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Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal
invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs
are distinguished from trivial insulators by the values of one or multiple topological invariants that
require an analysis of the bulk band structure across the BZ. We propose an effective two-band
Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding
Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian
provides a faithful description of the protected edge states for both zigzag and armchair ribbons
though the concept of a BZ is not part of such an effective model. We show that the edge states
are determined by a band inversion in both reciprocal and real space, which allows one to select Λ
for the edge states without affecting the bulk spectrum.

A topological insulator (TI) is an insulator in the bulk
with topologically protected edge states that cross the
gap so that the edges are conducting. This concept
was first introduced by Kane and Mele using a sim-
ple tight-binding (TB) model for the band structure of
graphene.1,2 Since then a wide range of materials with
these properties have been identified in two and three di-
mensions (2D and 3D).3,4 TIs can be distinguished from
trivial insulators without topological edge states by the
values of one or multiple topological invariants that re-
quire an analysis of the bulk band structure across the
Brillouin zone (BZ). In that sense TIs are considered
conceptually different from other problems in solid state
physics that permit a description local in k space.

The first experimental verification of topologically pro-
tected edge states was achieved for HgTe/CdTe quan-
tum wells (QWs)5 following a theoretical proposal by
Bernevig, Hughes and Zhang6 based on a simple effec-
tive Hamiltonian, today known as BHZ model. Since
then the BHZ model has been used in a wide range of
studies. Liu et al. showed7 that it also describes the edge
states in InAs/GaSb QWs. Zhou et al. demonstrated8

that the BHZ model can be solved exactly, yielding an-
alytical expressions for the edge states in HgTe/CdTe
QWs, see also Ref. 9. We do not question the deep in-
sights that have emerged from the classification of solids
based on topological invariants. But Zhou’s work8 raises
the question to what extent TIs permit a description local
in k space.10 Is the concept of a BZ a necessary prereq-
uisite for protected edge states in a TI? Graphene with
its simple TB description11 has served as an archetype
for TIs,1,2,12 despite the fact that its intrinsic SOC has
been found to be small.13 We show here that a Taylor
expansion of the graphene TB model about the time-
reversal invariant M point of the BZ (with M ≡ −M)
yields an effective Hamiltonian that provides a faithful
description local in k space of the protected edge states
in both zigzag and armchair graphene ribbons. While the
proposed model is quite different from the more familiar
BHZ Hamiltonian, these models share a range of con-
ceptual features, some of which previously unrecognized,
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FIG. 1. (Color online) (a) Bulk BZ of graphene. The region
captured by the effective Hamiltonian (1) is marked in green.
(b) Bulk band structure E(k) of the Hamiltonian (1) in the
limit λv = λi = λr = 0.

which suggests that these features are common among
TIs. Quite generally1 the edge states in TIs disperse
symmetrically about one of the time-reversal invariant
momenta (TRIM) Λ with protected degeneracies at Λ.
We show that this Λ is determined by a band inversion
in both reciprocal and real space, which allows one to
select Λ without affecting the bulk spectrum.

In the following our conventions for the TB Hamil-
tonian follow Refs. 1 and 2, see also Ref. 14. While the
graphene BZ has two inequivalent points K and K′ (with
K 6≡ −K), we have three inequivalent points M, M′ and
M′′, see Fig. 1(a). Expanding the TB Hamiltonian for

the graphene π bonds about M = (0, 2π/
√

3), the ef-
fective Hamiltonian up to second order in k = (kx, ky)
becomes

HM (k) =
[(

1− 1
4k

2
x + 1

12k
2
y

)
σz + 2√

3
kyσy

]
t− σxλv

− 4kxszσxλi +
[
− 2√

3
sxσy −

(
1

2
√
3
kysx +

√
3
2 kxsy

)
σz

+
(
1
8k

2
xsx − 1

4kxkysy + 5
24k

2
ysx
)
σy
]
λr, (1)

where si denotes spin operators and σi are Pauli matri-
ces. The first term describes the orbital motion charac-
terized by the nearest-neighbor hopping parameter t (in
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FIG. 2. (Color online) Crystal structure of a graphene ribbon
with (a) zigzag and (b) armchair edges. Bulk BZ of graphene
corresponding to (c) zigzag and (d) armchair ribbons. The
region of the BZ captured by the Hamiltonian (1) is marked
in green. Band structure E(k‖) of (e) zigzag and (f) armchair
ribbons in the absence of SOC and (g), (h) for λi = 0.2. (i),
(j) Squared magnitude of the up component of pseudospin
σz of the lowest E > 0 bulk eigenstates. The width of the
ribbons is w = 40 and we used be = −10.

the following t ≡ 1). The second term describes a stag-
gered sublattice potential weighted by λv.

1,2 The third
term gives the intrinsic spin-orbit coupling (SOC) pro-
portional to λi. The fourth term describes the Rashba
SOC weighted by λr. In the following, q refers to wave
vectors in the BZ whereas k denotes wave vectors relative
to the expansion point q0 of the effective Hamiltonian,
i.e., q = q0 + k.

First we discuss the properties of HM in the absence of
SOC. Unlike the Bloch states at the K point,16 the Bloch
states at the M point are nonzero on both sublattices of
the graphene structure so that here σz does not permit
an interpretation as sublattice pseudospin. For λv = 0,

the dispersion becomes [Fig. 1(b)]

E±(k) = ±
√

(1− 1
4k

2
x)2 + k2y( 3

2 −
1
24k

2
x) + 1

144k
4
y, (2)

where the upper (lower) sign corresponds to the con-
duction (valence) band. For these bands the M point
is a saddle point. For ky = 0, the dispersion becomes
E±(kx, 0) = ±(1 − 1

4k
2
x) so that the bands touch at

the points (±2, 0), which mimics the dispersion near
the points K and K ′ of the BZ, the precise coordi-
nates of which are (±2π/3, 0). Indeed, if we substitute
kx → kx ± 2, the Hamiltonian (1) is unitarily equivalent
to (ignoring Rashba SOC for simplicity)

HK(k) = ±kxσx − 2√
3
kyσy + ( 1

4k
2
x − 1

12k
2
y)σx

+λvσz ± 4(2± kx)szλiσz. (3)

For small k, Eq. (3) is close to the Dirac Hamiltonian

HD =
√
3
2 (±kxσx − kyσy) obtained via a Taylor expan-

sion of the TB Hamiltonian about K.13 The Hamiltonian
(1) thus captures the essential features of the graphene
multivalley band structure for both the conduction and
valence band near the entire line K −M −K ′, so that it
provides an alternative approach to valleytronics.17 Un-
like HD, the Hamiltonian (1) accounts for time reversal
symmetry in a natural way.

To discuss edge states we consider graphene ribbons
with zigzag [Fig. 2(a)] and armchair edges [Fig. 2(b)].
The electronic states in these ribbons near energy E = 0
emerge from the states in 2D graphene which are high-
lighted in green in Fig. 2(c) and (d).

First we focus on zigzag edges [Fig. 2(a)]. We de-
note the wave vector for the motion along (perpendic-
ular to) the direction of the ribbon as k‖ (k⊥). Ignoring
SOC, zigzag edges give rise to a gapped spectrum around
k‖ = 0 with edge states appearing in the center of the

gap.18 These results are readily rederived by means of
Hamiltonian (1), where a suitable coordinate transfor-
mation gives the Hamiltonian

Hz(k) = (1− 1
6k

2
⊥ + 1

2
√
3
k⊥k‖)σz − ( 1√

3
k⊥ + k‖)σy. (4)

We model the edges as potential steps bσz with b ≡ bg =
0 inside the ribbon and b ≡ be 6= 0 outside. In the end
we may consider the limit |be| → ∞ so that the wave
functions vanish at the edges.8,9

The edge states resulting from Eq. (4) are shown in
Fig. 2(e). In these calculations, we used the barrier pa-
rameter be = −10. Having be < 0 implies a band inver-
sion at the graphene edge.19 A simple confinement be > 0
results in the spectrum shown in Fig. 3(b), where we have
the same bulk spectrum as in Fig. 2(e), but the edge
states appear for |k‖| >∼ 1. The latter type of spectrum
is obtained in TB calculations for ribbons with bearded
edges,20–22 see Fig. 3(a).

We can understand the results in Figs. 2(e,g) and 3
by looking at the bulk eigenstates of the ribbon. Fig-
ures 2(i) and (j) show the squared magnitude of the up
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(a)

FIG. 3. (a) Crystal structure of a graphene ribbon with
bearded edges. (b) Band structure E(k‖) of the ribbon in
the absence of SOC. The width of the ribbon is w = 40 and
we used be = +10.

component of the pseudospin σz [in the basis of Eq. (4)]
of the lowest E > 0 bulk eigenstates as a function of k‖
(with very similar results also for be > 0). Figure 2(i)
indicates that for small |k‖| these states are predomi-
nantly pseudospin-up. Yet around |k‖| ' 1 (reflecting the
K point of bulk graphene) the character of these states
changes from dominantly spin-up to spin-down. The elec-
tronic states thus see effective band edges as a function of
k‖ that show a band inversion in reciprocal space around
|k‖| ' 1. This inversion results in robust edge states for

either |k‖| <∼ 1 [Fig. 2(e)] or |k‖| >∼ 1 [Figs. 3(b)], depend-
ing on the sign of be. For graphene zigzag ribbons it is,
of course, well-known that different boundary conditions
at the edges as in Figs. 2(a) and Figs. 3(a) yield these
different edge states.18,20,22 Yet it is, indeed, a common
feature of TIs that they show a band inversion in recip-
rocal space between the TRIM Λ = 0 and Λ = π of the
1D BZ, so that we have edge states around either Λ = 0
or Λ = π. Choosing appropriate boundary conditions at
the edges of the ribbon thus allows one to select the loca-
tion of edge states in the 1D BZ while keeping the bulk
spectrum unaffected.

To illustrate this point, Fig. 4 shows the band struc-
ture of a ribbon using the TB regularization of the BHZ
model based on a square lattice with one s and p orbital

per unit cell.6,23 The Hamiltonian is H =
(
h(q)
0

0
h∗(−q)

)
with h(q) = d · σ, dx = a sin qx, dy = a sin qy, and
dz = m−2b(2−cos qx−cos qy). In Fig. 4(a) the mass pa-
rameter m is negative, yielding a trivial regime without
edge states. For m > 0 and using the usual boundary
conditions,23 we get conducting edge states near the cen-
ter q‖ = 0 of the 1D BZ [Fig. 4(b)]. Alternatively, we
may consider the unitarily equivalent problem with hy-
bridized basis orbitals s + p and s − p. Dropping one of
these orbitals in the outermost layers of the ribbon yields
edge states near the boundary q‖ = π of the 1D BZ, while
the bulk spectrum remains unchanged [Fig. 4(c)]. For the
trivial case in Fig. 4(a) the bulk eigenstates do not show
band inversion as a function of q‖ [Fig. 4(d)], whereas the
nontrivial cases in Figs. 4(b) and (c) show band inversion
[Figs. 4(e) and (f)]. Similar results also hold for graphene
ribbons with armchair edges, see the Appendix.

We return to the effective Hamiltonian (1). The nu-
merical calculations presented in this work use a quadra-

FIG. 4. Band structure E(q‖) of a BHZ ribbon with a = 1
and b = 0.5. (a) m = −0.5 yields a gapped spectrum without
edge states. (b) For m = +0.5, the usual boundary conditions
at the edges of the ribbon23 yield edge states near q‖ = 0. (c)
Dropping one of the basis states s± p in the outermost layers
of the ribbon yields edge states near the boundary q‖ = π of
the BZ. Projection of the lowest bulk conduction band states
and uppermost bulk valence band states on the subspace of
positive energies at (d), (e) q‖ = 0 and (f) q‖ = π.

ture method as described in Refs. 24 and 25, which auto-
matically ensures the proper matching conditions for the
multi-spinor wave function at the edges of the ribbon.
The numerical results can be confirmed by analytical cal-
culations similar to those in Refs. 8 and 9. In particular,
the limit of hard walls be → −∞ yields for the edge state
at k‖ = 0 of a semi-infinite graphene sheet at r⊥ ≥ 0

ψz(r⊥) =
(
1
1

)
(e−κ+r⊥−e−κ−r⊥), κ± ≡

√
3(1± i), (5)

and ψz(r⊥ < 0) = 0. The corresponding eigenenergy is
E = 0. The full expressions for finite be, finite thickness
of the ribbon and finite k‖ are more complicated so that
they are not reproduced here. Yet such calculations con-
firm that no edge states exist around k‖ = 0 for be > 0.

For a ribbon with armchair edges [Fig. 2(b)] and ne-
glecting SOC, the effective Hamiltonian becomes

Ha(k) = (1− 1
4k

2
⊥ + 1

12k
2
‖)σz − 2√

3
k‖σy, (6)

see Fig. 2(d). The 1D spectrum resulting from Ha(k) is
shown in Fig. 2(f). Here we have no edge states and in
the limit of wide ribbons the spectrum becomes gapless.
These results are in line with the findings in Ref. 18,
keeping in mind that the bulk K and K ′ points are folded
to the point q‖ = 0 of the 1D BZ for armchair ribbons.

Previously Brey and Fertig26 used the graphene Dirac
Hamiltonian HD to obtain the edge states of 1D rib-
bons emerging from the states near the K point of 2D
graphene,27 i.e., their model gives the edge states for
wave vectors close to the valence band maximum and
conduction band minimum in Figs. 2(e) and (f). The
present approach is different from this earlier work as
it yields the edge states in the entire region in between
the points K and K ′ of the bulk band structure in-
cluding the robust crossing at k‖ = 0, consistent with
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FIG. 5. Band structure E(k‖) of zizag ribbons for λi = 0.09
and λr = 0.05. The sublattice staggering is (a) λv = 0.1 and
(b) λv = 0.4. The width of the ribbon is w = 40 and we used
be = −10. Compare Fig. 1 of Ref. 1.

the TB description.18 Effective Hamiltonians based on
a Taylor expansion of the band structure are often low-
energy Hamiltonians that are valid only in the vicinity
of the expansion point.24,28 Yet this is not an inherent
constraint.29

Next we discuss the effect of SOC. First we con-
sider λr = 0. The intrinsic SOC ∝ λi opens a gap
16λi

√
1− 16λ2i ≈ 16λi in the bulk spectrum of the

Hamiltonian (1). In the TB model this gap becomes

6
√

3λi.
2 For λi 6= 0 the edge states in a zigzag or arm-

chair ribbon remain two-fold degenerate at k‖ = 0 which
reflects the fact that these states originate from the time-
reversal invariant M point of the graphene BZ. This as-
pect is thus readily captured by the Hamiltonian (1), as
demonstrated in Figs. 2(g) and (h).

Both the intrinsic SOC ∝ λi and the staggering ∝ λv
open a gap in the bulk spectrum of the Hamiltonian (1).
Yet it follows immediately from Eq. (3) that the gap
closes for λv = ±8λi. Consistent with the TB results in
Ref. 1 this set of parameters describes the phase bound-
ary between the topologically trivial regime with an even
number of edge states and the nontrivial regime with an
odd number of edge states crossing the bulk gap. Simi-
larly, Rashba SOC ∝ λr induces such a phase transition
when it competes with the intrinsic SOC. Figure 5 illus-
trates this point for zigzag ribbons. Here the staggering
λv = 0.1 [Fig. 5(a)] gives rise to edge states crossing the
gap, whereas λv = 0.4 [Fig. 5(b)] results in an ordinary
insulator. These calculations are in very good agreement
with the TB results in Fig. 1 of Ref. 1.

Finally we comment on the general robustness of the
edge states, which is a major aspect motivating the in-
terest in topological insulators.3,4 It was pointed out in
Ref. 2 that the edge states at Λ± k‖ form Kramers dou-
blets so that elastic backscattering from a weak random
potential preserving time reversal symmetry is forbidden.
This argument applies also to the effective Hamiltonian
(1). Yet if the electron states are modeled by means of the
low-energy Dirac Hamiltonian HD, the two time-reversed
valleys at K and K ′ are described via a discrete valley
pseudospin degree of freedom, that makes it difficult to
incorporate intervalley scattering in a general way. For
the Hamiltonian (1) pairs of time-reversed states are con-
nected by continuous paths in the Hilbert space of this

Hamiltonian so that it is well-suited to incorporate inter-
valley scattering, though a detailed study of this point is
beyond the scope of the present work.

In conclusion, the effective Hamiltonian (1) based on
an expansion of the graphene TB Hamiltonian about
the time-reversal invariant M point provides an accu-
rate description of the topologically protected edge states
in graphene, although the concept of a BZ is not part
of such an effective model. Similar effective Hamiltoni-
ans can be derived via a Taylor expansion of, e.g., the
graphene TB Hamiltonian about the BZ center q = 0 or
the TB-regularized BHZ Hamiltonian about the TRIM
q = (π, 0) [suitable for a description of the “inverted”
protected edge states in Fig. 4(c)]. We may expect that
similar Hamiltonians exist also for other topologically
protected systems in both 2D and 3D. Our work may
inspire further research on necessary conditions for the
formation of protected edge states and robust level de-
generacies. For example, numerical studies based on the
effective 8 × 8 Kane Hamiltonian have shown that a 2D
Dirac semimetal with robust level crossings can be real-
ized in HgTe-CdTe quantum wells when the well thick-
ness is varied.30 Also, the effective models proposed here
open an avenue for studying these systems under pertur-
bations such as homogeneous or inhomogeneous12 mag-
netic and electric fields or strain which may break the
periodicity of the ideal crystal structure31 so that it is
more difficult to incorporate such effects in atomistic cal-
culations.
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Appendix: Ribbons with Bearded Edges

We show here that the protected edge states in
graphene ribbons with bearded zigzag [Fig. 6(a)] and
bearded amrchair edges [Fig. 6(b)] can be analyzed in
complete analogy with Fig. 2. The electronic states in
these ribbons near energy E = 0 emerge from the states
in the 2D BZ of graphene which are highlighted in green
in Fig. 6(c) and (d). First we discuss these ribbons in the
absence of SOC. For bearded zigzag edges, the effective
Hamiltonian becomes

Hbz(k) =
(
1− 1

4k
2
‖ + 1

12k
2
⊥
)
σz + 2√

3
k⊥σy. (A.1)

The resulting dispersion is shown in Fig. 6(e). For
bearded armchair edges, the effective Hamiltonian be-
comes

Hba(k) = (1− 1
6k

2
‖+

1
2
√
3
k‖k⊥)σz−( 1√

3
k‖+k⊥)σy. (A.2)
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FIG. 6. (Color online) Crystal structure of a graphene ribbon
with (a) bearded zigzag and (b) bearded armchair edges. Bulk
BZ of graphene corresponding to (c) bearded zigzag and (d)
bearded armchair ribbons. The region of the BZ captured
by the Hamiltonian (1) is marked in green. Band structure
E(k‖) of (e) bearded zigzag and (f) bearded armchair ribbons
in the absence of SOC and (g), (h) for λi = 0.2. (i), (j)
Squared magnitude of the up component of pseudospin σz of
the lowest E > 0 bulk eigenstates. The width of the ribbons
is w = 40 and we used be = −10.

The resulting dispersion is shown in Fig. 6(f). Similiar
to Figs. 2(g) and (h), intrinsic SOC opens a gap in the
bulk band structure of bearded ribbons. Using be < 0
we get the protected edge states shown in Figs. 6(g) and
(h). Similar to Figs. 2(e)-(h), the results in Figs. 6(e)-
(h) are in very good agreement with TB calculations for
the ribbon geometries in Figs. 6(a) and (b). We note that
similar to Figs. 4(b) and (c) the bulk spectra in Figs. 2(e),
(g) and Figs. 6(e), (g) are the same, independent of the
spectra of the edge states.

Figures 3(b) (obtained for be > 0) and 6(e) (obtained
for be < 0) refer to the same bearded ribbon shown in
Fig. 6(a). For this ribbon, the protected edge states dis-
perse symmetrically about the TRIM Λ = 0 of the 1D
BZ. An essential difference between the effective Hamil-
tonians underlying these figures thus lies in the fact that
only the expansion point M in Fig. 6(c) is mapped onto
Λ = 0 of the 1D BZ, thus yielding a robust model for
the protected edge states of bearded zigzag ribbons, as
demonstrated by Fig. 6(g).

More generally, a 2D TI has four TRIM Λ that are
mapped pairwise on the two 1D-TRIM Λ = 0 and Λ = π
of the corresponding TI ribbon. The edge states may
disperse about either Λ = 0 or Λ = π, and we need to
choose the expansion point of the effective Hamiltonian
accordingly for a robust description of the protected edge
states.
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