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S. Takada,1, 2, 3 M. Yamamoto,1, 4 C. Bäuerle,2, 3 A. Ludwig,5 A. D. Wieck,5 and S. Tarucha1, 6

1Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
2Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France

3CNRS, Inst NEEL, F-38042 Grenoble, France
4PRESTO, JST, Kawaguchi-shi, Saitama 331-0012, Japan

5Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum,
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The transmission phase across a quantum dot (QD) is expected to show a mesoscopic behavior,
where the appearance of a phase lapse between Coulomb peaks (CPs) as a function of the gate
voltage depends on the orbital parity relation between the corresponding CPs. On the other hand
such a mesoscopic behavior has been observed only in a limited QD configuration (few electron and
single-level transport regime) and universal phase lapses by π between consecutive CPs have been
reported for all the other configurations. Here we report on the measurement of the transmission
phase across a QD around the crossover between single-level and multi-level transport regimes
employing an original two-path quantum interferometer. We find a mesoscopic behavior for the
studied QD. Our results show that the universal phase lapse, a long standing puzzle of the phase
shift, is absent for a standard QD, where several tens of successive well-separated CPs are observed.

Quantum coherent transport is essentially different
from its classical counter part. The quantum phase of
an electron produces various kinds of quantum interfer-
ence phenomena, such as the Aharonov-Bohm (AB) ef-
fect, weak localization and universal conductance fluc-
tuations. Characterization of the phase is therefore re-
quired to fully describe the coherent transport. One of
the most fundamental problems is the scattering phase
through an (artificial) atom or a quantum dot containing
electrons. That can be studied by employing a quantum
two-path interferometer. Indeed transmission phase shift
of an electron across a quantum dot (QD) was measured
by embedding a QD into one arm of a multi-terminal
AB interferometer [1]. It was confirmed that the phase
evolves by π across a Coulomb peak (CP), where the
number of electrons inside the QD changes by 1, as ex-
pected from Friedel’s sum rule [2]. On the other hand,
unexpected abrupt π phase lapses were found between
all successive CPs irrespective of various parameters of
the QD. Due to its robustness such a phase behavior
is termed universal. Later, the transmission phase shift
across a few electron QD was also investigated [3]. In
this experiment for a QD containing up to 10 electrons
the phase showed phase lapses between some CPs while
a smooth phase shift between other CPs was observed.
Such a phase behavior, where the appearance of the phase
lapse depends on parameters of the mesoscopic system,
is expected theoretically [4] and is termed mesoscopic.
However for the larger QD configuration containing more
than 14 electrons the universal phase behavior was re-
covered. This observation invokes the potential impor-
tance of the crossover between single-level (Γ < δ) and

multi-level (Γ > δ) transport regimes, where Γ is the
level broadening and δ is the single-level spacing of a
QD. Larger quantum dots generally have smaller level-
spacing, which might lead a crossover between the two
regimes within the studied energy scale.

It has been shown theoretically that the presence of a
phase lapse is related with the symmetry of orbital wave
functions. A phase lapse is expected to appear only in
the valley between CPs with the same parity of orbital
wave functions, leading to the mesoscopic behavior [4].
On the other hand, a generic explanation of the univer-
sal regime is still under debate despite many theoretical
works devoted to it [5–14]. Theoretical results failed to
reproduce such a universal regime observed previously
[1, 3]. One difficulty for the understanding of the phase
shift lies in the fact that only a few experimental works
exist [1, 3, 15, 16]. Indeed it is not easy at all to mea-
sure the true transmission phase shift of an electron in
mesoscopic systems due to boundary conditions imposed
by the contacts [2, 17]. The measured phase shift can
be unintentionally modified from the true phase shift by
contributions from multi-path interferences [18, 19]. Re-
cently we have demonstrated a way how to measure the
true transmission phase of an electron [20]. We have
shown that the criterion used in our experiments using
our original two-path interferometer ensures the proper
measurement [20] while those used in other previous ex-
periments are a bit less reliable [1, 3]. Therefore a careful
experimental investigation of is required to have compre-
hensive understanding of the phase behavior across a QD.

Here we investigate the transmission phase across a
QD around the crossover between single-level and multi-
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level transport regimes using our original interferometer
[20–23]. In contrast to the previous experiments [1, 3]
we observe mesoscopic phase behavior with a QD that
is not in the few electron regime both in the single-level
and multi-level transport regimes. When the QD is made
larger, an overlap between adjacent CPs starts becoming
larger, which prevents us from observing a clear phase
shift of π as well as the occurrence of the phase lapse.
Eventually we do not observe the universal phase behav-
ior for the maximum size of the QD accessible. Finally
we show the asymmetric phase behavior observed in the
high temperature Kondo regime (T � TK), which sup-
ports that the mesoscopic phase behavior is indeed re-
lated with the orbital parity relation between adjacent
CPs. The long standing problem of the universal phase
behavior is absent in our QD.
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FIG. 1. (a) A SEM image of the measured device and ex-
perimental setup. R = 10 kΩ is used to convert the currents
to voltages. The dashed lines indicate the typical trajectory
of two paths. (Inset) Typical magneto oscillations of output
currents I1 (black) and I2 (red). The smoothed background
is subtracted and only the oscillating components are plotted.
(b), (d) Coulomb diamonds for the Coulomb peaks in regime
A and B. The number of electrons inside the quantum dot is
decreasing towards more negative Vp. (c), (e) Coulomb peaks
measured at 0 dc bias voltage for the two regimes. The peaks
are named as peak 1A to 8A for regime A and as 1B to 10 B
for regime B.

Our quantum interferometer was fabricated from a
GaAs/AlGaAs heterostructure that hosts a 2DEG with
an electron density of n = 3.21×1011 cm−2, electron mo-
bility of µ = 8.6× 105 cm2/Vs located 100 nm below the
surface with modulation doping and a 45 nm spacer be-
tween doping and 2DEG. It is defined by applying nega-
tive voltages on the metallic Schottky gates deposited on
top of the substrate and depleting the 2DEG underneath
[Fig. 1a]. The interferometer consists of an Aharonov-
Bohm (AB) ring at the center and tunnel-coupled wires
at the both ends. The AB ring is formed by the gate
voltage VAB applied through the metallic air bridge. A
QD is formed at the lower arm of the AB ring and its
energy level is controlled by changing the plunger gate
voltage Vp. Electrons are injected from the lower left
contact by applying an AC bias [10 ∼ 20 µV, 23.3 Hz]
and currents are measured at the two contacts on the
right side through voltage measurements across the resis-
tances. When the tunnel-coupled wires are tuned to half
beam splitters, the interferometer works as a pure two-
path interferometer and shows anti-phase oscillations of
the two output currents I1 and I2 [Fig. 1a inset] [21–23]

Firstly we deplete the electrons underneath both
tunnel-coupled wires by applying large negative voltages
on VT1 and VT2. As a result the upper and lower parts of
the device are electrically isolated. All the injected cur-
rent into the lower left contact passes through the QD
and is recovered at the lower right contact. This allows
us to observe well-defined CPs and to characterize the
QD. We measure the phase in two different QD config-
urations referred to regime A and B. Between the two
regimes we changed VAB by 50 mV, which significantly
changes the shape of the QD and allows us to access a
different size of the QD. Fig. 1b (d) shows the Coulomb
diamonds in regime A (B), where the corresponding dif-
ferential conductance is plotted in the plane of Vp and
Vsd. The conductance as a function of Vp at Vsd = 0 in
the regime A (B) is shown in Fig. 1c (e). We estimate the
characteristic energy scales of the QD from the Coulomb
diamonds. The charging energy U is gradually changed
from 0.9− 0.8 meV for the smaller QD (regime A), while
it varies from 0.9−0.5 meV for the large QD (regime B).
Regime B represents a slightly larger QD configuration
with a corresponding smaller charging energy. However
we tuned the gate voltages in such a way that the QD
size at the right part of Fig 1b (regime A) is equivalent
to the left part of Fig. 1d (regime B). The single-level
spacing δ is measured around the peak 2A and 1B for the
regime A and B, respectively, and is about 0.2 meV for
both peaks, and decreases for more positive Vp. Given
the parameters above, our QD is not in the few electron
regime and the QD is expected to contain a few tens of
electrons.

Another important feature found for the QD is the
Kondo correlation [24, 25]. In Fig. 1b the differential con-
ductance is enhanced around the zero source-drain bias
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for the valley between the peak 5A and 6A as well as the
peak 7A and 8A. This enhancement corresponds to the
zero-bias anomaly and is a typical signature of the Kondo
correlation. We also confirm a logarithmic temperature
dependence of the conductance, which is another typical
signature of the Kondo correlation. Although this signa-
ture does not appear in Fig. 1(d), we find Kondo corre-
lation also for the valley between the peak 1B and 2B,
3B and 4B, 7B and 8B by suitably tuning the coupling
between the QD and the nearby reservoirs. The phase
behavior for Kondo correlated CPs has been investigated
both theoretically [26, 27] and experimentally [28, 29],
and an extremely well agreement has been achieved. In
this experiment we investigate the phase behavior at tem-
peratures well above the Kondo temperature (T � TK),
which is expected to show the asymmetric behavior de-
pending on the orbital parity relations with nearby CPs
[27, 28]. Let us mention that the Coulomb diamond
around the peaks 7A and 8A shows a slightly irregular
feature. This originates most probably from an impu-
rity around the QD since such an impurit potential is
less screened due to the low electron density of the QD.
On the other hand we do not observe significant influence
from this effect around zero bias as can be seen in Fig. 1c,
where we perform phase measurements.
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FIG. 2. Transmission phase shift across the quantum dot in
regime A. The phase shift (red circles) is plotted for the left
axis and the current I2 (black solid line) averaged over one
oscillation period of the magnetic field is plotted for the right
axis.

For the phase measurements we retune the tunnel-
coupled wires to be half beam splitters and measure the
transmission phase shift across the QD. This is done by
recording the magnetic field dependence of both I1 and
I2 at different plunger gate voltages Vp to change the
number of electrons inside the QD [28]. We perform a
complex fast Fourier transform of (I1 − I2), which con-
tains anti-phase components as a function of the mag-
netic field, to obtain the numerical value of the phase
shift. Let us first concentrate on regime A whose results

are shown in Fig. 2. Here we plot the phase shift and the
current I2 on the left and the right axis, respectively. We
only plot the phase data obtained from well defined anti-
phase oscillations of I1 and I2 since the phase shift ob-
tained from non-well defined anti-phase oscillations con-
tains extra contributions from multiple path interferences
[20]. In the Coulomb blockade region between CPs it is
usually difficult to obtain clear anti-phase oscillations due
to the small conductance. This generally limits reliable
data acquisition in close vicinity to the Coulomb block-
ade region and hence prevents the observation of the full
phase shift of π across a CP. However we still obtain suf-
ficiently large phase shifts to judge whether a phase lapse
is present at each valley.

The phase evolution across the CPs shows a variety
of different behaviors. The monotonic phase evolution
across two CPs of 5A and 6A, 7A and 8A is associated
with the Kondo correlation [29]. The important feature
is the absence of a phase lapse in the valleys between the
peak 2A and 3A, 6A and 7A, which is a signature of the
mesoscopic behavior [3]. This means that the mesoscopic
behavior can be observed even if the QD is not in the
few electron regime. For this QD condition we estimate
Γ from Lorentzian fitting of the CPs and find that the
crossover between single-level (Γ < δ) and multi-level
(Γ > δ) transport regimes occurs between the peak 2A
and 3A. This result shows that near the crossover the
phase behavior is still mesoscopic even for the multi-level
transport regime.

We note that the observed phase shift contains a triv-
ial phase shift from the modulation of the geometrical
phase along the AB ring induced by Vp. We find it is
sufficiently small (. 5 % of π) compared to the total
phase shift at each CP considering the capacitance of
the gate. For the phase measurements the tunnel cou-
pling energy Γ between the QD and the leads is tuned to
be large enough to have large conductance through the
QD over the swept range of Vp but small enough with re-
spect to U to avoid significant overlap between adjacent
CPs. The overlap between CPs prevents observation of
a well defined Coulomb blockade between the CPs, and
leads to large fluctuations of the electron number inside
the QD and hence a much smaller phase shift compared
to π across each CP [2]. This makes judgement of the
absence/presence of a phase lapse difficult.

Next we measure the phase shift in regime B, which
covers the larger QD. In this regime the crossover be-
tween the two transport regimes occurs around the peak
1B. Here we also observe a mesoscopic phase behavior as
shown in Fig. 3a. We confirm that there is no phase lapse
in the valley between the peak 2B and 3B. For the larger
QD Γ starts becoming large with respect to U and the
phase shift across each CP gets smaller compared to π.
In such a situation it becomes difficult to clearly judge
whether there is a phase lapse or not in a valley. On the
other hand, the total phase shift from peak 5B to the
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FIG. 3. Transmission phase shift across the quantum dot in
regime B. The phase shift (red circles) is plotted for the left
axis and the current I2 (black solid line) averaged over one
oscillation period of the magnetic field is plotted for the right
axis. In (b) the tunnel-coupling energy between the QD and
the reservoir is tuned to be smaller than in (a).

peak 8B exceeds π in Fig. 3a. This result is inconsistent
with the universal phase behavior.

We further increased the number of electrons in the
QD to try to investigate the absence/presence of a phase
lapse for the even larger QD. However, since the total
phase shift across each CP could not be made close to π
due to the limited tunability, this was not possible (see
Fig. 3b). We do not reach the universal phase behavior
with the largest QD we could reach with this device.

Finally we show an indication that the ab-
sence/presence of the phase lapse is related with the
orbital parity relation between nearby levels as theo-
retically expected. This can be investigated from the
asymmetric phase evolution across a pair of CPs showing
weak Kondo correlation (T � TK) compared to the ab-
sence/presence of a phase lapse at the valley in the outer
vicinity of the pair of CPs. Here we focus on the phase
behavior across the two pairs of CPs, 5A and 6A, 3B and
4B, which shows strong Kondo correlations under certain
tuning conditions. It has been theoretically shown that
the phase evolution across two CPs with Kondo correla-
tions can be asymmetric for T � TK, depending on the
orbital parity relation with the other CPs nearby [27, 28].
When the symmetry of the orbital wave function respon-
sible for the Kondo correlation and that of the adjacent
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FIG. 4. Transmission phase shift across Coulomb peaks with
weak Kondo correlation (T � TK) with the phase shift across
nearby Coulomb peaks for two different sets of the Coulomb
peaks [(a) and (b)]. The parity relation between the orbital
of the Kondo correlated Coulomb peaks and the orbital of the
nearby Coulomb peaks, which is predicted from the appear-
ance of the phase lapse, is indicated in the valley between the
peaks. When the parity is same (opposite), it is indicated by
+ (−).

CPs is the same on one side of the valley and is opposite
on the other side, the phase evolution is larger across the
peak closer to the valley with the same orbital parity and
smaller across the other. Such a phase evolution across
the CPs with Kondo correlation (5A and 6A, 3B and 4B)
at T � TK is plotted in Fig 4 together with the phase evo-
lution across the nearby CPs (4A and 7A, 2B and 5B). In
Fig 4a the phase lapse appears between the CP 4A and
5A but not between the CP 6A and 7A. According to
Ref. 4, the phase lapse appears in the valley when the or-
bital parity relation between nearby CPs is the same. On
the other hand, it does not appear when the parity is op-
posite. Following this theory, the orbital parity relation
should be the same for the valley between the CP 4A and
5A, and the opposite for the valley between the CP 6A
and 7A. Indeed, we find that the phase evolution is larger
across the CP closer to the valley with the same orbital
parity (5A) and smaller across the other (6A), consistent
with theory. A similar behavior is observed for regime
B (Fig. 4b) and hence corroborates this interpretation.
This result shows the connection between the appear-
ance of a phase lapse and the asymmetry of the phase
evolution at T � TK as expected from Ref. 27. Since cal-
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culations in Ref. 27 include Friedel’s sum rule relating an
orbital parity with a phase lapse [4], this correspondence
between the experimental results and the theoretical pre-
dictions in Ref. 27 also supports the connection between
the orbital parity relation and the appearance of a phase
lapse.

In conclusion we have studied the transmission phase
shift of an electron across a QD around the crossover be-
tween single-level and multi-level transport. We have
found that the transmission phase shift around the
crossover shows the “predicted” mesoscopic behavior.
We also confirm that the experimentally observed re-
lation between the appearance of phase lapses and the
asymmetry of the phase evolution for CPs with weak
Kondo correlation (T � TK) is consistent with theoreti-
cal calculations [27]. This result supports the predicted
connection between a phase lapse and an orbital parity
relation [4]. Our results show that the universal phase
lapse does not exist at least for a QD of a similar di-
mension, in contrast with the result reported in previous
studies [3]. The question which remains is whether the
universal phase laps appears for much larger QDs with
well separated CPs while Γ is clearly larger than δ [12].
Such a situation could not be investigated in our setup,
neither in the setups of the previous works [1, 3] as the
QDs are too small. This regime remains to be investi-
gated. Our observation shows the theoretically expected
mesoscopic behavior of the phase lapse, which has been
experimentally elusive for QDs in the non-few-electron
regime. This makes a significant step towards full under-
standing of a transmission phase behavior of a QD.
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