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Abstract

We show that the existing theory does not give correct in-plane spectrum of superlattices at small

in-plane momentum. Magneto-absorption experiments demonstrate that the energy range of the

parabolic region of the spectrum near the electron subband bottom is by the order of magnitude

lower than the value predicted by the traditional approach. We developed a modified theory

according to which the energy range of the parabolic region and carrier in-plane effective masses

are determined by the effective bandgap of the superlattice rather than by the bulk bandgaps of

the superlattice layers. The results of the new theory are consistent with the experiment.
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I. INTRODUCTION

Methods used for calculation of carrier spectrum in heterostructures can be roughly

divided in two big classes: analytical and numerical. An advantage of analytical methods is

that they present the whole spectrum in a comprehensive form that makes it easy to analyse

its features and effect of different factors. The purpose of the present paper is to show that

an analytical method typically used for calculation of superlattice (SL) carrier spectrum

does not work for in-plane spectrum. We modify the method to obtain correct results.

The work was motivated by recent experiments with InAsSbx/InAsSby short period SLs.

Extremely narrow band gap found in these SLs[1] makes them important for fabrication

of far infrared detectors and light emitting diodes that have potential applications such

as pollutant gas sensing, molecular spectroscopy, process monitoring, disease analysis and

infrared scene projection.[2–4] The cyclotron resonance measurements in these SLs found out

linear in-plane electron spectrum starting from unusually small energy of about 10 meV.[5]

In general, nonparabolicity of electron spectrum is well known. It was studied theoret-

ically in both quantum wells and SLs[6–11, 14] and was detected in cyclotron resonance

measurements in quantum wells.[12, 13] This nonparabolicity becomes substantial at ener-

gies around band gap of the material of the quantum well which is a few hundered meV and

it was explained in the frame of the Kane model.[11–14] Theory also predicts nonparabol-

icity at small energy energy scale in superlattices fabricated of narrow gap materials like

HgTe-CdTe.[15]

A special feature of the new experiment is that the band gap in constituent layers of

InAsSb is more than 100 meV.[16, 17] According to regular theory one can expect that

the in-plane spectrum becomes non-parabolic at this energy scale. It appears, however,

that the nonparabolicity becomes large at energies by the order of magnitude smaller. This

discrepancy requires a thorough analysis of the theory foundation.

Even a short view at the existing theory brings about some doubts about its applicability

to the in-plane carrier spectrum in SLs. This theory is based on effective mass approximation

in each layer with effective masses equal to their values in the respective bulk materials. So

it is assumed that kp method used as a foundation for effective mass approximation is

equally applied in bulk and SL layers. Meanwhile, if the in-plane vector in SL, k‖, is very

small the part of the kp Hamiltonian H‖ containing k‖ can be considered as a perturbation.
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In this case the calculation of the SL spectrum is broken in two steps. At the first step

effective masses of separate layers and SL spectrum in the growth direction with k‖ = 0

are obtained in regular way. The second step is calculation of the in-plane spectrum with

perturbation theory. This means that the in-plane spectrum is formed on the basis of SL

spectrum in the growth direction but not spectra of separate layers. This difference is very

important because the value of effective mass is crucially dependent on the gap between the

conduction and valence band. In SL those bands are formed by two different materials and

their positions depend on material band offsets and parameters of the structure. As a result,

the gap may appear much smaller than in each material separately. This leads to decrease

of the effective mass and shrinking of the parabolic region of the in-plane spectrum.

In the present paper we develop a new approach to spectrum calculation and show the

difference of the results between the old and new methods. A special feature of our approach

compared to previous works is that we consider H‖ as a perturbation, that is justified in

many cases. That is the in-plane spectrum is substantially modified due to penetration

of wave functions from wells to barriers. Although such penetration was studied in earlier

works, it was considered as a mixture of two spectra with different effective masses.[11, 12]

We show that it is necessary fist to mix bands of different materials at k‖ = 0 and then

calculate the in-plane spectrum.

To make our arguments and calculation more simple and clear we neglect some details

that for our purpose have secondary importance. So in kp Hamiltonian we include only

coupling between conduction and valence bands and neglect coupling with remote bands.

We discard also spin-orbit split band. The result of such calculation gives reliable estimates

of spectrum characteristics and their dependence on relevant parameters but may be not

very precise in their numerical values and miss some subtle details as, e.g., warping of the

hole spectrum.

Our approach is basically analytical. We use effective mass approximation when it is

justified and obtain analytic results when this is possible. There is big literature on numerical

band structure calculation of SLs. The most popular is the kp method based on 8 × 8

Hamiltonian.[20–26] Numerical methods make it possible to obtain results for this and even

more complicated models without any approximation and make unnecessary any kind of

perturbation theory. Carrier spectrum in the whole energy range can be obtained without

the effective mass approximation. The advatage of analytic results is that they present the
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whole picture of the phenomenon at hand in a clear form and make it easy to analyse effects

of different factors.[15, 18, 19] Contrary to numerical approach, it is not necessary to repeat

all calculations to apply analytical results to another structure but it is enough to use finite

formulas. Also the accuracy of numerical results in application to real structures should not

be overestimated. Limitation of the accuracy comes from at least two sources: (1) Limited

accuracy of experimentally measured parameters of the model[16, 17] and (2) Technological

inaccuracy of heterostructures such as roughness and interdiffusion[27–30] at interfaces and

spacial fluctuations of composition of alloys.

The paper is organized in the following way. In the next Section we describe experiment

and show that its results are incompatible with the existing theory. Because the theory is

well established we feel it necessary to analyze it before suggesting any modification. This

is made in Sec.III where we also point out its weak points in application to SLs. In Sec.IV

we develop a modified approach and in Sec.V we apply this approach for calculation of the

in-plane SL spectrum. In Conclusion we discuss the results.

II. EXPERIMENT

Metamorphic technique of growing InAsSb structures[31] was recently used for fabrication

of InAsSbx/InAsSby short period SLs with band gaps varying from hundreds to 0 meV.[1]

Cyclotron resonance (CR) measurements were carried out in a SL with the effective band

gap of ∼ 10meV with magnetic field in the growth direction (Faraday geometry).[5] Typical

plot of the CR resonance energy vs square root of magnetic field B is presented in Fig.1. The

energies of the electron CR transition between 0th and 1st Landau levels indicated by the

hollow circles are on a straight line passing through the origin. The solid triangles correspond

to the transitions between electron and hole Landau levels. The y-intercept of this line gives

the effective SL bandgap. The solid squares were interpreted as the electron transitions

between 1st and 2nd Landau levels.[32] This transition vanishes at higher magnetic field

due to depopulation of the 2nd Landau level. The linear dependence of the CR resonance

energy on
√
B is a clear indication on a linear character of the electron dispersion.[33–35]

One can see that the energy range of the electron dispersion linearity starts at ∼10 meV.

The only analytical theory of electron spectrum in SLs is based on the Kroning - Penney

model. (An analytical theory based on kp Hamiltonian is developed only for narrow band
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constituent materials.[15]) This model leads to the following equation

cos qd = cos k1d1 cos k2d2 −
1

2

(

m2k1
m1k2

+
m1k2
m2k1

)

sin k1d1 sin k2d2 , (2.1)

where d1 and d2 are the well and barrier width, d1+ d2 = d, m1 and m2 are effective masses

in the well and barrier material, k1 and k2 are wave vectors in the growth direction in the

well and barrier defined as

k1 =

√

2m1E

h̄2
− k2

‖ , k2 =

√

2m2(E − U)

h̄2
− k2

‖ , (2.2)

U is the height of the barrier and k‖ is the in-plane wave vector. Eqs.(2.1) and (2.2) define

the dependence of energy E on k‖ and quasi wave vector in the growth direction q. If

m1 = m2 then E − h̄2k2
‖/2m = f(q), i.e., the in-plane spectrum is parabolic. Difference of

the masses in different layers leads to non-parabolicity of the spectrum. Electron masses

in InAs and InSb differ by about two times (mInSb = 0.135, mInAs = 0.26[16, 17]) and this

difference cannot lead to linear in-plane spectrum starting from 10meV.

Another factor that accounts for non-parbolicity of the in-plane spectrum is non-

parabolicity of the bulk spectrum in the material of separate layers. It can be described by

energy dependence of m1 and m2. This dependence becomes significant at energies of the

order of the band gap in the material of any of SL layers.[36] In InAsSb alloys the band gap

is larger than 100 meV in the whole range of Sb concentration.[16, 17]

The one order of magnitude discrepancy between experimental and theoretical region of

parabolic spectrum cannot be related to small inaccuracy of the measurement, Eq.(2.1) or

material constants. It clearly shows that something is wrong with the theory.

III. ANALYSIS OF THE THEORY

Spectrum of SLs is usually calculated with help of Kronig - Penney model that is periodic

system of uniform layers of different material separated with sharp interfaces. Each layer is

described with a Hamiltonian in the effective mass approximation and at interfaces carrier

wave function fulfills some boundary conditions which meet symmetry limitation and current

conservation. Parameters of the Hamiltonian, such as band edge energies, effective masses or

Luttinger parameters for valence band are taken equal to their values in corresponding bulk

material of the layer. The model gives a simple and comprehensive picture of the spectrum

and is widely used.[6, 21, 26, 37–42]

5



A cornerstone of this approach is the assumption that kp method, that is a basis for the

effective mass approximation, can be applied to each layer separately leading to layers’ bulk

spectrum and SL spectrum can be found based on these results. Some discrepancies between

calculated energy levels and their measured values[23, 37, 38] can be related to uncertainties

in parameters used in the calculation and these uncertainties are really considerable.[16, 17]

Primary interest in SL carrier spectrum is typically the spectrum along the growth di-

rection, although the in-plane spectrum is also important for vertical transport because it

controls the density of states. Due to separation of growth direction and in-plane variables

in each layer the in-plane momentum enters SL dispersion relation as a parameter and the

in-plane spectrum can be obtained in a very simple way.[6, 41]

The essence of kp method is that carrier wave functions and spectrum near the band

edge are calculated with help of perturbation of the state at the edge. In this paper we

assume that the edges of relevant bands are at the center of the Brillouin zone that is true

in III-V materials. The starting point of the method is the Hamiltonian in the basis of

Bloch wave functions at the center of the zone. At the center where the carrier wave vector

k = 0 the Hamiltonian is a diagonal matrix with diagonal elements equal energies at band

edges. Away from the center of the zone kinetic energy of free electron is added to the

diagonal elements. Also off-diagonal matrix elements describing coupling between bands are

non-zero and proportional to wave vector k components and matrix elements of momentum

p components. The Hamiltonian contains also spin-orbit interaction that is important in

III-V crystals.

In the most advanced version of the method, Kane model, the coupling between the

conduction and valence band is taken into account exactly while coupling with other bands

is considered as a perturbation.[36] If this perturbation is neglected the Hamiltonian can be

diagonalized exactly. In cubic crystal the spectrum is characterized by only two parameters,

matrix element of a momentum component between conduction and valence band (due

to cubic symmetry matrix elements of all components are equal) and spin-orbit energy

splitting. This Hamiltonian is spherically symmetric and its eigenfunctions are transformed

under rotations according to rotation group representations with J = 1/2 and J = 3/2.

Perturbation by coupling with other bands leads to cubic anisotropy of the valence band

that makes the Hamiltonian of the valence band identical to Kohn - Luttinger Hamiltonian.

In SLs only in-plane wave vector k‖ is a good quantum number. In the growth direction,
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unlike bulk, wave functions are not plane waves and new quantum numbers are the number

of a subband l and quasi wave vector q that varies within interval (−π/d, π/d) where d is

the SL period. If k‖ = 0 and the width of SL layers is much larger than the lattice constant

kp Hamiltonian can be diagonalized in each layer and SL spectrum and wave functions can

be obtained with help of appropriate conditions at interfaces between the layers.

If k‖ 6= 0 there is an additional part of the kp Hamiltonian, H‖, proportional to k‖,

Eq.(4.7a). In bulk k‖ 6= 0 is equivalent to rotation of the wave vector. If only conduction -

valence band coupling is included the rotation does not change the spectrum and new wave

functions are obtained with rotational transformation. This procedure does not work in SLs

where the symmetry is uniaxial even within separate layers. At small k‖ it is possible to

consider H‖ as a perturbation. Corrections to the spectrum contain (i) matrix elements of

H‖ between states with k‖ = 0 and different l and (ii) energy difference between these states.

These quantities differ from corresponding quantities in bulk because of difference between

wave functions and spectrum in the growth direction. Therefore the assumption that the

in-plane spectrum in separate layers is the same as in bulk is baseless.

In the next section we consider a new approach to calculation of in-plane spectrum in

SLs.

IV. kp EQUATION FOR SUPERLATTICE

We study SL spectrum in Kane - type Hamiltonian and for simplicity neglect spin-orbit

split band. Then in the basis





u+

u−



 , u+ =











|S, 1/2〉
|3/2, 3/2〉
|3/2, 1/2〉











, u− =











|S,−1/2〉
|3/2,−3/2〉
|3/2,−1/2〉











, (4.1)
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the Hamiltonian in each layer is

H =
h̄2k2

2m0

+





























Ec
h̄P√
2m0

k+ −
√

2

3

h̄P
m0

kz 0 0 − h̄P√
6m0

k−

h̄P√
2m0

k− Ev 0 0 0 0

−
√

2

3

h̄P
m0

kz 0 Ev
h̄P√
6m0

k− 0 0

0 0 h̄P√
6m0

k+ Ec − h̄P√
2m0

k− −
√

2

3

h̄P
m0

kz

0 0 0 − h̄P√
2m0

k+ Ev 0

− h̄P√
6m0

k+ 0 0 −
√

2

3

h̄P
m0

kz 0 Ev





























(4.2)

where z is the growth direction, k± = kx ± iky, m0 is the free electron mass, Ec and Ev are

energies of the conduction and valence band edge, P = 〈S|px|X〉 = 〈S|py|Y 〉 = 〈S|pz|Z〉 is
the momentum matrix element between the conduction and valence band. In SL with layer

width d1 and d2, d1 + d2 = d, the values of Ec, Ev and P are different in different layers,

Ec = Ec1 , Ev = Ev1 , P = P1 nd < z < nd+ d1 , (4.3a)

Ec = Ec2 , Ev = Ev2 , P = P2 nd− d2 < z < nd (4.3b)

where n is the number of a period.

In Schrödinger equation variables are separated,

Ψ(r‖, z) =
1√
S

eik‖r‖ Ξ(z) . (4.4)

and z-dependent part of the wave function satisfies the equation

H⊥Ξ +H‖Ξ = EΞ . (4.5)

where

H⊥ =





H+⊥ 0

0 H−⊥



 , H−⊥ = UH+⊥U , (4.6a)

H+⊥ =











Ec 0 0

0 Ev 0

0 0 Ev











+ i

√

2

3

h̄P

m0

R
d

dz
− h̄2

2m0

d2

dz2
, (4.6b)
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H‖ =





H+‖ Q

Q† H−‖



 , H−‖ = UH∗
+‖U , (4.7a)

H+‖ =













0
h̄P√
2m0

k+ 0

h̄P√
2m0

k− 0 0

0 0 0













+
h̄2k2

‖
2m0

, Q =
h̄P√
6m0

k+











0 0 1

0 0 0

−1 0 0











, (4.7b)

U = U † = U−1 =











1 0 0

0 −1 0

0 0 1











, R =











0 0 1

0 0 0

1 0 0











, RU = UR . (4.8)

Eq.(4.5) is provided with boundary conditions at interfaces that are limited by symmetry

of the wave functions and conservation of current component normal to interfaces. Except

boundary conditions there is also Bloch condition

Ξ(z + d) = Ξ(z)eiqd . (4.9)

To study solutions to Eq.(4.5) it is convenient to start with the case of k‖ = 0 that is

reduced to search of eigenfunctions and eigenvalues of H⊥. Hamiltonian H⊥ describes three

types of carriers and each of them can be in the ground and excited states. Eigenvalues

of H⊥ are ǫα,l(q) where α = e for electrons, α = hh for heavy holes and α = lh for light

holes. l is the number of the subband. Near the edges of subbands the spectrum is parabolic,

ǫα,l(q) = ǫα,l(0)+h̄2(q−q0)
2/2mα⊥,l where q0 = 0,±π/d corresponds to the subband edge and

m0/mα⊥,l ∼ (Ph̄/m0d)/(ǫα,l − ǫα′,l). All energy levels are double degenerate with respect to

spin direction and in correspondence to the block structure of H⊥ eigenfunctions belonging

to ǫα,l(q) are

Ξ+α(z) =





Ξα(z)

0



 , Ξ−α(z) =





0

UΞα(z)



 , (4.10)

where

H+⊥Ξα(z) = ǫα,l(q)Ξα(z) . (4.11)

SL quantization brings in new energy scales: energy separation between states with the

same q but different subband number, the width of subbands and the width of gaps. Except

extreme cases all of them are of the order of π2h̄2/2m⊥d
2.
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Spectrum resulted from Eq.(4.5) is formed under the affect of two different factors. One

is the in-plane motion described by H‖ and the other is superlattice structure described by

alternating layers with the boundary condition and Bloch condition. Which one of them

is dominant depends on their relative contribution to the spectrum. If the energy scale

introduced by H‖, ∼ (Ph̄k‖/m0)
2/(Ec − Ev), is larger than π2h̄2/2m⊥d

2 then it is possible

to consider the superlattice structure as a perturbation and in the leading order to find the

spectrum in each layer separately. This is the regular approach. A rough condition of its

validity is k‖d ≫ π. Here we consider the opposite case when

k‖d ≪ π (4.12)

and H‖ in Eq.(4.5) can be considered as a perturbation. In-plane spectrum under condition

(4.12) is calculated in the next section.

V. IN-PLANE SPECTRUM AT SMALL k‖

Eigenfunctions of H+⊥, Ξsα,ql(z), s = ±, are orthogonal and normalized,

∫ d

0

Ξ†
sα,ql(z)Ξs′α′,ql′(z)dz = δss′δαα′δll′ , (5.1)

and solution to Eq.(4.5) can be expanded in Ξsα,ql(z):

Ξ(z) =
∑

sα,l

Csα,lΞsα,ql(z) . (5.2)

Expansion coefficients satisfy the following system of equations

(E − ǫα,l(q))Csα,l =
∑

s′α′,l′

〈Ξsα,ql|H‖|Ξs′α′,ql′〉Cs′α′,l′ . (5.3)

Under condition (4.12) correction to the spectrum from matrix elements 〈Ξsα,ql|H‖|Ξs′α′,ql′〉
off-diagonal with respect to the band number, l 6= l′, is small and in the leading approxima-

tion can be neglected. Then Eq.(5.3) becomes

(E − ǫα,l(q))Csα,l =
∑

s′α′

〈Ξsα,ql|H‖|Ξs′α′,ql〉Cs′α′,l (5.4)

and in-plane spectrum in the lth subband can be found from the equation

det
(

(E − ǫα,l)δss′δαα′ − 〈Ξsα,ql|H‖|Ξs′α′,ql〉
)

= 0 . (5.5)
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The following calculation is made only for the ground state subband where l = 1 and to

shorten notations subscripts l and q will be omitted.

Calculation of matrix elements is facilitated by two factors. The first is the block structure

of H‖, Eq.(4.7a), that makes it possible to express them in matrix elements of H+‖ and Q:

〈Ξsα|H‖|Ξs′α′〉 =





〈Ξα|H+‖|Ξα′〉 〈Ξα|Q|Ξα′〉
〈Ξα|Q†|Ξα′〉 〈Ξα|H∗

+‖|Ξα′〉



 . (5.6)

The second factor is that kz ∼ 1/d and the parameter of kp method in Eq.(4.11),

kzP/m0(Ec − Ev), in each layer is indeed small because the width of the layers is much

larger than the lattice constant. Therefore conduction and valence band mixing is weak in

spite of electron and hole masses are strongly different from the free electron mass.[43] In

the leading approximation the band mixing of wave functions can be neglected and SL wave

functions can be calculated separately for each kind of carriers. So for each kind of carriers

matrix function Ξα(z) has only one component:

Ξe(z) =











ξe(z)

0

0











, Ξhh(z) =











0

ξhh(z)

0











, Ξe(z) =











0

0

ξlh(z)











. (5.7)

The explicit form of wave functions of electrons ξe(z), heavy holes ξhh(z) and light holes

ξlh(z) in SL is given in Appendix A. The spectrum can be found from Eqs.(2.1) and (2.2)

with k‖ = 0.

Calculation of blocks of matrix Eq.(5.6) results in

〈Ξα|H+‖|Ξα′〉 =



















h̄2k2
‖

2m0

h̄√
2m0

k+Pe,hh 0

h̄√
2m0

k−Phh,e

h̄2k2
‖

2m0

0

0 0
h̄2k2

‖
2m0



















, (5.8a)

〈Ξα|Q|Ξα′〉 = h̄k+√
6m0











0 0 Pe,lh

0 0 0

−Plh,e 0 0











, 〈Ξα|Q†|Ξα′〉 = h̄k−√
6m0











0 0 −Pe,lh

0 0 0

Plh,e 0 0











, (5.8b)
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where

Pe,hh =

∫ d

0

ξ∗e(z)Pξhh(z)dz = P1

∫ d1

0

ξ∗e(z)ξhh(z)dz + P2

∫ d2

d1

ξ∗e(z)ξhh(z)dz , (5.9a)

Pe,lh =

∫ d

0

ξ∗e(z)Pξlh(z)dz = P1

∫ d1

0

ξ∗e(z)ξlh(z)dz + P2

∫ d2

d1

ξ∗e(z)ξlh(z)dz , (5.9b)

Phh,e = P ∗
e,hh , Plh,e = P ∗

e,lh . (5.9c)

6 × 6 determinant in Eq.(5.5) becomes block diagonal after cycle transposition rows and

columns (3,4,6). Determinants of the two 3× 3 diagonal blocks are equal so that

det
(

(E − ǫα)δss′δαα′ − 〈Ξsα|H‖|Ξs′α′〉
)

=

[(

E − ǫe −
h̄2k2

‖
2m0

)(

E − ǫhh −
h̄2k2

‖
2m0

)(

E − ǫlh −
h̄2k2

‖
2m0

)

−
h̄2k2

‖|Pe,lh|2

6m2
0

(

E − ǫhh −
h̄2k2

‖
2m0

)

−
h̄2k2

‖|Pe,hh|2

2m2
0

(

E − ǫlh −
h̄2k2

‖
2m0

)]2

. (5.10)

That is the spectrum is double degenerate. The free electron energy h̄2k2
‖/2m0 at practical

values of k‖ is so small that it can be neglected in Eq.(5.10).

To study the in-plane spectrum it is convenient to write the dispersion relation in the

form

(E − ǫe)(E − ǫhh)(E − ǫlh) =
h̄2k2

‖(|Pe,lh|2 + 3|Pe,hh|2)
6m2

0

(E − ǫl−h) , (5.11)

where

ǫl−h =
|Pe,lh|2ǫhh + 3|Pe,hh|2ǫlh

|Pe,lh|2 + 3|Pe,hh|2
. (5.12)

There are following relations between these energies

ǫlh < ǫl−h < ǫhh < ǫe . (5.13)

Plot of the left hand side (cubic parabola) and right hand side (straight line) of Eq.(5.11) as

a function of E is shown in Fig.2. Crossing points of the curve and straight line correspond

to solutions to Eq.(5.11). The right crossing point corresponds to electrons, the middle

crossing point corresponds to heavy holes and the left one corresponds to light holes.

The right hand side of Eq.(5.11) contains a large parameter: for the most of III-V com-

pounds |Pe,hh|2/m0 ∼ |Pe,lh|2/m0 ∼ P 2
1 /m0 ≈ P 2

2 /m0 ≈ 10eV. [17] That is with growth of

12



k‖ the prefactor in the right hand side can be quite large when h̄2k2
‖/2m0 is still small. This

prefactor controls the slope of the straight line in Fig.2. With growth of k‖ the straight line

rotates counterclockwise. The rotation leads to growth of the electron energy and absolute

value of the light hole energy without any limitation while the absolute value of the heavy

hole energy grows and approaches ǫl−h.

If ǫe − ǫhh ∼ ǫhh − ǫlh then asymptotic solution of Eq.(5.11) at small k‖,

h̄2k2
‖

2m0

P 2

m0

≪ (ǫe − ǫlh)
2 , (5.14)

gives parabolic spectrum:

E = ǫe(q) +
h̄2k2

‖
2me‖

,
1

me‖
=

1

3m2
0

( |Plh,e|2
ǫe − ǫlh

+
3|Pe,hh|2
ǫe − ǫhh

)

(5.15a)

for electrons,

E = ǫhh(q)−
h̄2k2

‖
2mhh‖

,
1

mhh‖
=

1

m2
0

|Pe,hh|2
ǫe − ǫhh

(5.15b)

for heavy holes and

E = ǫlh(q)−
h̄2k2

‖
2mlh‖

,
1

mlh‖
=

1

3m2
0

|Pe,lh|2
ǫe − ǫlh

(5.15c)

for light holes.

A weak nonparabolicity of the electron spectrum at not very large k‖ is usually described

by energy dependence of the effective mass. In Eq.(5.15a) this is reduced to replacement of

ǫe with E in the expression for the mass. If the splitting between light and heavy holes is

neglected (i.e. ǫlh assumed to be equal ǫlh) and the difference between momentum matrix

elements in different layers |Pe,hh| and Pe,lh| is also neglected then the modified expression

becomes identical to Eq.(1) of Ref.[11] where contribution of remote bands and spin-orbit

split band is discarded.

At large k‖

h̄2k2
‖

2m0

P 2

m0

≫ (ǫe − ǫlh)
2 (5.16)

the energy of heavy holes is saturated (keep in mind that admixture of remote bands is

neglected)

E =
|Pe,lh|2ǫhh + 3|Pe,hh|2ǫlh

|Pe,lh|2 + 3|Pe,hh|2
(5.17)
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while the spectrum of electrons and light holes is linear

E = ± h̄k‖
m0

√

(|Pe,lh|2 + 3|Pe,hh|2)
6

+
ǫe
2
+

|Pe,lh|2ǫlh + 3|Pe,hh|2ǫhh
2(|Pe,lh|2 + 3|Pe,hh|2)

. (5.18)

In case interesting for InAsSb SLs, when gap between electrons and heavy holes is anoma-

lously small,

ǫe − ǫhh ≪ ǫhh − ǫlh . (5.19)

there exists also an intermediate asymptote when

ǫe − ǫhh ≪ |E − ǫe| ≪ ǫhh − ǫlh . (5.20)

In this energy region the first term in the right hand side of the expression

E − ǫl−h =
|Plh,e|2

|Plh,e|2 + 3|Pe,hh|2
(E − ǫhh) +

3|Phh,e|2
|Plh,e|2 + 3|Pe,hh|2

(E − ǫlh) (5.21)

can be neglected and then Eq.(5.11) leads to

E =
ǫe + ǫhh

2
±

√

(ǫe − ǫhh)2

4
+

h̄2k2
‖|Phh,e|2
2m2

0

(5.22)

where the plus corresponds the electron spectrum and minus corresponds to heavy hole

spectrum. At small k‖ Eq.(5.22) gives parabolic spectrum Eqs.(5.15a) and (5.15b) while at

large k‖ the spectrum is linear,

E = ± h̄k‖|Phh,e|√
2m0

+
ǫe + ǫhh

2
(5.23)

A sketch of the whole in-plane spectrum is shown in Fig.3.

Eqs.(5.14), (5.15) and (5.20) - (5.23) show that the non-parabolic spectrum starts from

the energy above electron - heavy hole gap and it is linear. These results are in agreement

with the experiment.

VI. CONCLUSION

Arguments presented in this paper reveal that the in-plane spectrum in SLs at not very

large in-plane momentum k‖ is not correctly described by the existing theory that uses

effective mass approximation in each separate layer. Actually the in-plane spectrum is

14



formed on the top of SL spectrum in the growth direction. The physical reason is that at

small k‖ the in-plane motion is relatively slow and before an electron makes a noticeable

in-plane shift it moves across a few SL periods.

From theoretical point of view when the width of SL layers goes to infinity the SL spec-

trum has to go to the bulk spectrum. This indeed happens not by decrease of differences

between the spectra but by shrinkage of the region of small k‖ where these differences are

substantial, see Eq.(4.12).

In practical terms the limitation on k‖ from above is not that strong. For period d = 10

nm and effective mass m ∼ 0.025 the energy of the considered region has to be smaller than

π2h̄2/2md2 ∼ 600 meV.

The background of the in-plane spectrum is important for the spectrum character because

a substantial role in its formation is played by valence - conduction band gap. The value

of the gap controls the value of the effective mass, Eq.(5.15) [similar calculation in bulk

gives 1/m = (4/3)P 2/m2
0(Ec−Ev)], and the size of the energy region where the spectrum is

parabolic. In SL the gap can be significantly smaller than in separate layers. The reason is

that the conduction and valence band gap between different layers Ec1 − Ev2 can be much

smaller than the gap in each of them, Ec1 − Ev1 and Ec2 − Ev2, and the SL gap is different

from Ec1−Ev2 by quantum size effect. This is actually the case in InAsSb SLs.[31] Another

example is InAs/GaSb SLs close to type II. If Ec −Ev is not small the results of our theory

is close to the results of regular approach and may be not distinguishable in experiments.

In this paper we are not trying to explain results of the cyclotron measurements presented

in Sec.II. This is going to be done elsewhere. We can just make a rough estimate of

energy difference between electron Landau levels based on the results obtained in Sec.V.

To obtain such an estimate we make use of Eq.(5.23) and choose plus sign for electron

levels. A rough value of Landau level energy can be obtained by replacing h̄2k2
‖/2 with

(eBh̄/c)(n + 1/2) where B is magnetic field and n is the number of the level. This leads

to linear dependence of the cyclotron resonance energy on
√
B. Making use of known value

P 2/m0 ≈ 10 eV [17] we obtain for the transition between the first and second Landau levels

(E2 − E1)/
√
B ≈ 12meV/

√
T that is close to the slope 10 meV/

√
T of the lowest line in

Fig.1.

Finally, the results of the work can be summarized in the following points:

• The size of the parabolic region in the in-plane spectrum is of the order of the con-
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duction - valence band gap of the SL.

• The value of the effective mass is inverse proportional of the SL band gap.

• Beyond the parabolic region the electron and light hole spectrum is linear.

• If the gap between heavy holes and conduction band is much smaller than the gap

between light holes and conduction band linear spectrum of the electron and heavy

holes starts at the energy around the smaller gap.

• The size of the parabolic region of the spectrum and its linearity beyond this region are

consistent with recent CR measurements. A rough estimate of the cyclotron resonance

energy gives a value close to the experimentally measured one.
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Appendix A: SL wave functions

We calculate SL wave functions in the frame of regular Kronig - Penney model. Let the

barrier height is U and effective masses in well and barrier are m1⊥ and m2⊥. Schrödinger

equation

h̄2

2m1⊥

d2ξ

dz2
+ ǫξ = 0 , nd < z < nd+ d1 , (A1a)

h̄2

2m2⊥

d2ξ

dz2
+ (ǫ− U)ξ = 0 , nd− d2 < z < nd . (A1b)

where d1 is the width of the well, d2 is the width of the barrier, d1+ d2 = d, with boundary

conditions

ξ(nd+ 0) = ξ(nd− 0) , ξ(nd+ d1 + 0) = ξ(nd+ d1 − 0) , (A2a)

1

m1⊥

dξ

dz

∣

∣

∣

∣

nd+0

=
1

m2⊥

dξ

dz

∣

∣

∣

∣

nd−0

,
1

m1⊥

dξ

dz

∣

∣

∣

∣

nd+d1−0

=
1

m2⊥

dξ

dz

∣

∣

∣

∣

nd+d1+0

. (A2b)

and Bloch condition

ξ(z + d) = ξ(z)eiqd . (A3)
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leads to well known dispersion law, Eq.(2.1), and wave functions

ξ(z) = A cos k1z +
m1⊥
k1

B sin k1z , 0 < z < d1 , (A4a)

ξ(z) = A cos k2z +
m2⊥
k2

B sin k2z , −d2 < z < 0 . (A4b)

In Eqs.(A3) and (A4)

k1 =

√
2m1⊥ǫ

h̄
, k2 =

√

2m2⊥(ǫ− U)

h̄
. (A5)

Two constants A and B can be expressed in only one:

A =

(

k1
m1⊥

sin k1d1 +
k2
m2⊥

eiqd sin k2d2

)−1

C , (A6a)

B = (cos k1d1 − eiqd cos k2d2)
−1C , (A6b)

and the normalization condition
∫ d

0

|ξ(z)|2dz = 1 (A7)

gives the following relation between the constants
(

d

2
+

sin 2k1d1
4k1

+
sin 2k2d2

4k2

)

|A|2

+

(

m2
1⊥d1
k2
1

+
m2

2⊥d2
k2
2

− m2
1⊥ sin 2k1d1

2k3
1

− m2
2⊥ sin 2k2d2

2k3
2

) |B|2
2

+

(

1− cos 2k1d1
k2
1

m1⊥ − 1− cos 2k2d2
k2
2

m1⊥

)

Re(AB∗)

2
= 1 . (A8)

All relations in this Appendix are equally valid for ǫ < U and ǫ > U , i.e., for real and

imaginary k2.

Wave functions of electrons, heavy holes and light holes differ by values of effective masses,

the height of the barrier and the width of the wells and barriers: layers presenting wells for

electrons are barriers for hole and the other way around.
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Figure cations

Fig.1: Absorption peaks energies vs magnetic field for 1µm thick InAsSb0.3

(4nm)/InAsSb0.75(2nm) SL. The magnetic field is parallel to the growth direction. Lines

display the best fit to the data points. Insert: electron CR peaks at different magnetic

fields.

Fig.2: The curve is the plot of the left side of Eq.(5.11) and the straight line is the plot

of the right hand side. Their crossing points correspond to solutions to the equation.

Fig.3: A sketch of the in-plane spectrum of electrons, heavy holes and light holes.
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