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Abstract

Particle-hole symmetry in the lowest Landau level of the two-dimensional electron

gas requires the electrical Hall conductivity to equal ±e2/2h at half-filling. We study

the consequences of weakly broken particle-hole symmetry for magnetoresistance os-

cillations about half-filling in the presence of an applied periodic one-dimensional elec-

trostatic potential using the Dirac composite fermion theory proposed by Son. At

fixed electron density, the oscillation minima are asymmetrically biased towards higher

magnetic fields, while at fixed magnetic field, the oscillations occur symmetrically as

the electron density is varied about half-filling. We find an approximate “sum rule”

obeyed for all pairs of oscillation minima that can be tested in experiment. The loca-

tions of the magnetoresistance oscillation minima for the composite fermion theory of

Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within

the current experimental resolution, the locations of the oscillation minima produced

by the Dirac composite fermion coincide with those of HLR. These results may indicate

that all three composite fermion theories describe the same long wavelength physics.
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1 Introduction

The low-temperature response to an applied magnetic field can provide important informa-

tion about the zero-field ground state of a system [1]. For instance, the free electron gas

exhibits oscillatory behavior as a function of the inverse applied magnetic field (1/B) [2].

These quantum oscillations, which are found in both thermodynamic and transport quan-

tities, occur symmetrically about B = 0 when the square of the inverse Fermi wave vector

1/k2F is commensurate with the square of the magnetic length ℓ2B = c~/e|B|. Thus, as a

probe of the zero-field ground state, quantum oscillations reveal the most basic quantity of

the electron gas, its Fermi wave vector.

Weiss oscillations [3–5] are quantum oscillations that occur because of the presence of a

periodic scalar or vector potential. The length scale provided by the period of the imposed

potential allows additional oscillations to occur when the cyclotron radius is (approximately)

commensurate with the period [6]. These oscillations occur at magnetic field values B(p)
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satisfying

ℓ2B(p) =
d

2kF

(

p− φ
)

, p = 1, 2, 3, . . . , (1.1)

where d is the period of the potential, φ = 1/4 (−1/4) for a scalar (vector) potential mod-

ulation, and we have taken the potential to be periodic along one spatial direction [7–10].

The most easily resolved oscillation minima are those at small p.1 When kF > 2/d, the

Weiss oscillation minima at small p occur nearer to B = 0 than the de Haas - van Alphen

or Shubnikov - de Haas oscillation minimum that is produced when ℓ2B = 1/k2F . This is

particularly important if the zero-field state is unstable at sufficiently large magnetic fields.

In a similar fashion, quantum oscillations occur [11–15] approximately symmetrically

about half-filling of the lowest Landau level of the two-dimensional electron gas (2DEG)

when the electron density ne = B/2Φ0 where the quantum of magnetic flux Φ0 = hc/e.

These observations are surprising from the perspective of the underlying Fermi gas at B = 0.

They suggest the possibility of an emergent Fermi liquid-like ground state at half-filling [16].

Indeed, near half-filling, the system admits an alternative description in terms of “composite

fermions” [17–19], which can heuristically be thought of as bound states of an electron and

two vortices. In the traditional approach of [17–19], composite fermions “feel” on average,

zero effective magnetic field b = 2Φ0ne−B at half-filling and their density remains the same as

the electron density ne. The quantum oscillations found approximately symmetrically about

b = 0 have been interpreted as a striking confirmation of this phenomenological picture.

Recent experiments [20, 21] measuring the locations about half-filling of the magnetore-

sistance minima in the presence of a one-dimensional periodic scalar potential motivate the

reexamination of the above picture of composite fermions. In these experiments, the elec-

tron density was held fixed while the uniform transverse magnetic field was tuned about

its half-filling value. It was reported that Weiss oscillation minima above B+(p) and below

B−(p) half-filling are not symmetric about B = 2Φ0ne. While the inferred density of the

excitations contributing to the Weiss oscillations appears to equal the electron density below

half-filling, consistent with [17], the density is equal to the hole density nh = B/Φ0−ne above
half-filling. Within the composite fermion framework, this result suggests that the nature of

the composite fermions changes across half-filling: the composite fermions are “electron-like”

below and “hole-like” above half-filling [22].

1We assume throughout that the applied periodic potential is static. In experimental systems, the periodic

potential can sometimes vary over a characteristic timescale τpot. Consequently, only those minima satisfying

the static approximation, kF ℓ
2
B(p)/vF ≪ τpot, are observed, where vF is the Fermi velocity.
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Son has proposed a manifestly particle-hole symmetric effective description of the state

at half-filling [23]. (Within the random phase approximation, an electron-like or hole-like

composite fermion theory does not exhibit particle-hole symmetry [22, 24], apparently, in

contradiction to experiment [25, 26].) His theory has been argued to obtain from a sort of

percolation transition between composite fermion theories that are electron-like (hole-like)

below (above) half-filling [27]. In Son’s theory (reviewed in Sec. 2.1), the composite fermion

is a Dirac fermion at a density fixed by the applied magnetic field, rather than the electron

or hole density. This dependence of the Dirac composite fermion density on the applied

magnetic field has interesting implications for the predicted Weiss oscillations that we study

in this note.

In order to summarize a particular consequence of our results, we highlight the following

distinction: it is possible to depart from half-filling by either varying the applied magnetic

field with fixed electron density or by varying the electron density at fixed field. Within

Son’s theory, the locations of the Weiss minima have a different character depending upon

these two possibilities. In the former case, we find the magnetic “sum rule”:

B+(p) +B−(p) =
4η

(p− φ)2d2
+ 4Φ0ne. (1.2)

where η = c~/e. Note that Dirac composite fermions couple to an applied periodic scalar

(vector) potential as a periodic vector (scalar) potential. Consequently, φ = −1/4 (1/4)

should be substituted into (1.2) when a periodic scalar (vector) potential is applied to the

electronic system. This magnetic “sum rule” is qualitatively consistent with the observations

in [20]. In the latter case, the oscillations occur symmetrically about half-filling as the

electron density is varied. Thus, these “sum rules” provide an interesting test of Son’s

theory or any description of the half-filled Landau level.

Because Son’s theory involves a Dirac fermion, our analysis benefits from prior theoretical

work [28–30] studying Weiss oscillations in graphene. We summarize this work and describe

how it can be applied to the Dirac composite fermion theory in Sec. 2.2. We then discuss the

implications of these results for Weiss oscillations near half-filling in Secs. 3.1. In Sec. 3.2, we

compare the Weiss oscillations produced by the Dirac composite fermion theory with those

expected of the composite fermion theories in [17, 22]. In the regime of parameter space

probed by experiment, we find the locations of the magnetoresistance oscillation minima

produced by the various composite fermion theories agree. We summarize and conclude in

Sec. 4.
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2 Weiss oscillations of Dirac composite fermions

2.1 Dirac composite fermions

We now review the Dirac composite fermion theory of the half-filled Landau level.

Electrons in the lowest Landau level near half-filling can be described by an electrically

charged (two-component) Dirac fermion Ψe. The benefit of the Dirac formulation is that

the limit of vanishing Landau level mixing ωc = eB/mc → ∞ can be smoothly achieved at

fixed magnetic field by taking the Dirac electron mass m→ 0. The resulting Dirac electron

lagrangian becomes

Le = Ψ̄eγ
µ(i∂µ + Aµ)Ψe +

1

8π
ǫµνρAµ∂νAρ, (2.1)

where Aµ with µ ∈ {t, x, y} represents the background electromagnetic gauge field, Ψ̄e =

Ψ†
eγ

t with γ-matrices γt = σ3, γx = iσ1, γy = iσ2 where σj are the Pauli-σ matrices, and

ǫtxy = 1. To simplify the expressions of this section, we set e = ~ = c = 1 and so Φ0 = 2π;

we will restore these constants later when appropriate. In terms of the Dirac electrons, the

electron density,

ne ≡
δL
δAt

= Ψ†
eΨe +

B

4π
, (2.2)

where the background magnetic field B = ∂xAy − ∂yAx > 0. Thus, when ne = B/4π, i.e.,

when ν ≡ 2πne/B = 1/2, the Dirac electrons half-fill the zeroth Landau level. At vanishing

Dirac electron mass, i.e., when there is no Landau level mixing, the electron lagrangian is

invariant under the anti-unitary (i 7→ −i) particle-hole transformation (with respect to the

lowest Landau level) which takes t 7→ −t,

Ψe 7→ −γtΨ∗
e,

(At, Ax, Ay) 7→ (−At, Ax, Ay), (2.3)

and shifts the lagrangian by a filled Landau level, Le 7→ Le + 1
4π
ǫµνρAµ∂νAρ. Unbroken

particle-hole symmetry at half-filling ensures the zero-temperature limit of the dc electrical

Hall conductivity σxy =
1
2
in units of e2/h.

Son conjectured [23] a dual Dirac composite fermion lagrangian whose precise formulation

has been refined in [31] (following a more general duality conjecture [32, 33]) to

L = ψ̄γµ(i∂µ + aµ)ψ − 1

8π
ǫµνρaµ∂νaρ −

2

4π
ǫµνρcµ∂νcρ +

1

2π
ǫµνρcµ∂ν(aρ + Aρ). (2.4)
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In (2.4), ψ is the Dirac composite fermion, while aµ and cµ are dynamical 2+1D gauge fields.

For our work, we can simplify (2.4) by integrating out cµ to find

L = ψ̄γµ(i∂µ + aµ)ψ +
1

4π
ǫµνρaµ∂νAρ +

1

8π
ǫµνρAµ∂νAρ. (2.5)

In (2.5), the particle-hole transformation acts by taking

ψ 7→ γyψ,

(at, ax, ay) 7→ (at,−ax,−ay),
(At, Ax, Ay) 7→ (−At, Ax, Ay),

(2.6)

and by shifting the lagrangian by a filled Landau level. In the dual frame, the electron

density,

ne =
1

4π

(

b+B
)

, (2.7)

where b = ∂xay − ∂yax is the magnetic flux of the emergent gauge field. The at equation of

motion fixes

ψ†ψ = − B

4π
. (2.8)

Thus, the Dirac composite fermions are placed at a density that is determined by the external

magnetic field. This is to be contrasted with the theories of [17, 22] in which the composite

fermion density is equal to either the electron or hole density. Loosely speaking, (2.1) and

(2.5) are fermionic particle-vortex duals where a background magnetic field is traded for

finite charge density and electrons (particles) are replaced by vortices of an emergent gauge

field.

Coulomb interactions and couplings to additional background potentials supplement (2.1)

and (2.5). The degeneracy of the half-filled zeroth Landau level of a free Dirac fermion implies

that the low-energy physics, i.e., the ground state of the system, is extremely sensitive to the

nature of the added interaction. The advantage of the dual formulation (2.5) is to provide

an apparently non-degenerate starting point from which to consider these interactions.

Upon departing from half-filling, (2.7) implies that a non-zero emergent magnetic field

b = 4πne −B 6= 0 develops in the Dirac composite fermion theory. There are two canonical

ways in which this can occur: by fixing the electron density and varying the magnetic field

or by fixing the magnetic field and varying the electron density. In the former case where
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the magnetic field varies, (2.8) implies that the Dirac composite fermion density likewise

varies; in the latter case, the composite fermion density does not change. We consider both

cases simultaneously by keeping in mind that the Dirac composite fermion density in general

depends on the applied magnetic field.

2.2 Weiss oscillations of Dirac composite fermions

Next, we study the effects of a periodic scalar or vector potential on the magnetoresistivity

of the state described by (2.5). Thus, we must first understand how the electrical resistivity

is related to observables in the Dirac composite fermion theory and how to couple the Dirac

composite fermions to a periodic scalar or vector potential. We then turn to a summary for

how the periodic potential produces an oscillatory correction to the Dirac composite fermion

conductivity.

2.2.1 Electrical and Dirac composite fermion conductivity

Linear response relates the measured electrical current J to the applied electric field E,

Ji = σijE
j. (2.9)

To directly relate the electrical conductivity σij to observables in the Dirac composite fermion

theory, we use the relations,

jψi = − 1

4π
ǫijE

j , (2.10)

Ji =
1

4π
ǫij(e

j + Ej), (2.11)

where jψi = ψ̄γiψ, ei = ∂iat − ∂tai, ǫxy = −ǫyx = 1, and i, j ∈ {x, y}. The first relation

follows from the equations of motion of the spatial components ai of the dynamical gauge

field. The second equation follows from the definition of the response current to an externally

applied gauge field: Ji = δL/δAi. The Dirac composite fermions couple to the emergent

gauge field as electrons couple to electromagnetism. Therefore, linear response with respect

to ei implies

jψi =
1

2π
σψije

j , (2.12)

and defines the dimensionless Dirac composite fermion conductivity σψij . Equating (2.10)

and (2.12) in order to solve for ei and then substituting the result into (2.11), we may read
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off the linear electrical conductivity from its definition in (2.9):

σij =
1

2

e2

h

(

ǫij −
1

2
ǫik(σ

ψ)−1
kl ǫlj

)

. (2.13)

When the Dirac composite fermions exhibit vanishing Hall conductivity, the electrical Hall

conductivity takes its particle-hole symmetric value σxy =
1
2
e2/h. Furthermore, (2.13) says

σxx = 1
4
e2

h
ρψyy and σyy = 1

4
e2

h
ρψxx where ρψ is the dimensionless Dirac composite fermion

resistivity.

2.2.2 Coupling to a periodic scalar potential

A periodic electrostatic scalar potential obtains from a non-zero scalar component of the

electromagnetic gauge field,

At = V cos(Kx), (2.14)

where K = 2π/d and we assume the bandwidth V ≪ EF , the Fermi energy. The ay equation

of motion obtained from (2.5) fixes the y-component of the Dirac composite fermion current,

ψ̄γyψ = −KV
4π

sin(Kx). (2.15)

We accommodate this constraint by turning on a non-zero background component of the

emergent vector potential,

~a =
(

0, Ṽ sin(Kx)
)

. (2.16)

where Ṽ vanishes when V = 0. (This is analogous to how a magnetic field generates a non-

zero Dirac composite fermion density which may be accommodated by turning on a chemical

potential for the composite fermions.) Thus, we see that a periodic electromagnetic scalar

potential couples to the Dirac composite fermions as a periodic vector potential.

A periodic magnetic potential can also be considered. By the same reasoning as above,

it can be seen that the Dirac composite fermions couple to this magnetic perturbation via

a periodic emergent scalar potential. We will not explicitly review this case in the analysis

below; instead, we will only quote the result which can be readily found by similar methods

that we present next.

2.2.3 Weiss oscillations of a Dirac fermion

In our approach to the study of Weiss oscillations, we make a crucial simplification to the

Dirac composite fermion dynamics: we ignore the fluctuations of the emergent gauge field
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a. Consequently, we only examine the qualitative effects of the Dirac composite fermion

picture. In Sec. 4, we remark upon the interpretation of this approximation and argue that

strong Coulomb interactions (partially) justify it.

After ignoring the fluctuations of the emergent gauge field, our problem simplifies to the

calculation of the correction to the conductivity σψij of a Dirac fermion at density B in the

presence of a magnetic field b = 4πne−B due to a periodic vector potential (2.16). Happily,

this problem has been considered in [29]; see [28] for the case of a periodic scalar potential.

We now summarize their results and apply them to the case of the Dirac composite fermion.

The Kubo formula for the diffusive component of the (dimensionless) dc Dirac composite

fermion conductivity says [34]

σψij =
1

LxLy

∑

M

(

− ∂EM
fD(EM)

)

τ(EM )vMi v
M
j , (2.17)

where Lx (Ly) is the length of the system in the x-direction (y-direction), β−1 = kBT is the

temperature, M denotes the quantum numbers of the single-particle states, fD(E) =
(

1 +

exp(β(E−EF )
)−1

is the Fermi-Dirac distribution function with Fermi energy EF > 0, τ(EM )

is the scattering time for states at energy EM , and vMi,j is the velocity in the i, j-direction

of the state M . We stress that our interpretation and use of this formula assumes there

are no (relevant) quantum fluctuations of a. (We ignore any corrections to the collisional

component of the conductivity [34] which are typically suppressed [8, 9] in comparison to

(2.17).)

We are interested in the contribution to the conductivity that arises from the presence

of the periodic potential along the x-direction. Assuming a constant τ(EM) = τ scattering

time for all states, we need only calculate the correction to the energies EM which determine

the velocities vMi = ∂kiEM . After choosing an appropriate gauge, we will show that only vMy
obtains a new contribution (to leading order in Ṽ ) and so we restrict our attention to σψyy or

ρxx using (2.13).

The (non-interacting) hamiltonian for the composite Dirac fermion is

H = vF~σ · (i~∂ + ~a), (2.18)

where

~a =
(

0, bx+ Ṽ sin(Kx)
)

. (2.19)

We study the effect of the periodic potential on the b 6= 0 spectrum to first order in Ṽ . At
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Ṽ = 0, the eigenstates form Landau levels indexed by integers n = 0, 1, 2, . . .,

ψn,ky(x, y) =
eikyy

√

2Lyℓb





−iΦn−1

(

x+xb
ℓb

)

iΦn

(

x+xb
ℓb

)



 , (2.20)

where ky ∈ 2π
Ly
Z is the momentum along the y-direction (Ly → ∞), xb(ky) ≡ xb = kyℓ

2
b , and

Φn(z) = e−z2/2√
2nn!

√
π
Hn(z) for the n-th Hermite polynomial Hn(z). Thus, the single-particle

states can be labeled by the quantum numbers M = (n, ky). The energy of these states,

En,ky(Ṽ = 0) ≡ E
(0)
n,ky

= ±vF
√
2n

ℓb
. (2.21)

Disorder generally lifts the degeneracy of the flat Landau level bands and provides a non-zero

contribution to the velocity vMi . We have included this contribution in assuming a constant

scattering time τ ; instead, we are interested in the leading effects of the periodic potential.

First order perturbation theory says the leading correction to the energy,

E
(1)
n,ky

= Ṽ

∫ Lx
2

−Lx
2

dx

∫
Ly
2

−Ly
2

dy ψ†
n,ky

(x, y) sin(Kx)σyψn,ky(x, y)

=
vF Ṽ

√
2n

Kℓb
cos(Kxb)e

−z/2
[

Ln−1(z)− Ln(z)
]

, (2.22)

where Ln(z) with z = K2ℓ2b/2 is the n-the Laguerre polynomial and we have ignored terms

that vanish in the thermodynamic limit Lx, Ly → ∞. (For the case of a periodic scalar

potential applied to the Dirac composite fermion system, the relative minus sign between the

Laguerre polynomials becomes a plus sign and there is no
√
n Landau level index coefficient.)

We implicitly assume parameters are such that the first-order energy corrections are much

less than the Landau level spacings, |E(1)
n,ky

| ≪ E
(0)
n,ky

−E(0)
n−1,ky

. Thus, the leading contribution

to the velocity arising from the periodic potential,

∆vn,kyy = ∂kyE
(1)
n,ky

. (2.23)

Substituting v
n,ky
i = δiy∆v

n,ky
y into the Kubo formula (2.17), we find the correction to the

Dirac composite fermion dc conductivity,

∆σψyy =
τ

~LxLy

∞
∑

n=0

∫ Lx
2ℓ2

b

− Lx
2ℓ2

b

dky
2π/Ly

(

− ∂En,ky
fD(En,ky)

)(

∆vn,kyy

)2

. (2.24)

The integral over ky sums over the LxLy/ℓ
2
b states within each Landau level n.
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In Fig. 1, we numerically plot ∆σψyy obtained from (2.24) as a function of B1/2/b where

b is the effective magnetic field b = 2Φ0ne − B with fixed B1/2 ≡ 2Φ0ne. The calculation is

done at two temperatures: kBT = 0.0008
√

2B1/2 (low temperature) and kBT = 0.02
√

2B1/2

(high temperature).

For the low temperature case (red), two types of oscillations are evident. The longer

period oscillations are the Weiss oscillations while the shorter period SdH-type oscillations

are superimposed on the Weiss oscillations at large magnetic fields (small B1/2/b). The SdH-

type oscillations occur when a Landau level crosses the chemical potential. Therefore, each

SdH-peak can be identified with integer filling fraction νcf . For reference, in the expanded

inset of Fig. 1, the peaks corresponding to the first four integer filling fractions are indicated.

When the temperature is increased (black), the SdH-type oscillations are strongly suppressed

while the Weiss oscillations remain. This difference in robustness to temperature between

the two types of oscillations is expected when kFd≫ 1 [8].

The contribution to the electrical resistivity can be found using (2.13). However, to

analytically exhibit the periodicity hidden in (2.24), it is helpful to approximately evaluate

the expression. First, we perform the integral over ky under the assumption of weak ky-

dependence of the energy in the Fermi-Dirac distribution function by substituting En,ky =

E
(0)
n,ky

,

∆σψyy =
Ṽ 2τ̃β

~

∞
∑

n=0

ne
βE

(0)
n,ky

−βEF

(

1 + e
βE

(0)
n,ky

−βEF

)2 e
−z
[

Ln−1(z)− Ln(z)
]2

, (2.25)

where we have absorbed O(1) constants into a renormalized scattering time τ̃ . Near half-

filling where many Dirac composite fermion Landau levels are filled n→ ∞, it is convenient

to use the asymptotic expansion of the Laguerre polynomial,

e−z/2Ln(z) →
cos

(

2
√
nz − π

4

)

(π2nz)1/4
+O

( 1

n3/4

)

, (2.26)

and take a continuum approximation in summing over Landau levels,

n→ E2ℓ2b
2v2F

,
∑

n

→ ℓ2b
v2F

∫ ∞

−∞
EdE. (2.27)

Substituting into (2.25),

∆σψyy =
Ṽ 2τ̃ β

~

ℓ2bK

v2F

∫ ∞

−∞
dE

eβ(E−EF )

(

1 + eβ(E−EF )
)2 sin

2
(Eℓ2bK

vF
− π

4

)

, (2.28)
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Figure 1: σψyy for the Dirac composite fermions as numerically calculated using the general

formula of (2.24). The x-axis is B1/2/b where b is the effective magnetic field b = B1/2 − B

with fixed electron density ne = B1/2/2Φ0. Bd/B1/2 = 0.001 where Bd = ~/ed2 is the

magnetic field associated with the modulation period d. Two temperatures are shown:

kBT = 0.0008
√

2B1/2 (low temperature) and kBT = 0.02
√

2B1/2 (high temperature). At

low temperatures, two types of oscillations are apparent. The longer period oscillations are

the Weiss oscillations while at high effective magnetic fields (small 1/b) the Weiss oscillations

are superimposed with shorter period Shubnikov - de Haas-type (SdH) oscillations due to

Landau levels crossing the chemical potential. At higher temperatures, the Weiss oscillations

remain while the Shubnikov - de Haas-type oscillations are strongly suppressed. The inset

shows the small B1/2/b region more clearly. For reference, the first four SdH-type peaks are

identified with the integer filling fractions of the Dirac composite fermion Landau levels.

11



to leading order at large n. The T → 0 limit of the expression at finite b simplifies immedi-

ately to

∆σψyy(T → 0) = A sin2
(EF ℓ

2
bK

vF
− π/4

)

, (2.29)

where the non-universal coefficient A =
Ṽ 2τ̃ ℓ2bK

~v2F
. (Recall that σψ is the dimensionless Dirac

composite fermion conductivity.) Thus, the low-temperature Dirac composite fermion con-

ductivity exhibits oscillations as a function of EF ℓ
2
bK/vF .

If instead a periodic vector potential modulation is applied to the electronic system, the

Dirac composite fermion conductivity receives a correction of the same form as (2.29) with

sin2(
EF ℓ

2
bK

vF
− π/4) replaced by cos2(

EF ℓ
2
bK

vF
− π/4).

3 Weiss oscillations near half-filling

3.1 Weiss oscillations and weakly broken particle-hole symmetry

(2.13) says that the correction to the Dirac composite fermion conductivity (2.29) produces

a modulation-induced correction to the dc electrical resistivity,

∆ρxx(T → 0) = Axx
e2

h
sin2

(EF ℓ
2
bK

vF
− π/4

)

, (3.1)

∆ρyy(T → 0) = −Ayy
e2

h
sin2

(EF ℓ
2
bK

vF
− π/4

)

, (3.2)

where the positive constants Axx and Ayy are proportional to A and satisfy Axx/Ayy =

1/(2σψxx)
2 at half-filling and Ṽ = 0. In the fractional quantum Hall regime, ρxx at half-

filling is typically observed [35] to range from 100 Ω/� to 5 kΩ/� and so (2.13) implies

σψxx < 1/16 at Ṽ = 0. In our discussion, we concentrate on the resistivity ∆ρxx transverse

to the potential modulation and will not discuss further the π/2 phase-shifted correction

|∆ρyy| < |∆ρxx|.
The minima of ∆ρxx in (3.1) occur when

ℓ2b(p) =
d

2kF

(

p− φ
)

, p = 1, 2, 3, . . . , (3.3)

where we used the relation EF = vFkF for a linearly dispersing Dirac fermion. For a periodic

scalar potential applied to the electronic system, (the case to which (3.1) and (3.2) apply)

φ = −1/4; when the electrons experience a periodic vector potential, φ = 1/4. Naively, there
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is a possible minimum of (3.1) when ℓ2b = d/(8kF ). However, this minimum is spurious; it

does not occur within the regime of validity of the continuum approximation made in (2.27).

This can be checked by examining the exact solution plotted in Fig. 1.

Evidently, both the (non-relativistic) electron gas (1.1) and a Dirac fermion exhibit the

same relation between the locations of the Weiss oscillation minima as a function of the

effective magnetic field b, periodic potential wavelength d, and Fermi wave vector kF . This

is to be contrasted with the locations of Shubnikov - de Haas oscillation minima of a Dirac

particle which are π phase-shifted (due to the π Berry flux enclosed by a single Dirac cone)

compared to that of the electron gas [36]. (See Appendix D of [37] for a discussion of Dirac

composite fermion Shubnikov - de Haas oscillations.)

We can translate the Dirac composite fermion parameters ℓb and kF into experimental

observables. Using the relations b = 2Φ0ne − B and kF = ℓ−1
B , (3.3) becomes

c~

e|2Φ0ne − B| =
d

2

√

c~

e|B|
(

p− φ
)

, p = 1, 2, 3, . . . . (3.4)

(In [17, 22], kF is instead fixed by the electron or hole density and so the factor of ℓB on the

right-hand side of (3.4) is replaced by 1/
√
4πne or 1/

√
4πnh.) There are two distinct ways

to depart from half-filling. At fixed electron density ne, we can vary B and solve (3.4) for

the locations of the Weiss minima:

B±(p) = 2Φ0ne +
2
(

η ±
√

η2 + 2η(p− φ)2d2Φ0ne

)

(p− φ)2d2
(3.5)

where η = c~/e. Pairs of minima above B+(p) and below B−(p) half-filling obey the magnetic

“sum rule,”

B+(p) +B−(p) =
4η

(p− φ)2d2
+ 4Φ0ne. (3.6)

This magnetic “sum rule” is consistent with the experimental findings in [20]. At fixed B,

the locations of the Weiss minima as a function of the electron density occur symmetrically

about half-filling:

n±
e (p) =

B

2Φ0

±
√
ηB

(p− φ)dΦ0

. (3.7)

The corresponding electric “sum rule” becomes

n+
e (p) + n−

e (p) =
B

Φ0
. (3.8)
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These “sum rules” provide important experimental probes of the Dirac composite fermion

theory.

In Fig. 2, we plot the low-temperature resistivity correction as a function of varying

magnetic field and fixed electron density that is predicted by the Dirac composite fermion

theory. In Fig. 3, we plot the same quantity at fixed magnetic field and varying electron

density. In both figures, the vertical dashed lines are meant to approximate to the locations

of the oscillation minima found in recent experiments [20, 21].

In our figures, the vertical dashed lines are produced by a free, non-relativistic fermion

that is electrically neutral, responds to an external scalar potential as a periodic background

magnetic field, and whose density is equal to the electron density for filling fractions ν < 1/2

and to the hole density for ν > 1/2. This free fermion model combines certain qualitative

features of the long wavelength excitations of the composite Fermi liquid advocated in [38]

with the idea that the excitations are “electron-like” below half-filling and “hole-like” above

half-filling.

We briefly comment on how the finite-temperature curves in Figs. 2 and 3 were gen-

erated. It is necessary to generalize the T = 0 expression for the Dirac composite fermion

conductivity in (2.29) to non-zero temperature. One effect of finite-temperature is to dampen

the higher “harmonic” minima occurring at, e.g., p > 4, and results in an oscillation curve

that is simpler to read near b = 0. This is straightforwardly accomplished by evaluating

(2.28) at low temperatures (T ≪ EF ) [28, 29]:

∆σψyy(T ) ∝
1

2

[

1− Tℓ2bK

vF sinh(
Tℓ2bK

vF
)

]

+
Tℓ2bK

vF sinh(
Tℓ2bK

vF
)
sin2

(EF ℓ
2
bK

vF
− π/4

)

. (3.9)

Plugging (3.9) into the relation (2.13) between the Dirac composite fermion conductivity and

the electrical conductivity with a proportionality constant equal to unity (for simplicity), we

obtain Figs. 2 and 3.

3.2 Comparison of composite fermion theories

In this section, we compare the Weiss oscillations expected to be produced by the Dirac

composite fermion theory with the corresponding oscillations produced by the composite

fermion theory of Halperin, Lee, and Read (HLR) [17] and its particle-hole conjugate, the

BMF theory, introduced in [22].2 At short distances, these theories are distinct. Nevertheless,

2We thank C. Wang, N. Cooper, B. Halperin, and A. Stern for discussions on this comparison and for

pointing out an error in an earlier version of this paper.
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Figure 2: Oscillations in ρxx for electrons near half-filling as predicted by the Dirac composite

fermion theory when the electron density ne is fixed and the external magnetic field is varied.

Associating a magnetic field Bd = ~/ed2 with the modulation period d, the result above

corresponds to the choice: Bd/B1/2 = 0.001, vF = 1, and kBT = 0.06
√

2B1/2. The vertical

dashed bars correspond to the positions of the minima found in recent experiments [20, 21].

15



-0.1 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.1
(n

e
-n

e,1/2
)/n

e,1/2

0

0.1

0.2

0.3

0.4

∆ρ
xx

 [
ar

b.
 u

ni
ts

]

Figure 3: Oscillations in ρxx for electrons near half-filling as predicted by the Dirac composite

fermion theory when the external magnetic field B is fixed and the electron density ne is

varied about its half filling value of ne,1/2 = B1/2/4π. The result above corresponds to

the choice: Bd/B1/2 = 0.001, vF = 1, and kBT = 0.06
√

2B1/2. The vertical dashed bars

correspond to the positions of the minima found in recent experiments [20, 21].
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to the level of resolution that current experiments probe [20, 21], we will show that the

locations of the Weiss oscillation minima produced by the three composite fermion theories

agree. This result is consistent with a recent study of the HLR theory in [39] and may

indicate that all three theories describe the same long wavelength physics, consistent with

earlier numerical work [40].

3.2.1 Non-relativistic composite fermion theories

The HLR theory [17] involves a non-relativistic “composite electron” f that is minimally

coupled to both a dynamical Chern-Simons gauge field αµ and the external electromagnetic

gauge field Aµ with non-zero magnetic flux ∂xAy − ∂yAx = B > 0. The HLR Lagrangian

LHLR = Lf + LCS + Lint:

Lf = f †
(

i∂t + (αt + At) +
1

2mf
(∂j − i(αj + Aj))

2
)

f,

LCS =
1

2

1

4π
ǫµνραµ∂ναρ,

Lint = −1

2

∫

d2r′
(

f †f(r)− 〈f †f〉
)

U
r,r′

(

f †f(r′)− 〈f †f〉
)

, (3.10)

where the potential U
r,r′ is typically taken to be either a short-ranged interaction or the

long-ranged Coulomb interaction and the two spatial coordinates r = (x, y) and r′ = (x′, y′).

The average density of composite electrons 〈f †f〉 is equal to the electron density.

The HLR theory can be viewed to result from the transformation that attaches two flux

quanta to electrons near half-filling of the lowest Landau level [17]. From this perspective

and using the lowest Landau level relation between the electron density ne, the hole density

nh, and the external magnetic field B in the vicinity of half-filling,

ne + nh =
B

2π
, (3.11)

it is natural to consider instead the attachment of two flux quanta to the holes of the ν = 1

filled Landau level. The resulting BMF theory [22] involves a “composite hole” h that is

minimally coupled to a dynamical gauge field α̃µ and the external electromagnetic field Aµ.

The BMF Lagrangian LBMF = Lh + L̃CS + L̃int:

Lh = h†
(

i∂t + (α̃t − At) +
1

2mh
(∂j − i(α̃j − Aj))

2
)

h,

L̃CS = −1

2

1

4π
ǫµνρα̃µ∂ν α̃ρ +

1

4π
ǫµνρAµ∂νAρ,

L̃int = −1

2

∫

d2r′
(

h†h(r)− 〈h†h〉
)

Ũ
r,r′

(

h†h(r′)− 〈h†h〉
)

, (3.12)
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where Ũ
r,r′ parameterizes the composite hole interactions. Notice that the electromagnetic

charge of the composite holes is equal and opposite to that of the composite electrons. This

explains the opposite level of the Chern-Simons term for α̃µ in L̃CS. The filled Landau level

vacuum is represented by the second term in L̃CS which ensures an integer contribution to

the electrical Hall conductivity. The average density of composite holes 〈h†h〉 is equal to the

hole density, nh =
B
2π

− ne.

We simplify the analysis of the HLR and BMF theories by ignoring fluctuations of the

emergent gauge fields. This approximation is analogous to the approximation that was made

in our study of the Dirac composite fermion theory. This approximation enables us to ignore

the composite electron and composite hole interaction terms in Lint and L̃int upon use of the

equation of motion of the temporal component of the respective emergent gauge field.

In contrast to the Dirac composite fermion, the composite electrons and composite holes

directly couple to the electromagnetic gauge field. These couplings have an important con-

sequence: within the HLR and BMF theories, a periodic electromagnetic scalar potential

induces both a periodic scalar and periodic vector potential background of fixed relative

magnitude for the composite fermions. To see how this occurs in the HLR theory, we notice

that αt functions as a Lagrange multiplier that imposes the constraint:

f †f = − 1

4π
β, (3.13)

where β = ∂xαy − ∂yαx is the magnetic flux of the emergent gauge field. Coupled with

the relation 〈f †f〉 = ne, this constraint leads to the usual conclusion that the emergent

magnetic flux β completely screens, on average, the external magnetic flux at half-filling.

When a periodic electromagnetic scalar potential At(r) of the form (2.14) is applied to the

system, a modulation in the composite electron density is produced,

δ〈f †f〉 = mf

2π
At(r). (3.14)

The coefficient mf/2π is the compressibility of a free (composite) fermion gas in two di-

mensions. (3.13) implies a corresponding modulation of the emergent magnetic field δβ =

−2mfAt(r). Identical considerations apply to α̃t in the BMF theory and result in a periodic

magnetic flux β̃ = −2mhAt(r) where β̃ = ∂xα̃y − ∂yα̃x.

3.2.2 Weiss oscillations of non-relativistic composite fermion theories

We can borrow the analysis in [22] that determined the expected correction to the electrical

resistivity when the composite electrons and composite holes are subject to both a periodic
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scalar and vector potential. More careful treatments of the HLR theory, which can be readily

adapted to BMF theory, can be found in [41–43]. For the composite electrons,

δρxx

∣

∣

∣

f
∝

[ Beff

|Beff |
cos

(

kfF ℓ
2
Beff

K − π

4

)

+
2kfF
K

sin
(

kfF ℓ
2
Beff

K − π

4

)]2

∝
[

sin
(

kfF ℓ
2
Beff
K − π

4
+

Beff

|Beff |
tan−1(

K

2kfF
)
)]2

, (3.15)

where Beff = B − 2Φ0ne, k
f
F =

√
4πne, ℓ

−2
Beff

= e|Beff |/c~, and the periodic modulation

wave vector K = 2π/d. The first term in (3.15) is a result of the periodic scalar potential,

while the second term arises from the periodic vector potential. The notation
∣

∣

∣

f
reminds us

that δρxx

∣

∣

∣

f
is the contribution to the electrical resistivity arising from the HLR theory of

composite electrons. For composite holes, the leading correction to the resistivity,

δρxx

∣

∣

∣

h
∝

[

− Beff

|Beff |
cos

(

khF ℓ
2
Beff

K − π

4

)

+
2khF
K

sin
(

khF ℓ
2
Beff

K − π

4

)]2

∝
[

sin
(

khF ℓ
2
Beff

K − π

4
− Beff

|Beff |
tan−1(

K

2khF
)
)]2

, (3.16)

where khF =
√
4πnh =

√

4π( B
2π

− ne). The opposite electromagnetic charge of the composite

holes, relative to the composite electrons, results in the π-phase shift between the contribu-

tions of the scalar and vector potential modulations to the resistivity. Because kf,hF /K ≫ 1

in experiment, the scalar contribution to the resistivity correction was ignored in [22]. In the

next section, we will show that if this correction is included, the locations for the Weiss oscil-

lation minima produced by the Dirac composite fermion, HLR, and BMF theories coincide

in the experimental regime.

3.2.3 Oscillation minima comparison

First consider fixed electron density ne > 0 and varying the magnetic field about half-filling

B = 2Φ0ne. Parameterizing the deviation away from the minima of the Dirac compos-

ite fermion theory B±(p) given in (3.5) by the dimensionless function ǫ±(p)/(d
√
ne)

3, we

substitute

B = B±(p) + 2Φ0ne
ǫ±(p)

d3n
3/2
e

(3.17)

into (3.15) and (3.16) for the HLR and BMF theories to find:

δρxx

∣

∣

∣

f
∝ δρxx

∣

∣

∣

h
∝

[

sin
(

πp∓ (1 + 4p)2π3/2

16

ǫ±(p)

d2ne
+

1

2 + 8p

1

d2ne

)]2

, (3.18)
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where we have only retained the leading correction in the d2ne → ∞ limit. Remarkably,

the oscillation minima for the HLR and BMF theories coincide and deviate from the Dirac

composite fermion result by 2Φ0ne

d3n
3/2
e

ǫ±(p) where

ǫ±(p) = ±
( 2

(1 + 4p)π1/2

)3

. (3.19)

The HLR and BMF minima are shifted outward from the value of the magnetic field at

half-filling, 2Φ0ne. In particular, for a given Dirac composite fermion oscillation minimum

labeled by p, the HLR and BMF minima are shifted away from the dashed lines in Fig. 2.

Next consider fixed magnetic field and varying the electron density about half-filling. We

substitute

ne = n±
e (p) +

B

2Φ0

ǫ±(p)

d3(B/2Φ0)3/2
(3.20)

into (3.15) and (3.16) for the HLR and BMF theories to find:

δρxx

∣

∣

∣

f
∝ δρxx

∣

∣

∣

h
∝

[

sin
(

πp∓ (1 + 4p)2π3/2

16

ǫ±(p)

d2(B/2Φ0)
+

1

(2 + 8p)

1

d2B

)]2

, (3.21)

where we have only retained the leading correction in the d2B/Φ0 → ∞ limit. As in the

previous case, the oscillation minima for the HLR and BMF theories coincide and the devia-

tion from the Dirac composite fermion result is parameterized by ǫ±(p) given in (3.19). The

oscillation minima occur symmetrically about the value of the electron density at half-filling

and are shifted “outward,” away from B/2Φ0, relative to the values of the Dirac composite

fermion theory.

We characterize the deviation between the oscillation minima produced by the Dirac

composite fermion and those expected of the HLR or BMF theories using the ratio,

∣

∣

∣

2Φ0ne
ǫ±(p)

d3n
3/2
e

B±(p)

∣

∣

∣
≈

∣

∣

∣

ǫ±(p)

d3n
3/2
e

∣

∣

∣
. (3.22)

The difference between the Dirac composite fermion theory and HLR or BMF theory is

magnified as d2ne is reduced. At fixed electron density, as the external modulation period d is

reduced, the Weiss oscillation minima begin to overlap with the quantum oscillation minima

reflective of nearby quantum Hall states and may be challenging to identify experimentally.

(Recall that the locations of the Weiss oscillation minima as a function of varying external

magnetic field are generally proportional to a power of kF/d.)
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We estimate the ratio in (3.22) using ne ∼ 1.75× 1011 cm−2 and d ∼ 200 nm, consistent

with the experiments in [20, 21]:

∣

∣

∣

ǫ±(p)

d3n
3/2
e

∣

∣

∣
∼ 2.5× 10−3

(1 + 4p)3
. (3.23)

Evidently, in the experimental regime, the various composite fermion theories agree within

.002% accuracy, but, unfortunately, do not yet explain the results in [20, 21].

4 Discussion

In this article, we studied the consequences of weakly-broken particle-hole symmetry for the

Weiss oscillations about half-filling using the Dirac composite fermion theory introduced by

Son [23]. Within this description, the fact that the density of excitations contributing to

the quantum oscillations is fixed by the applied magnetic field has important implications.

At fixed electron density, the locations of Weiss oscillation minima as a function of applied

magnetic field obey a magnetic “sum rule” that is not symmetric about half-filling. This

“sum rule” is qualitatively consistent with the observations made in [20]. At fixed magnetic

field, the Weiss minima occur symmetrically about the half-filling as the electron density

is varied. Further experimental investigations comparing magnetic and electric “sum rules”

could shed additional light on the dynamics at half-filling.

We also compared the Weiss oscillations expected to be produced by the Dirac composite

fermion theory with the corresponding oscillations produced by the composite fermion theory

of Halperin, Lee, and Read [17] and its particle-hole conjugate [22]. At short distances,

these theories are distinct. Nevertheless, in the regime of parameter space probed by current

experiments [20, 21], we showed that the locations of the Weiss oscillation minima produced

by the various composite fermion theories coincide. This result is consistent with a recent

study of the HLR theory in [39] and may indicate that all three theories describe the same

long wavelength physics, consistent with earlier numerical work [40].

It would be interesting to further examine the quantum oscillations about other even-

denominator filling fractions of the two-dimensional electron gas. In [44], a careful study of

the symmetries of resistance curves near the transition between filling fractions ν = 1/3 → 0

revealed an emergent composite fermion particle-hole symmetry. It is interesting to speculate

whether this emergent symmetry is supported by quantum oscillations.

The Dirac composite fermion theory has an obvious generalization to the half-filled zeroth

Landau level of graphene. It would be interesting to investigate both theoretically and
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experimentally the nature of Weiss oscillations in these systems. For example, if present,

how do the oscillations depend on the dominant interactions in these systems?

In [45], it was found using a model wave function for composite fermions [19] that the

Fermi wave vector of the excitations near half-filling, as inferred from Friedel oscillations,

appears “electron-like” for ν < 1/2 and “hole-like” for ν > 1/2, in qualitative agreement with

the experiments in [20, 21]. In contrast, we have discussed the implications of a particle-hole

symmetric field theoretic description of the state at half-filling which asserts that the Fermi

wave vector is equal to the inverse magnetic length ℓ−1
B . It would be beneficial to have a

better understanding of the relation between these two approaches.

The primary simplification used in determining the Weiss oscillations of the Dirac com-

posite fermion theory was to ignore the fluctuations of the emergent gauge field. In [46], it

was observed that Coulomb interactions between electrons softened the strong correlations

inherent in the Dirac composite fermion theory. This result can be interpreted to rein-

force the expectation that Coulomb interactions are an essential ingredient to the physics at

half-filling. Thus, Weiss oscillations provide an invaluable probe of the strong correlations

inherent in these systems.

In recent work, Levin and Son [47] discuss an exact relation between the Hall conduc-

tivity and susceptibility that appears to distinguish composite fermion theories. Further

comparison of the various composite fermion theories constitutes important work for the

future.
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