, the effective masses of the emergent solitons differ by several orders of magnitude.

I. INTRODUCTION

As a paradigm for the description of high tempera-
ture superconductors, the t-J model1, and the closely
related Hubbard model2,3 have been studied extensively
by many different numerical methods and are thought
to possess a rich phase diagram4–56. In most of these
studies, the system is taken to be oriented parallel to the
primitive lattice vectors of the square lattice. However,
in attempting to extrapolate the results to the thermo-
dynamic limit in 2D, it is also useful to study ladders
with different geometries6–9.

A diagonal cylinder, rotated by π/4 relative to the
primitive lattice directions of the sort shown in Fig. 1(a),
has several advantages over the usual one. For exam-
ple, since a mirror symmetry along the unit cell diag-
onal is preserved, it is possible to make sharp distinc-
tions between states whose signatures on a regular lad-
der would be identical – for instance, one can distin-
guish d-wave superconductivity10–18 from s-wave super-
conductivity and vertical “stripe” (unidirectional CDW)
order19–31 from “checkerboard” (bidirectional CDW) or-
der, and a nematic phase32–35 would correspond to a
phase that spontaneously breaks this mirror symmetry.
Moreover, while on usual ladders of width larger than
2-legs, there is a clear tendency for stripe order to come
at the expense of long-range superconducting coherence,

Soliton Spin Charge Creation Energy Dynamical mass

𝑺𝟎
𝟏/𝟐 1/2 0 ≲ 10*+𝑡 ~10.𝑡*.

𝑺±𝒆/𝟐𝟎 0 ±𝑒/2 0.206𝑡 very large

𝑺±𝒆𝟎 0 ±𝑒 0.227𝑡 very large

TABLE I. Physical quantities of three kinds of solitons. The
solitons are illustrated in Fig. 4. For charged solitons, their
creation energies refer to half of the energy cost of creating
a pair of solitons with opposite charge. The dynamical mass
is related to the zero-point energy to confine a soliton to a
region of size L according to E ∼ 1

2M∗ ( π
L

)2.

(1,1)

(1,2)

(2,1)

(2,2)

(2,2)

(3,1)

(3,2)

(4,1)

(4,2)

(4,2)

(a)

A

B A

B

(b)

FIG. 1. (a) Diagonal two-leg ladder with cylinder boundary
condition (CBC): open in x, periodic in y; empty circles and
dashed lines represent the periodic boundary. (b) The local
site-exchange symmetry of two leg ladder. The dotted circle
indicates one rung. Exchanging the two sites on the rung
preserves the Hamiltonian.

on diagonal cylinders of appropriate width, CDW order
resembling the stripes on a barber pole can involve in-
finite length stripes, which might therefore compete less
strongly with superconducting coherence.

Here we present the first results of a planned exten-
sive DMRG57,58 study of the t-J model on diagonal lad-
ders with cylinder boundary condition. Although our
principle interest in this model concerns the extrapola-
tion to 2D, it is also of interest in the context of multi-
component 1D systems. Indeed, the results concerning
the 2-leg cylinder near x = 1/4 doping are already inter-
esting from this 1D perspective.

At precisely x = 1/4, the system exhibits an interest-
ing commensurate CDW with long-range order. While
the period of the density wave order is 4 lattice con-
stants, the period 2 “harmonic” is highly dominant and
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the period 4 “fundamental” is extremely weak. Looking
at the excitation spectrum, in contrast to the usual 2-
leg ladder, this diagonal ladder exhibits clear spin-charge
separation. Indeed, multiple types of fractionalized soli-
ton excitations arise with different topological characters
and associated with different (fractional) quantum num-
bers, as presented in Table I. These solitons are some-
what analogous to the solitons that arise in the mean-field
solution of the electron-phonon (commensurate Peierls)
problem59–61, but here they arise directly from the strong
electronic correlations. In particular, we identify two fla-
vors of solitons – one is a highly-local charge excitation
with a large creation energy, while the other is an ex-
tended spin excitation (spinon) with a creation energy
that is at least several orders smaller.

II. MODEL

The Hamiltonian we study in this paper is the nearest
neighbor t-J model:

H = −t
∑
〈ij〉σ

(c†iσc,jσ +h.c.) +J
∑
〈ij〉

(Si ·Sj −
1

4
ninj), (1)

where t > 0 is the uniform hopping integral, J > 0 is the
superexchange coupling, ciσ is the electron annihilation
operator at site i = (x, y) with spin polarization σ =↑/↓,
S is the spin operator, ni =

∑
σ c
†
iσciσ is the electron

density, and 〈ij〉 denotes pairs of nearest neighbor sites.
We henceforth take units of energy such that t = 1. The
Hilbert space has a no-double-occupancy constraint, i.e.
ni = 0, 1. The lattice structure of the diagonal two-leg
cylinder is illustrated schematically in Fig. 1(a). For con-
venience, we label each site by its location (x, y), where
y ranges from 1 to 2 designating the legs and x from 1
to L denoting the position of rungs. In our DMRG sim-
ulations of this model, we keep up to 3000 states in the
DMRG block and sweep around 30 times such that the
truncation error εtrun is at most 10−7.

Note that, besides the global symmetries such as the
mirror symmetry along diagonal bonds, the Hamiltonian
on the diagonal two-leg cylinder exhibits a local symme-
try: exchanging the two sites on any rung preserves the
Hamiltonian, as illustrated in Fig. 1(b). Since this local
site-exchange symmetry on any rung is equivalent to a Z2

gauge symmetry, the ground states cannot spontaneously
break this symmetry due to the Elitzur’s theorem62.

Thus, 〈n̂x,1〉 = 〈n̂x,2〉 and 〈ĉ†x,1ĉx′,1〉 = 〈ĉ†x,2ĉx′,2〉 =

〈ĉ†x,1ĉx′,2〉 = 〈ĉ†x,2ĉx′,1〉 for x 6= x′. Among other things,
this precludes the existence of a nematic phase; this pe-
culiar local symmetry is not a general feature of wider
diagonal ladders or cylinders.
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FIG. 2. (a) Density profile of the ground state of a 2 × 123
diagonal cylinder with 2 × 31 doped holes. We use an odd
length cylinder to minimize the boundary effects. (b) En-
larged view of the red rectangle part in (a). There is a pe-

riod 4 density pattern ABAB̃. (c) The length dependence

of δρAB̄ ≡ ρ(A)− [ρ(B) + ρ(B̃)]/2; extrapolated to the limit
L → ∞ this difference approaches 3.631(3) × 10−2. (d) The

length dependence of δρB̃B ≡ ρ(B̃) − ρ(B); extrapolated to
the limit L → ∞ this difference approaches 0.279(3) × 10−2.
Here ρ is the averaged density of one type of site in the bulk.
The lattice length varies from L = 67 to 123.

III. DMRG RESULTS AT x = 1/4

As usual, the doping level of the system away from the

half-filling is defined as x = 1 − 1
N

∑
iσ〈c

†
iσciσ〉, where

N = 2L is total number of sites. We perform large-
scale DMRG simulations to study the t-J model on the
diagonal two-leg cylinder with open boundary conditions
along the leg direction, we adopt a canonical value of
J/t = 1/3, and for present purposes we focus on the
doping around x = 1/4. Since all correlation functions
on the legs are exactly same we show numerical results
only on the leg y = 1.

It turns out that the diagonal cylinder at finite doping
has many delicate metastable states as shown previously6

such that its ground states and low energy excitations
have not previously been obtained. In order to sort out
the lowest energy states by DMRG simulation, we em-
ploy the strategy of applying appropriate training fields
during the calculations whose details are discussed in the
Appendix A.

The ground-state charge density profile of a 2 × 123
cylinder with 2×31 holes is shown in Fig. 2(a). Although
the average value of x differs slightly from 1/4, deep in
the bulk (i.e. far from the open boundary) x = 1/4,
as discussed below. We find that the ground state of
the system exhibits commensurate period 4 CDW, with
a periodic pattern of sites of the form ABAB̃, as clearly
shown in the zoomed in region in Fig. 2(b). The dif-
ference in the density on the A and the average of the
B and B̃ type sites, δρAB̄ ≡ ρ(A) − [ρ(B) + ρ(B̃)]/2, is
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FIG. 3. Schematic illustrations of three topologically distinct
domain walls. The first chain is a reference without any do-
main walls. The three dashed rectangles below enclose the
domain walls with different subtended angle ∆α1. Each do-
main wall is associated with different solitons S.

an order of magnitude larger than the difference between
the B and B̃ type sites, δρB̃B ≡ ρ(B̃) − ρ(B). To un-
derstand the significance of this, note that in the limit
δρB̃B → 0, the CDW would have period 2; in Fourier
transform, this means the “fundamental” period 4 mode
has a small amplitude ∼ δρB̃B while the period 2 first
harmonic has a large magnitude ∼ δρAB̄ . To obtain a
quantitative estimate valid in the thermodynamic limit,
we compute δρAB̄ and δρB̃B for L = 8n + 3 with var-
ious n and then plot the results as a function of 1/L.
Here we choose system length L = 8n + 3 to minimize
the boundary effects. The same result can be obtained
in the bulk of cylinders of any L. As shown in Fig. 2(c)
and (d), both density differences vary linearly with 1/L
and approach finite values in the thermodynamic limit:
δρAB̄ → 3.631(3)× 10−2 and δρB̃B → 2.79(3)× 10−3.

The ground-state always lies in the spin 0 sector. How-
ever, although, as we discuss below, there are theoretical
reasons to expect a spin-gap, if such a gap exists it is
exceedingly small.

A. Solitons in the LG effective field theory

As it is an aid to intuition, we can express the CDW
in terms of the ground-state configuration of a pair of
complex scalar fields, φ1 ≡ |φ1|eiα1 and φ2 ≡ |φ2|eiα2 ,
representing the two harmonics of the density wave:

ρ(x) = ρ̄+ |φ1| sin (
π

2
x+ α1) + |φ2| cos (πx+ α2) (2)

where ρ̄ = 3
4 is the average density, and the four symme-

try related ground-states correspond to |φ1| = 1
2δρB̃B �

|φ2| = 1
2δρAB̄ , α2 = 2α1, and α1 = nπ/2 with n = 0,

1, 2, and 3. In terms of these fields, we could write an
effective Landau-Ginzburg Lagrangian of the form

L[φ1, φ2]= L1[φ1] + L2[φ2]− λ1

4

[
(φ1)4 + c.c.

]
(3)

−λ2

2

[
(φ2)2 + c.c.

]
− λ12

[
φ∗2(φ1)2 + c.c.

]
+ . . .

where Lj are of the usual form as for an incommensurate
CDW, and the terms proportional to λj produce the com-
mensurate lock-in to the lattice. The term proportional
to λ12 locks the relative phase of the two harmonics, and
since it is linear in φ2, its presence implies that in any
state with non-zero φ1 there will necessarily be an in-
duced (possibly small) harmonic, φ2. The only really
unusual feature here is that the parameters which enter
Lj are such that the ground-state magnitude of φ2 is, in
fact, much larger than φ1.

Topological solitons (domain walls) with fractional
quantum number appear as low energy excitations in
Peierls systems59–61. Analogously, we find stable topo-
logical solitons which carry different (fractional) quan-
tum numbers. Specifically, we expect 3 distinct domain
walls which can be characterized by the phase change
∆α1 (subject to the constraint ∆α2 = 2∆α1), as shown
in Fig. 3. From a topological perspective, the ∆α1 = π
and 3π/2 domain walls can be viewed as bound-states of,
respectively, two and three ∆α1 = π/2 domain walls.

B. Solitons from DMRG

We induce soliton states by adding holes or electrons,
by flipping spins, or by applying (and then removing)
suitable training fields.

(1) The ground state density and spin profile in the
sector of Sztot = 1 are shown in Fig. 4(a). The changes
relative to the ground-state are spread out. However, it
is apparent that the spin-density is doubly peaked, with
spin 1/2 in each half of the system, consistent with the ex-
istence of two delocalized spin 1/2 particles. Manifestly,
these particles are neutral. Moreover, comparing CDW
pattern in the middle and at the boundaries of the cylin-
der, we find a π phase shift. We conclude that the spin
1 ground-state consists of two delocalized neutral spin-1

2

solitons with ∆α1 = π, which we label as S
1/2
0 in Fig.

3(c). The soliton creation energy, ∆
s=1/2
c=0 , is expected to

approach half of the spin gap, ∆s in the limit L→∞. As
we will see, ∆s is sufficiently small, ∆s . 10−4, that we
cannot determine its L→∞ value from even the largest
system sizes we have studied. The dynamical mass M∗

refers to the zero-point energy to confine a soliton to a re-
gion of size L according to E ∼ 1

2M∗ ( πL )2. As explained
in the Appendix B, we extract the dynamical mass of
spin- 1

2 soliton M∗s ∼ 101 in the small L region.
(2) A metastable excited state with Sztot = 0 can be

prepared by applying a proper training field in the initial
DMRG simulation, with the result shown in Fig. 4(b). It
contains charge ±e and spin-0 solitons (S0

±e) with ∆α1 =
π. The solitons are sufficiently “heavy” that they remain
localized for as many DMRG iterations as we can execute,
which also means the dynamical mass of charged solitons
M∗e is effectively infinity. The creation energy of a pair
of charge ±e solitons is ∆s=0

c=e + ∆s=0
c=−e = 0.453, which is

much larger than ∆
s=1/2
c=0 . Note there is no particle-hole
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FIG. 4. Density profiles of the L = 123 lattice with 5 ≤ i ≤
118 (excluding boundary regions). (a) The ground state with
2×31 doped holes and Stotz = 1 supports two neutral solitons.
The density and spin are shown in blue and red respectively.
(b) A metastable state with Stotz = 0 and 2× 31 doped holes.
(c-d) Two metastable states with Stotz = 0 and 2× 30 doped
holes. (e-f) Two metastable states with Stotz = 0 and 2 × 32
doped holes.

symmetry relating the solitons with opposite charge.

(3) The addition of two electrons with Sztot = 0 to the
“undoped” system (with x = 1/4) results in various con-
figurations, depending on the form of the initial training
fields. In Fig. 4(c), two S0

e solitons identical to the left
soliton in Fig. 4(b) are clearly seen. In Fig. 4(d), the
right soliton has been broken into two S0

e/2 solitons, each

associated with a ∆α1 = π/2 domain wall (Fig. 3(d)).
By comparing the energies of the states in Fig. 4(c) and
Fig. 4(d), we obtain 2∆s=0

c=e/2 −∆s=0
c=e = 0.021. Similarly,

by adding two holes we can obtain the soliton configura-
tions shown in Fig. 4(e) and Fig. 4(f). In Fig. 4(f), there
are two charge −e/2 solitons associated with the ∆α1 =
3π/2 domain walls. By comparing energies in Fig. 4(e)
and Fig. 4(f), we obtain 2∆s=0

c=−e/2 −∆s=0
c=−e = 0.350. A

charge −e soliton has much lower creation energy than
a pair of −e/2 solitons, which means that the binding
between two charge −e/2 solitons can be induced. How-
ever, comparing with the dynamical mass, this binding
energy is very tiny. As discussed before, due to this large
dynamical mass, the charged solitons remain localized
in simulations. Therefore, we can observe both integer
charges and fractional charges in DMRG simulations.
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FIG. 5. (a) Dependence of the spin gap on 1/L; the extrap-
olation L → ∞ yields ∆s = 3.0(1) × 10−5. L varies from 51
to 99. (b) The schematic band dispersion of diagonal two-leg
cylinder at one quarter doping. The orange line is the unoc-
cupied flat band. The blue one is the dispersive band with
two Fermi points (black dots) at kF = ±3π/4.

IV. SPINON EXCITATION

As mentioned above, the spin gap at x = 1/4 doping
is extremely small, which is a novel feature worth further
understanding. Because of the period 4 CDW ordering,
the enlarged unit cell now has 8 sites and consequently
6 electrons. Thus, consistent with Haldane’s conjecture,
we should expect a finite spin gap. For finite L, ∆s is
always larger than 0, but by extrapolation we would infer
that ∆s → 3.0× 10−5 as L→∞, as shown in Fig. 5(a).
This is a small enough value that it could be consistent
with ∆s → 0. More importantly, it would imply a spin-
correlation length, ξs ∼ J/∆s, which is larger than any
accessible system size, making the quantitative aspect of
this estimate unreliable. At an intuitive level, the small
gap is related to the small value of the principle harmonic
of the CDW; in the limit δρBB̃ → 0, the CDW has period
2 with 3 electrons per unit cell, and hence (presumably)
no spin-gap.

To flesh out this intuition, we consider the same prob-
lem in the context of a “bosonized” effective field the-
ory. The non-interacting band structure consists of a flat
band63 and a dispersing band, as shown in Fig. 5(b). For
x = 1/4, the lower dispersive band is partially filled with
kF = 3π/4, while the flat band is empty. Thus, by adia-
batic continuity, we expect that the low energy fermionic
modes can be expressed in terms of two bosonic fields
φc, φs and their duals, θc, θs:

ψσ,λ(x) = NσeiλkF x exp[−i
√
π

2
(θc + σθs + λφc + λσφs)],

where σ = ±1 is the polarization of the spin and λ = ±1
for right and left moving fermions. The period 2 and 4
CDW orders come from the expectation value of O4kF ≡
ψ†↑,+ψ

†
↓,+ψ↓,−ψ↑,− and O2kF ≡ ψ

†
σ,+ψσ,− respectively:

O4kF = N4kF e
i3πxei

√
8πφc , (4)

O2kF = N2kF e
i3πx/2ei

√
2πφc cos[

√
2πφs]. (5)

Because of the cos[
√

2πφs] factor in Eq. (5), ordering
of O2kF , i.e. a period 4 CDW, requires condensing φs,
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which gives rise to a finite spin gap ∆s. To obtain an
estimate of the expected gap magnitude, we invoke the

expected scaling relations 〈ei
√

8πφc〉 ∼ [〈ei
√

2πφc〉]4 and

〈cos[
√

2πφs]〉 ∼
√

∆s/Ω where Ω is a UV cutoff to obtain

∆s ∼
〈O2kF 〉

2√
〈O4kF 〉

Ω. (6)

By further identifying 〈O2kF 〉 ∼ δρB̃B , 〈O4kF 〉 ∼ δρAB̄ ,
and Ω ∼ t, we estimate ∆s ∼ 4×10−5 which is small and
remarkably consistent with the estimate obtained from
finite-size scaling.

V. CONCLUDING REMARKS

From both numerical results and bosonization analysis,

we infer that the creation energy of the spinon ∆
s=1/2
c=0 is

extremely small. This is a quite surprising result; the
creation energies of the charged solitons are three or four
orders of magnitude larger. Without any fine tuning or
small parameters in the microscopic model, a striking
mass hierarchy emerges in the low energy physics of the
t-J model on the diagonal two-leg cylinder!

We have also carried out similar DMRG studies for val-
ues of J/t other than 1/3, including J/t = 1/4, 1/6, 1/10.
We find qualitatively similar results both for the frac-
tional quantum numbers of the solitons at x = 1/4 and
the mass hierarchy. Therefore, this mass hierarchy occurs
without fine tuning close to the quantum critical point64.
For other values of x, still more complicated forms of soli-
tons arise. A systematic study of the phase diagram as
a function of both J/t and x will be discussed in future
work.
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Appendix A: Details of DMRG simulations

Due to the delicate metastable states, the DMRG sim-
ulation of diagonal cylinder easily converges at a local
minimum. To encounter this problem, we apply a train-
ing field in the initial step of DMRG simulation to help
it converge to the low energy state. Different from the
pining field which is permanently applied to pin down
the orders, the training field is removed after few sweeps
so it does not introduce additional bias in the simulation.

In our model, the simple external training field term in
Hamiltonian reads:

Htrain =
∑
x,y,σ

u(x, y)nx,y,σ

u(x, y) = u0(−1)x max(0,
N0 − nsweep

N0
) , (A1)

here u0 ∼ 100 is a constant number, and nsweep counts
the DMRG sweep. The external potential u(x, y) plays a
role as a training field which is gradually reduced during
DMRG sweeps. In our calculation, this training term is
finally removed after 14 sweeps (N0 = 15).

The initial training field in Eq. (A1) leads to a perfect
CDW state which has the lowest energy. More impor-
tantly, via Htrain we can even take advantage of those
high energy metastable states to study the property of
soliton excitations. By slightly changing the form of
u(x, y), we can create different CDW domain walls and
study the physics property of soliton excitations associ-
ated with them. Here we take the metastable state shown
in Fig. 4(b) as an example. To create a pair of charge
±e solitons at location x+ and x− respectively, we can
simply change the external training field u(x+ ± δ, y)→
−|u(x+ ± δ, y)| and u(x− ± δ, y)→ |u(x− ± δ, y)|, where
δ = 0, 1, 2. This training field can make the DMRG sim-
ulation stuck at the metastable state with two solitons at
the first few sweeps. After the training field is removed,
this metastable state remains even after we tried nearly
400 more sweeps. In general, the metastable state will
tunnel to the ground state after sufficient times of sweeps
and kept states. However, due to the extremely heavy
masses of the soliton excitations, this tunneling process
hasn’t been observed in our simulation up to 6000 kept
state and 400 sweeps.

Appendix B: Creation energy and dynamical mass
of solitons

We study two types of effective masses of the solitons.
One is the creation energy ∆, which in the context of
a relativistic quantum field theory is referred to as the
mass. The second is the dynamical mass M∗, which de-
termines the extent to which the soliton tends to delo-
calized - specifically, the energy to localize the soliton in
a (large) box of length L is 1

2M∗ ( πL )2.
For charged solitons, we can measure their creation

energy by creating a pair of solitons with opposite
charges. However, their dynamical masses are almost
infinite within the present level of computational accu-
racy because they remain localized even after hundreds
of DMRG sweeps.

For spin-1/2 solitons, both their creation energy and
dynamical masses are much smaller than the charged
ones. We can measure the dynamical mass of the spin
solitons by looking at the energy of two soliton states as
a function of system size. As an extended excitation, the
interaction between the two solitons need be considered.
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FIG. 6. Length dependence of inverse of spin-spin correlation
length 1/ξs on systems varied from L = 67 to 195.

For small enough L, we can write down a perturbative
theory in powers of interaction V :

∆s(L) = ∆s(∞) +
1

2M∗
5π2

L2
+
V

L

[
A+BL−2 + · · ·

]
−V 2M∗L−1

[
C + · · ·

]
+ · · · (B1)

where ∆s(∞) is the creation energy, 1
2M∗

5π2

L2 is the energy
to localize two non-interacting solitons in a system of
length L. A, B and C are constant. The perturbation
theory breaks down at large L. By fitting ∆s(L) at small
L region, we obtain M∗ ≈ 28 ∼ O(101).

Appendix C: Spin-spin correlations

On the relatively small systems (comparing with large
ξs ∼ J/∆s), we measure the spin-spin correlation func-
tion S(i, j) = 〈Si,1 · Sj,1〉 ∼ e−|i−j|/ξs in a higher ac-
curacy εtrun < 10−10 and find a rather long correlation
length ξs which is compatible to the system size, as shown
in Fig. 6. The blue line stands for the linear fitting of
1/ξs in the small system sizes. It means that the cor-
relation length ξs increases when the cylinder becomes
longer, which supports that ξs is restricted by the small
system sizes. Though the linear fitting indicates that
1/ξs is close to 0 in the thermodynamic limit, the data
from larger system (L ≥ 163) shows a deviation from
blue line which weakly implies a finite correlation length
in the thermodynamic limit.
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A. M. Oleś, Phys. Rev. B 76, 140505 (2007).
42 C.-P. Chou, N. Fukushima, and T. K. Lee, Phys. Rev. B

78, 134530 (2008).
43 S. R. White and D. J. Scalapino, Phys. Rev. B 61, 6320

(2000).
44 L. Liu, H. Yao, E. Berg, S. R. White, and S. A. Kivelson,

Phys. Rev. Lett. 108, 126406 (2012).
45 Z. Zhu, H.-C. Jiang, D.-N. Sheng, and Z.-Y. Weng, Sci.

Rep. 4, 5419 (2014).
46 Z. Zhu, C. Tian, H.-C. Jiang, Y. Qi, Z.-Y. Weng, and J.

Zaanen, Phys. Rev. B 92, 035113 (2015).
47 S. R. White, D. J. Scalapino, and S. A. Kivelson, Phys.

Rev. Lett. 115, 056401 (2015).
48 S. Liu, H.-C. Jiang, and T. P. Devereaux,

arXiv:1606.03762.
49 J. Dodaro, H.-C. Jiang, and S. A. Kivelson, in preparation.

50 V. J. Emery, S. A. Kivelson, and H. Q. Lin, Phys. Rev.
Lett. 64, 475 (1990).

51 M. Ogata, M. U. Luchini, S. Sorella, and F. F. Assaad,
Phys. Rev. Lett. 66, 2388 (1991).

52 E. Dagotto, J. Riera, and D. Scalapino, Phys. Rev. B 45,
5744 (1992).

53 C. S. Hellberg and E. Manousakis, Phys. Rev. Lett. 83,
132 (1999).

54 P. Corboz, S. R. White, G. Vidal, and M. Troyer, Phys.
Rev. B 84, 041108 (2011).

55 Z.-C. Gu, H.-C. Jiang, D. N. Sheng, H. Yao, L. Balents,
and X.-G. Wen, Phys. Rev. B 88, 155112 (2013).

56 P. Corboz, T. M. Rice and M. Troyer, Phys. Rev. Lett.
113, 046402 (2014).

57 S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
58 S. R. White, Phys. Rev. B 48, 10345 (1993).
59 N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15,

240 (1965).
60 S. C. Zhang, S. Kivelson, and A. S. Goldhaber, Phys. Rev.

Lett. 58, 2134 (1987).
61 A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su,

Rev. Mod. Phys. 60, 781 (1988).
62 S. Elitzur, Phys. Rev. D 12, 3978 (1975).
63 S. Takayoshi, H. Katsura, N. Watanabe, and H. Aoki,

Phys. Rev. A 88, 063613 (2013).
64 E. H. Lieb, T. D. Schultz, and D. C. Mattis, Ann. Phys.

(N. Y.) 16, 407 (1961).


