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It is proposed that strain-induced pseudomagnetic fields in Dirac and Weyl materials could be
used as valley and chirality sensitive lenses for beams of Weyl quasiparticles. The study of the
(pseudo-)magnetic lenses is performed by using the eikonal approximation for describing the Weyl
quasiparticles propagation in magnetic and strain-induced pseudomagnetic fields. Analytical ex-
pressions for the locations of the principal foci and the focal lengths are obtained in the paraxial
approximation in the models with uniform, as well as nonuniform effective magnetic fields inside
the lens. The results show that the left- and right-handed quasiparticles can be focused at different
spatial locations when both magnetic and pseudomagnetic fields are applied. It is suggested that
the use of magnetic and pseudomagnetic lenses could open new ways of producing and manipulating
beams of chiral Weyl quasiparticles.
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Introduction. — The recent experimental discovery of Dirac (e.g., Na3Bi and Cd3As2
1–3) and Weyl (e.g., TaAs,

TaP, NbAs, NbP, MoxW1−xTe, YbMnBi2
4–9) materials proved a conceptual possibility of condensed-matter systems

whose low-energy quasiparticles are massless Dirac or Weyl fermions (for reviews, see Refs.10–12). These discoveries
opened a new chapter in studies of the effects associated with the quantum anomalies, e.g., the chiral anomaly13

in parallel electric and magnetic fields, by using simple table-top experiments, rather than accelerator techniques of
high-energy physics. The Dirac and Weyl materials not only mimic the properties of truly relativistic matter, but
also allow for the realization of novel quantum phenomena that cannot exist in high-energy physics. In particular, a
very intriguing example of such phenomena is the quasiparticle response to background pseudoelectromagnetic (axial)
fields. Unlike the ordinary electromagnetic fields E and B, their pseudoelectromagnetic counterparts E5 and B5

couple to the left- and right-handed quasiparticles with opposite signs. It was shown in Refs.14–19 that similarly to
graphene, the physical origin of the pseudomagnetic fields is related to deformations in Dirac and Weyl materials
which cause unequal modifications of hopping parameters in strained crystals and can be considered as effective gauge
fields. The characteristic strengths of the pseudomagnetic fields in Dirac and Weyl semimetals are much smaller
than in graphene and range from about B5 ≈ 0.3 T, when a static torsion is applied to a nanowire of Cd3As2

18, to
approximately B5 ≈ 15 T, when a thin film of Cd3As2 is bent19.
While a static magnetic field cannot change the kinetic energy of charged particles, it affects the direction of their

motion due to the Lorentz force. This property is widely utilized in physics and technology. In particular, magnetic
fields can be used to create magnetic lenses for deflecting and focusing beams of charged particles20,21. Such lenses
are employed, for example, in cathode ray tubes and electron microscopes22,23.
In this study we suggest that strain-induced pseudomagnetic fields can be used for creating pseudomagnetic lenses

which deflect and focus beams of Weyl quasiparticles depending on their chirality. Such a dependence can be used
to spatially separate the charged quasiparticles of different chirality. A general experimental setup that allows the
maximum control of chiral beams is given by a combination of the magnetic and pseudomagnetic lenses as shown
schematically in Fig. 1. The system consists of a Weyl crystal (wire) placed inside a solenoid. The magnetic and
pseudomagnetic fields are directed along the +z axis and are present in the region 0 < z < L. The magnetic field
is generated by an electric current in the solenoid and the pseudomagnetic one is produced by the torsion of the
crystal. When the system is a part of a circuit, an input electric current will induce an unpolarized stream of left-
and right-handed chiral quasiparticles inside the semimetal. After passing through the lens region 0 < z < L, the
quasiparticles of opposite chiralities will split and converge at different spatial locations, providing a steady state with
a localized chiral asymmetry.
Since the characteristic scales of spatial variations of the background magnetic and pseudomagnetic fields are much

larger than the de Broglie wavelengths of Weyl quasiparticles, one can use the methods of ray optics (namely the
eikonal approximation) for the description of their motion (see, e.g., Ref.24). Because of a nontrivial topology of chiral
quasiparticles, however, one should pay a special attention to the Berry curvature25 effects on the corresponding chiral
beams.
Eikonal approximation for Weyl quasiparticles. —Let us start with the formulation of the eikonal approximation for

the motion of Weyl quasiparticles in the presence of both magnetic and pseudomagnetic fields. In view of the nontrivial



2

FIG. 1. A schematic illustration of the experimental setup which allows for the magnetic and pseudomagnetic lensing of
quasiparticles in Weyl materials. While the usual magnetic field B is produced by an electric current in the solenoid, the
pseudomagnetic field B5 is created by twisting the crystal of a Weyl material.

topological properties of Weyl fermions26–29, the semiclassical equations of motion should take into account the Berry
curvature effects25,30. In the framework of the chiral kinetic theory31–33, it is straightforward to include corrections
linear in the background field Bλ = B + λB5, where B and B5 denote the ordinary magnetic and pseudomagentic
fields, respectively, and λ is chirality of the left- (λ = −) and right-handed (λ = +) quasiparticles. In the eikonal
approximation24, however, we need the dispersion relations for the Weyl quasiparticles valid to the second order in
Bλ. While the corresponding expression for the general band structure was derived in Ref.29, its explicit form for
Weyl quasiparticles was derived by the present authors in Ref.34. For the quasiparticles of positive energy (electrons),
the corresponding relation reads

ε ≡ vF p− λ
e~vF
2cp2

(Bλ · p) + e2~2vF
16c2p3

(

2B2
λ − (Bλ · p)2

p2

)

, (1)

where vF is the Fermi velocity, c is the speed of light, p is the momentum of quasiparticles, and e < 0 is the electron
charge. Note that the second and third terms in Eq. (1) describe corrections due to the Berry curvature. In essence,
these terms describe the interaction of the spin magnetic moment of the quasiparticles with the effective magnetic
field. Further, we use the notation ε without the subscript λ because the quasiparticles of opposite chiralities have
the same Fermi energy.
The orbital part of the quasiparticle interaction with the magnetic field is captured in the standard eikonal

approximation22,24. (See Sec. I of the Supplemental Material35 for the key details of the eikonal approximation.)
For charged quasiparticles in an effective magnetic field Bλ close to the optical axis, we can write down the abbrevi-
ated action S0 ≡ S0(r) for Weyl quasiparticles in the following form:

S0 ≈ ε

vF

(

Cz +
r2
⊥

2
A(z) +O(r4

⊥
)

)

, (2)

where r⊥ =
√

x2 + y2 measures the distance from the optical axis. (Note that the abbreviated action S0 is related
to the full action via S = −εt+ S0, where ε denotes the quasiparticle energy and t is time.) By solving the eikonal
equation in the weak-field limit, we obtain the explicit expression for the constant C

C ≃ 1 + λ
Bλ

B∗
− 5

4

(

Bλ

B∗

)2

+O

(

B3
λ

(B∗)3

)

, (3)

and the equation for the function A(z)

a1A
′(z) + (A(z))2 + a22 = 0. (4)

Here we introduced the following notations:

a1 ≃ 1 +
5

4

(

Bλ

B∗

)2

, (5)

a22 ≃ eB2
λ

2c~B∗

(

1− 2λ
Bλ

B∗

)

, (6)

as well as a reference value of the magnetic field, B∗ = 2cε2/(e~v2F ), which is associated with the quasiparticle energy

scale ε. The latter is defined so that the corresponding magnetic length l∗B ≡
√

c~/(eB∗) is comparable to the de
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Broglie wavelength of the Weyl quasiparticles lε ≡ ~vF /ε =
√
2 l∗B. As is easy to check, the subleading terms in

powers of Bλ/B
∗ in Eqs. (3), (5), and (6) originate from the Berry curvature corrections in the dispersion relation

(1). Their validity, therefore, is similarly restricted to the case of sufficiently weak effective field, i.e., Bλ ≪ B∗.
Magnetic and pseudomagnetic lenses. — Let us begin the analysis of the quasiparticle motion with the simplest

case of uniform magnetic and pseudomagnetic fields, Bλ = const. Solving Eq. (4) in the three different regions, i.e.,
z < 0, 0 < z < L, z > L, and matching the abbreviated action at the boundaries (see Sec. II of the Supplemental
Material35 for the details of solving the lens equation in a uniform field), we obtain the following lens equation relating
the coordinates of the quasiparticle source z1 and its image z2:

(z1 + gλ)(z2 − hλ) = −f2
λ. (7)

Indeed, one can easily see that when the source is placed at the left focal point, i.e., z1 → −gλ, the position of the
image z2 goes to infinity. Similarly, when z1 → −∞, the location of the image is near the right focal point, i.e.,
z2 → hλ. Therefore, z = −gλ and z = hλ are the locations of the principal foci, and fλ is the principal focal length.
In the case under consideration, we find that hλ = L+ gλ and

gλ ≃ lεB
∗

Bλ (1− λBλ/B∗)
cot

(

LBλ (1− λBλ/B
∗)

lεB∗

)

, (8)

fλ ≃ lεB
∗

Bλ (1− λBλ/B∗) sin
(

LBλ(1−λBλ/B∗)
lεB∗

) . (9)

These analytical expressions are the key characteristics of the (pseudo-)magnetic lens and are the main results of
this article. When the paraxial approximation is justified, these results should be valid for arbitrary Weyl and Dirac
materials.
According to Eq. (9), the focal lengths for the quasiparticles of opposite chiralities can be different. In fact, this

remains true even in the limit of the vanishing pseudomagnetic field (i.e., B5 = 0 but B 6= 0). In such a case, a relatively
small difference between the focal lengths f+ and f− is connected with the Berry curvature effects quantified by the
second term in the square brackets in Eq. (6). This is in contrast to the case of the vanishing magnetic field (B = 0
but B5 6= 0), when the focal lengths for the quasiparticles of opposite chiralities are exactly the same. The latter
should not be surprising after noting that the Berry curvature effects, which are proportional to λBλ/B

∗, are identical
for the left- and right-handed quasiparticles when B = 0. However, it is important to mention that comparing to the
case of a nonzero pseudomagnetic field, where the chirality splitting shows up already at the leading linear order in
the field, the Berry curvature effects are quadratic in the fields. Therefore, the corresponding splitting is much smaller
than that caused by the combination of magnetic and pseudomagnetic fields.
In order to get a quantitative estimate for the principal focal length, we will use the numerical value of the Fermi

velocity for Cd3As2
2, vF ≈ 9.8 eVÅ. In this case, the characteristic magnetic field is |B∗| ≈ 14 T, assuming

ε = 100 meV. The dependence of the focal lengths f+ and f− on the pseudomagnetic field strength B5 is shown in the
left panel of Fig. 2 for B = 0 and B = 10−4B∗. As expected, in the presence of both magnetic and pseudomagnetic
fields, the focal lengths are different for the quasiparticles of opposite chirality.
As we see from the analytical expression (9), as well as from the left panel of Fig. 2, the dependence of the focal

length on the (pseudo-)magnetic field is quasi-periodic. Also, the focal length is formally divergent at the following
discrete values of the background field: Bλ/B

∗ ≈ lεπn/L, where n = 0,±1,±2, . . .. The mathematical reason for
these divergencies is clear from Eq. (9), which has the sine function in the denominator. In the vicinity of divergencies,
the paraxial approximation breaks down. This follows from the fact that the expansion in powers of r⊥ in Eq. (2)
becomes unreliable when A(z) is too large. Thus, the geometrical optics approach fails and one needs to use exact,
rather than approximate solutions to the wave equation.
In order to illuminate the effects of the Berry curvature, it is instructive to compare the focal length in Eq. (9) with

its counterpart when such effects are neglected, i.e.,

f
(0)
λ =

lεB
∗

Bλ sin
(

LBλ

lεB∗

) . (10)

The corresponding relative difference ∆fλ/fλ ≡ (f
(0)
λ − fλ)/fλ is plotted in the right panel of Fig. 2 for B = 0 and

B = 10−4B∗. As one can see, away from the divergencies, the effects of the Berry curvature quantified by ∆fλ are
much smaller than the focal lengths. This fact is not surprising because the effects of the Berry curvature in Weyl
materials are subleading compared to that of the combination of magnetic and pseudomagnetic fields. However, the
corresponding effects may become noticeable at sufficiently large magnetic and pseudomagnetic fields or near the
divergencies, where the Berry curvature corrections may lead to a noticeable spatial separation of the beams of chiral
quasiparticles even by the ordinary magnetic field alone.
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FIG. 2. Left panel: The focal length fλ for the quasiparticles of given chirality λ as a function of the pseudomagnetic field.
Right panel: The relative difference between the focal lengths with and without the Berry curvature effects ∆fλ/fλ as a function
of the pseudomagnetic field. While the red solid lines correspond to quasiparticles of both chiralities at B = 0, the blue dashed
and green dotted lines represent the left- and right-handed quasiparticles at B = 10−4B∗, respectively. We set ε = 100 meV
and L = 10−2 cm.

FIG. 3. A schematic illustration of the spatial separation of chiral quasiparticles inside a Dirac semimetal crystal that is a Z2

Weyl semimetal. While the red lines correspond to the right-handed quasiparticles, the blue lines represent the left-handed
ones. The solid and dashed lines correspond to the different pairs of Weyl nodes.

Just like in Weyl materials, a combination of the magnetic and pseudomagnetic lenses can be used for splitting the
beams of chiral quasiparticles in Dirac materials. Naively, by taking into account the topological triviality of a Dirac
point, one may suggest that the pseudomagnetic fields are absent and the spatial separation of the quasiparticles
of different chiralities in magnetic and pseudomagnetic fields is impossible. However, some Dirac semimetals, e.g.,
A3Bi (A = Na, K, Rb) as well as certain phases of Cd3As2, are, in fact, hidden Z2 Weyl semimetals36. Their Dirac
points come from two pairs of superimposed Weyl nodes separated in the momentum space. Since the strain-induced
pseudomagnetic field B5 is determined by the separation vector15,18,19, this field will be the same in magnitude but
opposite in direction for the corresponding two pairs of Weyl nodes. Therefore, if the Berry curvature effects were
neglected as given by Eq. (10), the focal length of the right-handed (left-handed) quasiparticles from the first pair of
Weyl nodes would coincide exactly with the focal length of the left-handed (right-handed) quasiparticles of the second
pair of Weyl nodes. As a result, a generic beam of quasiparticles would split in two nonchiral beams after passing
through the lens. In other words, there would be only valley separation with no spatial separation of the chirality.
However, the Berry curvature qualitatively changes the situation and, according to Eq. (9), all focal lengths become
different now. This is schematically illustrated in Fig. 3, where the beams of quasiparticles in Dirac semimetals under
consideration are split into four chiral beams after passing through the lens. In summary, while the combination of
magnetic and pseudomagnetic fields alone allows only for a valley separation in the Dirac materials, the inclusion of
the Berry curvature effects is important in order to achieve the complete splitting of the beams. This is in contrast
to the case of Weyl materials with two Weyl nodes where the Berry curvature provides only second-order corrections
to the splitting induced by the (pseudo-)magnetic fields at the linear order.

Lenses with a nonuniform background field. — It could be argued that the model situation with a constant
(pseudo-)magnetic field Bλ considered above may not be very realistic. Indeed, for real solenoids and torsion-induced
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strains, there are always fringing fields at the ends. In order to get a better insight into the underlying physics, it is
instructive to consider the case of a nonuniform (pseudo-)magnetic field with the following spatial profile:

B̃λ(z) = θ(z)θ (L− z)
Bλ

1 + (z − L/2)
2
/ξ2

. (11)

Such a configuration mimics well the fringing fields at the ends of the (pseudo-)magnetic lens and, at the same time,
allows one to obtain an analytical solution in the paraxial approximation. Because of the product of unit step functions
θ(z)θ (L− z) in Eq. (11), the effective field B̃λ(z) is still effectively confined in the region 0 < z < L.
By limiting ourselves to the case of sufficiently weak (pseudo-)magnetic fields, we can neglect the effects of the

Berry curvature in the eikonal approximation. This is supported by our findings presented in the right panel of Fig. 2,
showing that the main contribution to the spatial separation of Weyl quasiparticles with different chirality comes
from the leading linear order in the (pseudo-)magnetic field. Such an approximation also allows us to obtain explicit
analytical results. When the quadratic corrections due to the Berry curvature are nonnegligible, the corresponding
analysis becomes much more involved, but can be performed using numerical methods.
As is easy to check in the case of a weak inhomogeneity, i.e., ξ ≥ L, the focal length f̃λ becomes almost indistin-

guishable from that in the uniform field shown in the left panel of Fig. 2. Of course, this is expected for a weakly
varying (pseudo-)magnetic field. On the other hand, when the (pseudo-)magnetic field is sufficiently nonuniform, i.e.,

ξ . L, the dependence of f̃λ on the (pseudo-)magnetic field is different. (See Sec. III of the Supplemental Material35

for the details of solving the lens equation in a nonuniform field.) We note, however, that one can still use Eq. (10)
for ξ . L, but with the following replacement of the lens size:

L → Leff =
1

B2
λ

∫ ∞

−∞

dz
(

B̃λ(z)
)2

=
πξ

2
, (12)

where we used the explicit form of B̃λ(z) in Eq. (11) in order to perform the integration. Thus, the nonuniform
(pseudo-)magnetic fields do not invalidate the principal possibility of pseudomagnetic lensing, albeit they may lead
to some technical challenges in its experimental realization.
Conclusions. — In this study we investigated the conceptual possibility of pseudomagnetic lenses that can be used

to focus the beams of chiral quasiparticles in Dirac and Weyl materials. We found that the maximum flexibility in
controlling the beams of Weyl quasiparticles is achieved in the presence of both magnetic and pseudomagnetic fields.
This allows one to achieve different magnitudes of the effective magnetic fields exerted on the left- and right-handed
quasiparticles, which provides enough control to manipulate the focal lengths fλ independently for each chirality and
valley. Moreover, in view of the nontrivial topology of Weyl fermions, the corresponding eikonal equation is affected
by the Berry curvature leading to a splitting of the beams of chiral quasiparticles even by the ordinary magnetic
field alone, albeit with a much smaller amplitude. Its effects are, however, crucial for the chirality separation in the
Dirac semimetals, which comes on top of the valley separation induced by (pseudo-)magnetic fields. A similar generic
separation is also expected in multipair Weyl materials.
It is intriguing to suggest that the pseudomagnetic lenses could allow for new and powerful ways of controlling and

manipulating the chiral beams of quasiparticles inside Dirac and Weyl materials. For example, they may open an
experimental possibility to control the spatial distributions of the electric current densities due to Weyl quasiparticles
depending both on their valley and chirality that may be detected via local probes. By focusing the beams of the left-
and right-handed quasiparticles in different spatial regions, one could achieve a “chiral distillation” and/or steady
states of matter with a nonzero chiral asymmetry. We hope that findings of this study could lead to new applications
that utilize the beam splitters of charged particles of given valley and chirality.
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