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Dirac boundary states on opposite boundaries can overlap and interact owing to finite size ef-
fect. We propose that in a thin film system with symmetry-unrelated valleys, valley-contrasting
couplings between Dirac boundary states can be exploited to design various two-dimensional topo-
logical quantum phases. Our first-principles calculations demonstrate the mechanism in tin telluride
slab and nanoribbon array, respectively, by top-down and bottom-up material designs. Both two-
dimensional topological crystalline insulator and quantum spin Hall insulator emerge in the same
material system, which offers highly tunable quantum transport of edge channels with a set of
quantized conductances.

Introduction.—Topological insulating phases, such as
topological insulator and topological crystalline insula-
tor, have important theoretical and practical implications
on electronics and spintronics [1–3]. Materials discov-
ery is crucial and challenging in the study of topological
insulating phases. In particular, compared with three-
dimensional counterpart, two-dimensional topological in-
sulator, also known as quantum spin Hall insulator, has
only a very few examples that have been experimentally
achieved [4, 5]. Two-dimensional topological crystalline
insulator was just recently predicted [6–8]. Therefore, an
effective mechanism of designing two-dimensional topo-
logical quantum phases is highly desirable.

While there are few naturally occurring two-
dimensional materials, two-dimensional structure can
be also constructed from three-dimensional and one-
dimensional systems. In this letter, we focus on such
top-down and bottom-up design approaches, using two-
dimensional slab and nanoribbon array as two examples.
In the two structures, various two-dimensional topologi-
cal quantum phases can be created by means of finite-
size-induced couplings between boundary states and
their valley-distinct behaviors, when there are symmetry-
unrelated valleys in the momentum space.

By first-principles calculations, we demonstrate the
proposed mechanism in tin telluride. Its (110) slab and
nanoribbon array both have two valleys that are not re-
lated by symmetry. The boundary-states couplings in the
two valleys have distinct strengths. By tuning the valley-
contrasting couplings with variable film thickness and
nanoribbon width as readily accessible knobs, both two-
dimensional topological crystalline insulator and quan-
tum spin Hall insulator emerge in the same material sys-
tem. The resulting various two-dimensional topological
phrases give rise to a dissipationless quantized transport
of edge channels with multiple stepwise variations. We
also discuss the possibility of the application of the mech-
anism in more exotic topological phases, such as Chern

insulator, Majorana fermions and parafermions [9–11].
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FIG. 1: Atomic structure and the Brillouin zones of (110)
SnTe slab. (a) Side view and (b) top views of a represen-
tative slab, with 7 atomic layers along crystallographic [110]
direction. Blue and yellow spheres stand for Sn and Te atoms,
respectively. x, y and z axes are respectively along [001], [11̄0]
and [110]. (c) The Brillouin zone of the slab and its projec-
tions along x and y directions.

Surface-state couplings in a slab.—We take SnTe film
system for example to demonstrate the mechanism of
valley-contrasting couplings between boundary states.
We first focus on a slab cleaved from three-dimensional
bulk and design two-dimensional topological phases by
multiple surface-state couplings. Bulk SnTe has a rock-
salt structure with (110)-like mirror planes, where two
interpenetrating face-centered cubic lattices are respec-
tively formed by tin and tellurium ions. Under the pro-
tection of mirror symmetry, bulk SnTe is a representative
three-dimensional topological crystalline insulator (TCI)
[12]. Its (110) slabs have two symmetry-unrelated valleys
of surface states [13]. Considering that the surface-state
couplings in the two valleys may behave differently, we
investigate geometric and electronic properties of (110)
SnTe slabs by first-principles calculations. The calcula-
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tion method can be found in Supplemental Material [14]

Fig. 1 shows the structure and Brillouin zone of a
SnTe slab. Each atomic layer of the slab is a rectangu-
lar lattice, with a formula unit per unit cell. There is
an in-plane shift along the diagonal of the cell by a half-
diagonal and equal vertical interval between two neigh-
boring layers. Therefore, for the slabs with an odd num-
ber of atomic layers (e.g. 7 layers in Fig. 1(a)), the
middle layer is a mirror plane, while the mirror is absent
for even-number layers. We will focus on odd-number
layers, where the presence of mirror symmetry allows of
the emergence of two-dimensional topological crystalline
insulator and corresponding phase transitions. Besides,
the slab keeps inversion symmetry and each ionic site in
the mirror plane is an inversion center.

A representative band structure of the slab is shown
in Fig. 2(a). The bands are spin degenerate at each
momentum, due to simultaneous time-reversal and in-
version symmetries. More importantly, two symmetry-
distinct valleys appear around X(π,0) and R(π,π) in the
momentum space (Fig. 1(c)), where the lattice constant
is used as a length unit along each direction for the co-
ordinates. The low-energy bands of the two valleys arise
from surface states of bulk SnTe [13]. For a slab of thick
enough, degenerate surface states in each valley are ide-
ally localized on two opposite surfaces, respectively. As
the thickness of the slab decreases below the penetration
length of surface states, an additional coupling becomes
significant between surface states in the same valley but
on opposite surfaces, which possibly modify low-energy
bands [22, 23]. Topological phases are associated with
low-energy band ordering inversions with respect to the
atomic limit. Quantum spin Hall insulator (QSHI), pro-
tected by time-reversal symmetry, has an odd number of
band inversions [1, 2]. In contrast, the predicted two-
dimensional topological crystalline insulators, protected
by mirror symmetry, have an even number of band inver-
sions [6–8]. Considering that the two valleys in SnTe slab
are not related by symmetry, we expect valley-dependent
surface-state couplings and multiple possibilities of band
orderings at two valleys that lead to various topological
phases.

We compute a series of slabs up to 35 atomic layers
to study the variance of the low-energy bands with the
slab thickness. While the slab of less than 7 layers is
metallic without a global band gap, the other slabs are
insulators. Their gaps at both valleys and global gap are
shown in Fig. 2(b), as functions of the (110) atomic layer
number, n. The gaps at two valleys independently vary
with thickness, due to strength changes of surface-state
couplings. For X valley, the magnitude of the gap first
decreases to nearly zero (17 ≤ n ≤ 35) and then increases
(7 ≤ n ≤ 15) as the thickness decreases. In contrast,
though there is a similar trend at R valley, the magnitude
of the gap is always larger than 29 meV. Besides, we
define the sign of the gaps, which becomes clear shortly.
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FIG. 2: Electronic structure of SnTe slabs. (a) Band structure
of 19-layer slab. (b) The evolution of direct band gaps at
two valleys, EX and ER, and the global gap, EG, with the
thickness of the slab. (c) Orbital resolved low-energy band
structures of 19-layer (upper panel) and 7-layer (Lower) slabs.
The size of blue circles is proportional to the orbital weight of
Te ions. (d) The corresponding energy dispersion at the edge
along y axis.

The closing and reopening of the band gap at X val-
ley is possibly accompanied with the changes of the band
ordering and corresponding band topology. To ascertain
the band ordering, we first examine orbital-resolved band
structures in Fig. 2(c). For 19-layer slab, p-orbitals of
Te ions mainly contribute to the lowest conduction band
states at both valleys, while the highest valence band
states have few components from Te. The band order-
ing is consistent with the case of bulk SnTe, indicating
band inversion compared with its atomic limit [12]. The
inverted bands at both valleys suggest a possible two-
dimensional topological crystalline insulator [6, 12]. For
7-layer slab, the orbitals from Te still contribute to the
lowest conduction band states at R valley, while they
move to the highest valence band states at X valley. Com-
pared with 19-layer slab, the band exchange restores the
band ordering of the atomic limit at X valley. Only one
band inversion at R may lead to quantum spin Hall in-
sulator [1, 2]. The sign of valley gaps in Fig. 2(b) is
defined to distinguish band orderings, where the nega-
tive gap corresponds to inverted bands.

By calculating topological invariants [12, 24–26], we
unambiguously confirm that the slabs with n ≥ 17 and
7 ≤ n ≤ 15 are respectively topological crystalline insu-
lator and quantum spin Hall insulator (Details in Sup-
plemental Material [14]). Besides, these confirmed topo-
logical crystalline insulators have a maximum global gap
of 40 meV when n = 27. The maximum gap of quan-
tum spin Hall insulators is 34 meV with n = 7. Due to
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considerable gaps, topological phases can be expected at
room temperature.

Symmetry-protected edge states are the defining
characteristics of two-dimensional topological phases and
lead to robust quantized conductance. Fig. 2(d) shows
edge states of topological SnTe slabs. A topological crys-
talline insulator has two pairs of counter-propagating
gapless Dirac edge modes within the band gap, as shown
in energy dispersion of an edge along y axis. Two Dirac
points are respectively located at high-symmetric mo-
menta, X̄ (ky = 0) and R̄ (ky = π), which are projec-
tions of two valleys along y axis (Fig. 1(c)). These edge
states are protected by in-plane mirror symmetry and
contribute a robust quantized conductance of 2e2/~ per
edge. Besides, the edge-state couplings in nanoribbon ar-
rays, which we will discuss later, are on the basis of the
edge states. Similar edge states are also found at an edge
along x axis [14]. For a quantum spin Hall insulator, the
edge state has only one Dirac point at R̄, when R val-
ley keeps band inversion. It is protected by time-reversal
symmetry and gives a reduced quantized conductance of
e2/~ per edge.

With the help of valley-contrasting couplings between
surface states, two distinct types of topological phases
are created in SnTe (110) slabs. Multiple topological
phases in the same material system provide multi-mode
quantum transport with good material compatibility. In
contrast, a (001) slab harbors only two-dimensional topo-
logical crystalline insulator, due to only one independent
valley [6, 27]. For a (111) slab, the absence of mirror
symmetry excludes topological crystalline insulator and
the band inversion is not found by first-principles calcu-
lations [14, 28], though it has symmetry-unrelated valleys
[28–31].
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FIG. 3: Edge-state couplings in nanoribbon arrays. (a) Top
view of a periodic array, where the vacuum layer is used as
the spacer layer. The intra- and inter-nanoribbon couplings
are respectively represented by red and green ellipses. The
unit cell of the array is bounded by dashed lines. (b) When
extending from a nanoribbon to an array, each valley becomes
a doublet at time-reversal-invariant points of the Brillouin
zone of the array. (c) Topological phase diagram of an array.

Edge-state couplings in a nanoribbon array.— Based
on the above multivalley edge states in SnTe (110) slab,
we further propose topological phase transitions in a
nanoribbon array. Two-dimensional nanoribbon array
is constructed by bottom-up design, with alternating
one-dimensional SnTe nanoribbons and topological triv-
ial spacer layers, as shown in Fig. 3(a). The edge
states of the nanoribbon (Fig. 2(d)) give rise to the low-
energy states of a nanoribbon array. Specific to an array
with nanoribbon edges along y direction, time-reversal-
invariant points, R′ and R′′ (X′ and X′′) in the Bril-
louin zone of the array are related to R̄ (X̄) valleys of
the nanoribbon, as shown in Fig. 3(b). Compared with
surface-state couplings in the slab, the coupling between
edge states of the nanoribbon can occur through the
spacer layer (inter-nanoribbon), besides the ones through
the nanoribbon (intra-nanoribbon). It is noted that we
can make an analogy between a nanoribbon array and
a dimerized diatomic chain [32], where two edges of a
nanoribbon correspond to two dimerized atoms. The two
kinds of edge-state couplings are similar to staggered hop-
ping amplitudes in the dimerized chain.

Taking into account two kinds of edge-state couplings,
a low-energy Hamiltonian of the array immediately fol-
lows, Hv = τx(tv + t′

v
exp(ik⊥)), to study the band

topology of the arrays. The Hamiltonian is also simi-
lar to that of the dimerized diatomic chain. Here, tv
and t′

v
are respectively intra- and inter-nanoribbon cou-

pling strengths. v is the index to distinguish R̄ and X̄
valleys. τ = ±1 denote two edges of a nanoribbon. k⊥
is the momentum perpendicular to the edge, while the
dispersion along the parallel momentum is not consid-
ered. We assume the presence of inversion symmetry for
simplicity and then two spins have the same copy of the
above Hamiltonian. The gaps at k⊥ = 0 and π, obtained
by diagonalizing the Hamiltonian, have magnitudes of
2|tv + t′

v
| and 2|tv − t′

v
|, respectively. When |tv| = |t′

v
|,

the band gap becomes zero at k⊥ = 0 or π, leading to a
possible topological phase transition. Based on the num-
ber of band inversions and topological invariants [26], we
have topological phase diagram of an array in Fig. 3(c),
including both quantum spin Hall and topological crys-
talline insulators. When |tv| < |t′

v
| for both valleys, the

array is a topological crystalline insulator; |tv| > |t′
v
| for

both valleys leads to a normal insulator (NI); if |tv| < |t′
v
|

for one valley and |tv| > |t′
v
| for the other, quantum spin

Hall insulator emerges; |tv| = |t′
v
| gives the boundary

between topological phases.

Under the guidance of topological phase diagram, we
compute the electronic properties of nanoribbon arrays
by ab-initio tight-binding Hamiltonian [14]. A series of
arrays with n = 19 are considered, where the variable
nanoribbon width is used to tune intra-nanoribbon cou-
plings. The number of (001) atomic layers, m, denotes
the nanoribbon width and it is chosen to be odd to keep
inversion symmetry. A vacuum layer of 6.4 Å is used as
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the spacer layer. The model can also be seen as a sheet
with a (001) atomic layer removed periodically. Fig. 4(a)
shows a spin-degenerate band structure of an array. Four
direct band gaps are located at R′, R′′, X′ and X′′. Based
on the band gaps [14], Fig. 4(b) gives edge-state cou-
pling strengths at two valleys and their evolution with
the increasing nanoribbon width. The intra-nanoribbon
couplings at both valleys continuously decrease as the
nanoribbon width increases, while the couplings through
the fixed vacuum layer are nearly unchanged. For the
nanoribbon with m ≤ 31, |tv| > |t′

v
| at both valleys

and the array is topological trivial. When the nanorib-
bon considered widens more than 31 layers, |tR̄| becomes
smaller than |t′

R̄
|, but |tX̄| is still larger than |t′

X̄
|, leading

to a topological phase transition from normal insulator
to quantum spin Hall insulator. By further widening the
nanoribbon, we expect a switch of coupling strengths at
X̄ valley, similar to R̄. The array will be a topological
crystalline insulator, in consistent with a perfect 19-layer
slab, which can be regarded as the limit of infinite-width
nanoribbons. The band topology is also confirmed by
orbital-resolved bands and topological invariants [14].

Multiple topological phases are achieved by tuning
the nanoribbon width. The vacuum layer width is an-
other key parameter. The edge states decay exponen-
tially when moving away the edge, so do their cou-
plings through the vacuum layer. A wider/narrower
vacuum layer therefore moves the lines of |t′

v
| down-

wards/upwards in Fig. 4(b) and have topological phase
transition occur with a wider/narrower nanoribbon.
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FIG. 4: Electronic structure of nanoribbon arrays. (a) A rep-
resentative band structure of the array, with m = 19. The
coordinates of N is (π/2, π/2). (b) The evolution of coupling
strengths with the nanoribbon width. (c) A schematic depic-
tion of the arrays with various-width nanoribbon and vacuum
layers. The nanoribbons and helical edge states are denoted
by green blocks and blue arrows, respectively.

Discussion.— It is highly feasible to experimentally
realize our proposed topological phases in nanoribbon ar-

rays, with the help of fast-growing physical and chemical
processes, e.g. lithography techniques [33–35]. As shown
schematically in Fig. 4(c), well-patterned arrays harbor
different topological non-trivial edge states at the phase
boundary. The quantum phases and corresponding edge
states are determined by the widths of nanoribbons and
vacuum layers. The edge states with conductances of 0,
e2/~ and 2e2/~ per edge offer a dissipationless quantized
transport of multiple stepwise variations, high tunabil-
ity and good material compatibility, which has potential
use in energy-efficient electronic and spintronic devices.
Moreover, the spacer layer can be another materials, such
as isostructural IV-VI semiconductors, PbTe and GeTe.
Additional interactions from substrates and electric field
can be introduced in the arrays. These methods possibly
tune the edge-state couplings in a larger range.

These topological phases and their edge states in SnTe
film system proposed above are very stable. Topologi-
cal crystalline and quantum spin Hall insulators are re-
spectively protected by mirror and time-reversal symme-
tries [1–3]. The quantized edge transport is therefore
expected to be robust against the disorders that preserve
corresponding symmetries. Though increasing tempera-
ture drives SnTe material class towards normal insula-
tor [36], considerable gaps suggest topological non-trivial
phases at high temperature, compared with existing two-
dimensional topological insulators [4, 5]. While the addi-
tional doping shifts the chemical potential and introduces
new characteristics, the band topology and non-trivial
edge states can remain unchanged over a large concen-
tration range, by reference to surface states of bulk SnTe
[37, 38]. These topological properties are also expected
to be kept under another perturbations, e.g. a moderate
strain [12].

The mechanism of multivalley boundary-state cou-
plings is rather versatile. A manifestation of the versatil-
ity is that the mechanism can be exploited in both top-
down and bottom-up designs of two-dimensional topo-
logical phases, where the slab and nanoribbon array re-
spectively give full play to surface-state and edge-state
couplings. Moreover, the mechanism applies to a variety
of exotic topological phases and materials.

Taking one step from topological crystalline and
quantum spin Hall insulators, it immediately become
compelling to apply multivalley boundary-state couplings
to more exotic topological phases. Chern insulator and
topological superconductor can be respectively realized
by inducing magnetic and superconducting order into
SnTe film system [38–41]. The valley-contrasting cou-
plings between boundary states further lead to vari-
ous (mirror) Chern numbers and multi-mode chiral edge
states/Majorana zero modes. If the space layer is a su-
perconductor and the electron-electron interaction is in-
troduced, the structure of the nanoribbon array and mul-
tivalley boundary-state couplings have also potential use
in realizing a two-dimensional sea of parafermions [11].
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Besides, even if the system is away from topological phase
transition and band gaps do not become inverted, tun-
able valley gaps (See Fig. 2(b)) are desirable in valley-
selective optical and electronic applications [42–44].

It is noted that SnTe film system is an example of
available materials. The versatile mechanism can also
apply to another systems with multiple valleys, such as
more IV-VI semiconductors [12, 45], elemental bismuth
[26], ytterbium borides [46], transition metal chalco-
genides [42, 43] and so on.

Conclusion.— In summary, valley-contrasting cou-
plings between boundary states are studied in thin film
system with symmetry-unrelated valleys, to design two-
dimensional topological phases by top-down and bottom-
up approaches. Both surface-state couplings in a slab
and edge-state couplings in a nanoribbon array lead to
quantum spin Hall insulator and topological crystalline
insulator. In particular, topological phase transitions in
an array can occur in a well-controlled way. The quan-
tum transport of topological edge channels provides a set
of quantized conductances. The mechanism broadens the
scope of the research on topological materials.
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