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Many features of charge-4e superconductors remain unknown because even the “mean-field Hamil-
tonian” describing them is an interacting model. Here we introduce an interacting model to describe
a charge-4e superconductor (SC) deep in the superconducting phase, and explore its properties us-
ing quantum Monte Carlo (QMC) simulations. The QMC is sign-problem-free, but only when
a Majorana representation is employed. As a function of the chemical potential we observe two
sharply-distinct behaviors: a “strong” quarteting phase in which charge-4e quartets are tightly
bound (like molecules) so that charge-2e pairing does not occur even in the temperature T → 0
limit, and a “weak” quarteting phase in which a further transition to a charge-2e superconducting
phase occurs at a lower critical temperature. Analogous issues arise in a putative Z4 spin-liquid
with a pseudo-Fermi surface and other interacting models with composite order parameters. Under
certain circumstances, we also identified a stable T = 0 charge-4e SC phase with gapless nodal quasi-
particles. We further discuss possible relevance of our results to various experimental observations
in 1/8-doped LBCO.

Superconductors, ranging from weakly correlated sys-
tems such as Hg to strongly correlated ones including
the high-Tc cuprates and Fe-based superconductors, have
been among central focuses of physics research for over a
century1–3. Heuristically, superconductivity occurs when
electrons bind into bosonic pairs which then condense to
form a phase coherent quantum fluid. The order param-
eters describing all known superconductors carry charge-
2e. Nonetheless, condensing charge-2e Cooper pairs is
not the only possible way to achieve superconductivity.
One intriguing possibility which is beyond the scope of
conventional BCS theory is a charge-4e superconducting
state, in which the condensate carries charge-4e while
pair-field correlations vanish at long distances. The flux
quantum in such a phase is φ∗ = hc/4e and the current
oscillations in a DC biased Josephson junction oscillate
with a frequency ω = 4eV/~.

To date, the existence of a charge-4e superconducting
state has not been established in any material. While
charge-4e “quartet-field” operators are long-range corre-
lated even in an ordinary charge-2e SC, these correla-
tions are simply a harmonic of the fundamental conden-
sate. However, a charge-4e superconductor may be real-
ized as a “partially melted” phase intermediate between
a charge-2e SC and a metal; here strong fluctuations de-
stroy the long-range charge-2e order, leaving the charge-
4e order behind as “vestigial” long-range order4. Such a
scenario was explored by Berg, Fradkin, and Kivelson in
studying how putative pair-density-wave order in certain
high-temperature SCs5,6 is melted thermally7,8. A sim-
ilar scenario was considered in Refs.9–11 in the context
of the multistep disordering of an FFLO state. Other
ways to achieve charge-4e superconductivity include in-
teractions that favor quarteting rather than pairing12–14

and condensing charge-4e skyrmions in quadratic-band-
touching systems15–17.

Many physical properties of a charge-4e SC are un-
known even in principle due to the fact that even the

strong-quarteting weak-quarteting 𝜇𝑐  𝜇  

𝑇 

charge-4e SC 

charge-2e SC 

𝑇𝑐  

𝑇2𝑒 

FIG. 1. Schematic phase diagram of a system with a high-
temperature transition, Tc, (the dashed line) to a charge-4e
superconducting state. A “strong-quarteting” regime appears
for values of the chemical potential, µ, less than a critical
value, µc, where charge-4e quartets are tightly-bound so that
charge-2e pairing cannot occur even as T → 0. A crossover
occurs at µc to a “weak” quarteting regime such that for
µ > µc a second (Ising) transition occurs at T2e > 0 to a
charge-2e superconductor. Note that the minimal model we
studied applies only much below the dashed line.

“mean-field Hamiltonian” describing such a phase must
itself be an interacting model. This is in sharp contrast
with charge-2e SCs whose mean-field BCS Hamiltonian is
quadratic in fermionic operators so that it can be solved
exactly. For charge-4e superconductors, there are a num-
ber of open questions. For instance, one naturally asks
whether a charge-4e SC is stable at zero temperature18.

As with charge-2e superconductors, charge-4e super-
conductors can be distinguished according to their trans-
formation properties under the space-time symmetries of
the system – s-wave, d-wave, p + ip-wave, etc.; here we
will consider only the s-wave case. In addition, there
exist two sharply-distinct types of quarteting phases: a
“strong” quarteting phase where charge-4e quartets are
tight-bounded (like molecules) and charge-2e pairing can-
not occur even at zero temperature, and a “weak” quar-
teting phase where quartets are loosely bound so that
charge-2e pairing can emerge at a lower critical tempera-
ture. A sharply defined quantum critical point at T = 0
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separates a regime in which the strong-quarteting phase
is stable all the way to T = 0, from a weak-quarteting
phase where a further transition to a charge-2e SC occurs
at Tc > 0, as schematically shown in Fig. 1.

Here we introduce and study a minimal interacting
model [see Eq. (1) below] to describe charge-4e super-
conductors at the mean-field level in which the charge
conservation symmetry is explicitly broken by the pres-
ence of a charge-4e quarteting field that plays a role anal-
ogous to that of the pairing field in a charge-2e super-
conductor. Because even the mean-field model is inter-
acting, inferring its properties is still highly non-trivial.
Remarkably, the model is sign-problem-free in quantum
Monte Carlo simulations19–25 only when the Majorana
representation26 is employed.

By performing large-scale Majorana quantum Monte
Carlo (MQMC) simulations26, we explore the thermody-
namic and spectral properties of a putative charge-4e SC
at temperatures well below Tc. Among the questions we
address are whether the charge-4e SC is gapped or gap-
less, and whether there is a further transition at T2e < Tc
to a charge-2e SC which spontaneously breaks the Z4

charge conservation to Z2
18.

The model: The following mean-field model is intro-
duced to describe a charge-4e SC well below Tc:

H = −t
∑
〈ij〉,σ

[
c†iσcjσ +H.c.

]
− µ

∑
i,σ

c†iσciσ

+ V
∑
〈ij〉

[
c†i↑c

†
i↓c
†
j↓c
†
j↑ +H.c.

]
, (1)

where t > 0 is the nearest-neighbor hopping integral, µ
the chemical potential, and ciσ the electron annihilation
operator at site i with spin polarization σ =↑/↓. The in-
teraction term in Eq. (1) describes the charge-4e quartet-
ing on nearest-neighbor bonds and V thus represents the
mean field corresponding to a singlet charge-4e conden-
sate. Thus, V vanishes at all T > Tc, and can be approx-
imated by a T independent constant V ∼ Tc for T � Tc.
As required, this model explicitly breaks the charge U(1)
symmetry to Z4, namely electron number is conserved
only modulo 4. We take V to be positive as its phase can
be changed by gauge transformation ciσ → eiθciσ while
keeping other terms in Eq. (1) invariant.

Mean-field solution: We can make a first pass at
studying the BCS instability of the charge-4e state by
applying mean field theory to the mean-field Hamilto-
nian in Eq. (1). Using the obvious mean-field decoupling
of the interacting term results in two gap parameters:

∆0 = V 〈c†i↑c
†
i↓〉bcs and ∆1 = V 〈[c†i↑c

†
j↓+ c†j↑c

†
i↓]〉bcs where

i and j are any pair of nearest-neighbor sites and 〈 〉bcs
is the thermal average with respect to the corresponding
quadratic BCS Hamiltonian. If we were to work at fixed
average electron density per site, n, in addition to the
self-consistency equations for ∆0 and ∆1, we would need
to compute the chemical potential, µ, self-consistently,
as well. To make easier contact with our Monte Carlo
results, we will instead discuss the results at fixed µ and

compute n(T, µ, V ) when desired.
The resulting mean-field phase diagram is qualitatively

reproduced in Fig. 1. The nature of these results are fa-
miliar from the BCS theory of charge-2e SCs. We will
focus the discussion on what is plausibly the most inter-
esting regime of parameters, Tc � 8t (where 8t is the
band-width) and V/8t� 1. The spectrum of quasiparti-
cle excitations is

E(~k) =
√

[tγ~k + µ]2 + [∆0 + ∆1γ~k]2 (2)

where γ~k = 2(cos kx + cos ky) is the nearest-neighbor
structure factor. The critical value of µc → −4t in the
limit V → 0; here, for µ < µc the density of parti-
cles n → 0 as T → 0. However, for non-zero V , the
electron density is a smooth function of µ such that
n(0, µ, V ) ∼ 4[V/4|µc − µ|]2 for µc − µ � V , where
4|µc − µ| represents the typical kinetic energy cost to
create a charge-4e quartet. Moreover, we can show that
µc = −4t−aV 2/t+ . . . in the small V limit, where a is a
constant of order 1. For µ > µc, the critical temperature
T2e ∼ [µ−µc] exp[−1/4N(µ)V ] where N(ε) is the density
of states of the non-interacting problem. Notice that so
long as V/t � 1, T2e � Tc, ignoring the T dependence
of V is self-consistently justified.

Several features of this approximate solution warrant
mention. In the strong quarteting limit, where µ < µc,
the quasiparticle spectrum is gapped even in the ab-
sence of charge-2e condensation, ∆a = 0. Conversely in
the region of weak quarteting, there is a “pseudo-Fermi-
surface” of gapless quasiparticle modes for T > T2e.
Since T2e is exponentially small, this pseudo-Fermi sur-
face is well defined, even though it only exists at non-zero
temperatures. It is worth to point out that this pseudo-
Fermi surface cannot be obtained in paired superfluids
whose fundamental constitutes are bosons11,13. However,
the quasiparticles are not the usual ones of a Fermi liq-
uid, in that their charge is only conserved mod 4. We
shall see that salient features of this “double-mean-field”
analysis are reproduced by our QMC simulations.

Majorana quantum Monte Carlo: We now pro-
ceed to study the zero-temperature properties of the
model in Eq. (1) by performing QMC simulations. As
there is no charge conservation in the charge-4e mean-
field model, it is natural to employ the Majorana rep-
resentation recently introduced in Ref.26 to solve the
fermion-sign-problem in QMC simulations. We first in-
troduce the Majorana representation of spin-1/2 elec-

trons: ciσ = 1
2 (γ1iσ + iγ2iσ), c†iσ = 1

2 (γ1iσ − iγ2iσ), where
γτiσ are Majorana fermion operators with τ = 1, 2 rep-
resents the Majorana indices and σ =↑, ↓. The quar-
teting interaction in the Majorana representation is:

V (c†i↑c
†
i↓c
†
j↓c
†
j↑+h.c.) = V

32

∑4
α=1

[
iγtiBαγj

]2
, where γti ≡

(γ1i↑, γ
2
i↑, γ

1
i↓, γ

2
i↓), B1 = σzτz, B2 = iσ0τz, B3 = σ0τx,

and B4 = iσzτx (σi and τ i are the Pauli matrices act-
ing in the spin and Majorana space, respectively). Upon
application of the Trotter decomposition and Hubbard-
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FIG. 2. (a) The finite-size scaling of the charge-2e pairing
structure-factor M2 on the square lattice of V = 1.0t for µ =
−6.0t and −10.0t, respectively (in the “strong-quarteting” re-
gion) with size L = 9, 10, · · · , 15. (b) The quadratic polyno-
mial fitting of particle density n(L→∞) for µ = −10.0t, with
V from 0.1t to 0.7t; the solid line fitted through the data is
n = 0.0037 (V/t)2. Here, we obtain n(L→∞) from a finite-
size scaling of n(L) with L = 8, 10, 12, 14. (c) The finite-size
scaling of M2 for V = 0.6, 0.7, 0.8, 0.9, 1.0t and µ = −1.36t
(finitely away from the half-filling). The system size L varies
from 9 to 16. Here, M2 barely changes with increasing L.
The colored lines are linear fits to the data points for each
V , which give rise to finite extracted values in the thermo-
dynamic limit (L → ∞). (d) The charge-2e pairing order

parameter ∆ ≡ V 〈c†i↑c
†
i↓〉 = V [M2(L → ∞)]1/2 (plotted on a

logarithmic scale) as a function of V −1 for µ = −1.36t with
V/t in the range 0.6 to 1.0; the fit to the solid line shows that

∆ ≈ αte−gt/V with α ≈ 2.3 and g ≈ 2.1.

Stratonovich transformations, the decoupled Hamilto-
nian at imaginary time τ is

ĥ =
∑
〈ij〉

[−t
2
γtiσ

0τyγj+
V

32
ηαijγ

t
iBαγj

]
−µ

4

∑
i

γtiσ
0τyγi,(3)

where ηαij are imaginary time dependent auxiliary fields
on bonds 〈ij〉, and the summation over α = 1, 2, 3, 4

is implicit. It is straightforward to check that ĥ pos-
sesses two anti-commuting Majorana-time-reversal sym-
metries: T− = iσyτxK and T+ = σxτxK. Accord-
ing to the general classification scheme of the fermion-
sign-problem proposed in Ref.27, the Majorana-bilinear
operators respecting both T+ and T− belong to the
recently-introduced sign-problem-free Majorana-class26,
which is one of two fundamental sign-problem-free sym-
metry classes27 (the other one is “Kramers-class”28).

Strong-quarteting phase: The strong-quarteting
phase is realized when µ < µc; here there is a gap in
the spectrum at V = 0, so a pairing instability should
not occur for weak V because it is unlikely for the sys-
tem to develop a charge-2e pairing in the absence of

Fermi surfaces. We first perform projector MQMC sim-
ulation to study the zero-temperature properties of the
charge-4e model on the square lattice with µ = −6t and
−10t, respectively, both of which are much below the
band bottom of −4t. We calculated the structure fac-
tor M2 = 1

N2

∑
ij〈c
†
i↑c
†
i↓cj↓cj↑〉 of charge-2e s-wave pair-

ing for V = 1.0t on lattices with size L = 9, 10, · · · , 15
(N = L2). As shown in Fig. 2(a), the finite size scaling
of M2 implies a vanishing charge-2e order parameter in
the thermodynamic limit, as expected.

In the strong quarteting phase (µ < µc), the elec-
tron density n remains finite as discussed in mean field
section. We numerically study the electron density for
µ = −10t and V varied from 0.1t to 0.7t on the lattice
with L = 8, 9, · · · , 14. As shown in Fig. 2(b), after fi-
nite size scaling, the n(L→∞) fits perfectly with V 2, as
expected from the mean-field analysis.

Weak-quarteting phase: In the “weak quartet-
ing” region (µ > µc), due to the finite density of states
at Fermi surface, the quartet interactions are known to
be marginally relevant18. Consequently, the system is in-
evitably unstable to charge-2e pairing at low enough tem-
peratures which fully gaps the Fermi surface (or, in some
circumstances, leaving discrete, gapless nodal points). So
we perform MQMC simulations of the charge-4e models
to investigate the possible charge-2e pairing for various
µ above the band bottom.

For simplicity, we set µ = −1.36t for which the Fermi
surface is relatively large. Even though we expect that
charge-2e pairing should occur at any finite (even in-
finitesimal) value of V , finite-size effects are problematic
for weak interactions because the charge-2e order param-
eter decreases exponentially as V → 0. For this reason,
we have taken values of V = 0.6, 0.7, 0.8, 0.9, and 1.0t,
which is relatively small compared with the band width,
but not so small as to present calculation problems.

We compute the structure factor M2 of the charge-2e
s-wave pairing and then perform finite-size scaling anal-
ysis which clearly shows evidences of long-range pairing
order, as shown in Fig. 2(c). The charge-2e pairing am-

plitude ∆ ≡ V 〈c†i↑c
†
i↓〉 = V [M2(L → ∞)]1/2. As the

quarteting strength studied is relatively weak compared

with the band width, we expect that ∆ = V 〈c†i↑c
†
i↓〉 is

given by ∆ ≈ αt exp(−gt/V ), where α and g are con-
stants depending on the details of the Fermi surface. By
fitting ∆ obtained at V = 0.6 ∼ 1.0t with the exponential
form, our MQMC results show that α ≈ 2.3 and g ≈ 2.1,
as shown in Fig. 2(d). This supports that the charge-2e
pairing occurs for any finite (even infinitesimal) quartet
strength V , consistent with the RG analysis in Ref.18.

Nodal charge-4e SC: We expect that the two dis-
tinct phases we have identified on the square lattice and
the nature of the transition between them are not sen-
sitive to the details of the band structure. However, a
distinct charge-4e SC phase can be shown to be stable,
at least under the special circumstances in which the sys-
tem supports a massless Dirac dispersion such as occurs
on the honeycomb lattice at half-filling. We find that the
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FIG. 3. (a) A schematic phase diagram of the model on the
honeycomb lattice at half filling (µ = 0). The quantum phase
transition is expected to occur at a finite critical value of
V = Vc, and to be in the Gross-Neveu universality class of
Ising symmetry breaking. Correspondingly, for V > Vc, there
should be a transition to a charge-2e SC with a finite temper-
ature Tc ∼ (V − Vc)ν with ν ≈ 0.78 obtained from MQMC
simulations. (b) The Binder ratio B(V,L) of the charge-2e
pairing order parameter as a function of V and L for the case
of half-filling. Here, L varies from 9 to 15, as plotted in differ-
ent colors. The crossing point gives rise to the critical point
Vc ≈ 0.84t. (c) The critical exponent η ≈ 0.52 and ν ≈ 0.78
are obtained by reaching the best data collapsing.

charge-4e phase with a nodal quasiparticle is stable be-
low a critical strength Vc, above which charge-2e pairing
emerges in the ground state, as shown in Fig. 3(a). Such a
charge-4e to charge-2e quantum phase transition of spin-
ful fermions belongs to the Gross-Neveu universality29–34

in (2+1)D, similar to the ones studied previously35–48.
For V > Vc, when the temperature is raised from zero,
thermal fluctuation tends to destroy the charge-2e pair-
ing such that the system undergoes a thermal phase tran-
sition to a charge-4e SC phase. The transition tempera-
ture Tc ∝ ∆ ∼ (V − Vc)ν for V close enough to Vc, with
the critical exponent ν discussed below.

The MQMC simulations show that a uniform s-wave
singlet pairing is the leading instability when V is suf-
ficiently large. To determine the critical value Vc, we
calculate the modified Binder ratio B(V,L)49 of the on-
site s-wave pairing order parameter. For sufficiently large
L, the Binder ratio B should cross at V = Vc for differ-
ent L. The calculated B(V,L) for various V and L are
shown in Fig. 3(b), from which we find that the crossing
occurs at Vc ≈ 0.84t. The critical exponents η and ν can
be calculated from the scaling behavior of M2 near the
QCP: M2 = L−1−ηF(L

1
ν (V − Vc)). Here we implicitly

assume the dynamical critical exponent z = 1 since the
low-energy theory of Dirac semimetals has an emergent
Lorentz symmetry. Both η and ν can be obtained by the
data collapsing method: by choosing appropriate η and
ν we shall expect all the points (L1/ν(V − Vc),M2L

1+η)
with various V and L collapsing into a single curve. In
Fig. 3(c), we show that the single-curve collapsing is best
for η ≈ 0.52 and ν ≈ 0.78. Because the charge-2e pair-
ing spontaneously breaks the original Z4 symmetry into
Z2 and massless Dirac fermions are gapped out by the
Ising order parameter, this QCP should belong to the
N = 2 Gross-Neveu universality class of Ising symme-
try breaking in (2+1)D. The results of η ≈ 0.52 ± 0.04

and ν ≈ 0.78± 0.06 obtained by QMC are similar to the
ones obtained in Ref.34 by RG analysis using ε-expansion
up to the first order but somewhat smaller than the ap-
proximate results obtained from other RG analysis using
large-N or ε-expansions30–33.

Concluding remarks: We have not uncovered a re-
gion of parameters in which the charge-4e SC possess
a pseudo-Fermi surface (i.e. a finite density of states
for gapless quasiparticle excitations) which is stable as
T → 0. However, it remains an open question whether
addition of repulsive density-density interactions to Eq.
1 could stabilize such a phase, as suggested in18.

There is a clear family resemblance between a charge-
4e SC and other states which represent the condensa-
tion of four-fermion operators without any correspond-
ing two fermion condensates. Examples are a compos-
ite odd-frequency spin-singlet charge-2e SC with order

parameter ∆comp ≡ ~M · ~∆ where ~M and ~∆ are the
usual magnetization and spin-triplet charge-2e SC or-
der parameters, and a spin-nematic order parameter,

Nab = MaMb − ~M · ~Mδab/3. Many of the same consid-
erations that apply to the charge-4e SC have analogues
in these phases, as well. In the context of spin-liquid
physics50,51, various much discussed Z2 spin-liquids52–54

are formal analogues of distinct forms of charge-2e SCs.
It is thus natural to consider, as well, Z4 spin liquids18

which are analogues of charge-4e SCs. Finally, it is
worth discussing the possible relevance of charge-4e SCs
to the physics of certain special high Tc superconducting
cuprates. A number of spectacular, but at present still
not conclusively understood thermodynamic and trans-
port anomalies, have been documented in single crys-
tals of 1/8-doped LBCO5. Below Tcdw ≈ 52K and
Tsdw ≈ 42K, charge- and spin-density wave (“stripe”)
order, respectively, is clearly seen in diffraction experi-
ments, with long but finite correlation lengths (presum-
ably due to quenched randomness). The Meissner phase
observed below Tmeis ≈ 4K must reflect superconducting
long-range order. In the intermediate ranges of temper-
atures, the in-plane and interplane resistivities appear
to vanish below T2d ≈ 17K and T3d ≈ 10K, respec-
tively. It has been suggested6 that the dynamical layer
decoupling observed for T2d > T > T3d may reflect the
formation of pair-density wave (PDW) related phases,
although because of the non-trivial interplay between
PDW order and quenched randomness, even the phe-
nomenological theory of these phases is incomplete. It
is plausible that in some range of temperatures, perhaps
for Tmeis < T < T3d, there may be vestigial charge-4e
SC order, which only gives way to charge-2e SC order
below Tmeis. It is important to note that, in this tem-
perature range, ARPES studies55,56 show evidence of the
usual nodal quasiparticles conventionally associated with
a charge-2e d-wave SC. Thus, if this is indeed a charge-4e
SC, it is one analogous to that we have studied on the
hexagonal lattice, although of course in LBCO the actual
lattice structure is closer to that of a square lattice and
the pairing symmetry is d-wave instead of s-wave.
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5 Q. Li, M. Hücker, G. D. Gu, A. M. Tsvelik, and J. M.
Tranquada, Phys. Rev. Lett. 99, 067001 (2007).

6 E. Berg, E. Fradkin, E.-A. Kim, S. A. Kivelson, V.
Oganesyan, J. M. Tranquada, and S.-C. Zhang, Phys. Rev.
Lett. 99, 127003 (2007).

7 E. Berg, E. Fradkin, and S. A. Kivelson, Nat. Phys. 5, 830
(2009).

8 E. Berg, E. Fradkin, and S. A. Kivelson, Phys. Rev. B 79,
064515 (2009).

9 D. F. Agterberg and H. Tsunetsugu, Nat. Phys. 4, 639
(2008).

10 L. Radzihovsky and A. Vishwanath, Phys. Rev. Lett. 103,
010404 (2009).

11 C.-M. Jian and H. Zhai, Phys. Rev. B 84, 060508(R)
(2011).

12 S. A. Kivelson, V. J. Emery, and H. Q. Lin, Phys. Rev. B
42, 6523 (1990).

13 L. Radzihovsky, J. Park, and P. Weichman, Phys. Rev.
Lett. 92, 160402 (2004).

14 G. Roux, S. Capponi, P. Lecheminant, and P. Azaria, Eur.
Phys. J. B 68, 293 (2009).

15 T. Grover and T. Senthil, Phys. Rev. Lett. 100, 156804
(2008).

16 K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev.
Lett. 103, 046811 (2009).

17 E. G. Moon, Phys. Rev. B 85, 245123 (2012).
18 M. Barkeshli, H. Yao, and S. A. Kivelson, Phys. Rev. B

87, 140402 (2013).
19 R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys.

Rev. D 24, 2278 (1981).
20 J. E. Hirsch, D. J. Scalapino, R. L. Sugar, and R. Blanken-

becler, Phys. Rev. Lett. 47, 1628 (1981).
21 G. Sugiyama and S. Koonin, Annals of Physics 168, 1

(1986).
22 S. Sorella and E. Tosatti, EPL, 19, 699 (1992).
23 E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White,

D. J. Scalapino, and R. L. Sugar, Phys. Rev. B 41, 9301
(1990).

24 M. Troyer and U.-J. Wiese, Phys. Rev. Lett. 94, 170201
(2005).

25 E. Berg, M. A. Metlitski, and S. Sachdev, Science 338,
1606 (2012).

26 Z.-X. Li, Y.-F. Jiang, and H. Yao, Phys. Rev. B 91, 241117
(2015).

27 Z.-X. Li, Y.-F. Jiang, and H. Yao, arXiv:1601.05780.
28 C. Wu and S.-C. Zhang, Phys. Rev. B 71, 155115 (2005).

29 D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
30 B. Rosenstein, H.-L. Yu, and A. Kovner, Physics Letters

B 314, 381 (1993).
31 L. Karkkainen, R. Lacaze, P. Lacock, and B. Petersson,

Nucl. Phys. B 415, 781 (1994).
32 L. Rosa, P. Vitale, and C. Wetterich, Phys. Rev. Lett. 86,

958 (2001).
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