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Exciton transport in nanomaterials is sensitive to fluctuations in the confinement potential that
are intrinsic to heterogeneous solid-state systems. Redistribution of exciton population manifests as
spectral diffusion in which the exciton energy shifts. It is generally assumed that increase or decrease
in the exciton energy are equally probable. We show that this assumption is not necessarily valid
using two-dimensional coherent spectroscopy on a disordered GaAs quantum well. High-energy
excitons relax into lower-energy localized states over a timescale of tens of picoseconds at low
sample temperatures (∼ 5 K). A transition to uniform spectral diffusion of excitons is observed as
the temperature is increased to ∼ 20 K. Numerical simulations reveal the contribution of exciton-
phonon interactions to spectral diffusion of excitons. These results provide a new perspective on
the process of dynamic localization and the effect of the correlation length of disorder on spectral
diffusion of excitons.

PACS numbers: 71.35.-y, 73.21.Fg, 78.47.jh

I. INTRODUCTION

The transport of optically created excitations in
nanostructures1–3 is critical for optoelectronics applica-
tions such as light-harvesting4,5, light-emitting diodes6,7,
optical modulators8 and switches9,10. Transport prop-
erties are affected by unavoidable structural disorder,
which introduces varying local potentials that spatially
confine charge carriers, resulting in a decrease in car-
rier mobility. For example, carriers can be localized
due to the interface roughness of a quantum well (QW)
confining a two-dimensional electron gas (2DEG)11, sur-
face trap states in colloidal quantum dot (CQD) and
perovskite films12–14, or crystal impurities in transition
metal dichalcogenides (TMDs)15. Understanding the
carrier localization dynamics in heterogeneous solid-state
systems is critical for the aforementioned applications,
but isolating these dynamics from other physical phe-
nomena can be difficult. In the case of 2DEGs, the effect
of surface roughness is obscured by strong Coulomb inter-
actions between electrons. In CQD and perovskite films,
the surface trap states are optically dark, inhibiting the
ability to probe the trapping dynamics.

Excitons, which are correlated electron-hole pair exci-
tations, in disordered QWs are a model system to study
localization without being constrained by the limitations
mentioned above. The exciton resonance is inhomoge-
neously broadened by spatial variations in the confine-
ment potential due to spatial disorder in the width16

or chemical composition17 of the QW. Spatial motion of
excitons results in dynamic fluctuations of their energy,
which is known as spectral diffusion18. Low-energy ex-
citons are spatially localized in the lateral direction19,20

while high-energy excitons are delocalized in the plane of
the QW. The exciton energy at which the transition from
localized to delocalized states occurs is dubbed the mo-
bility edge21,22. Thus, the dynamic localization of high-
energy “mobile” excitons will decrease their transition
energy. Unlike the trap states in CQDs, both localized
and delocalized excitons are optically bright, which fa-
cilitates measurement of their energy change. As neu-
tral quasiparticles, they are less susceptible to Coulomb
scattering compared to carriers in a 2DEG. A disordered
QW is also an excellent system to model exciton diffusion
in layered materials such as TMDs15 and perovskites23,
which exhibit similar excitonic phenomena and are more
susceptible to interactions with the surrounding environ-
ment.

Spectral diffusion of excitons in QWs has been stud-
ied with the goal of understanding transport of neu-
tral particles for more than three decades18. Several
experimental techniques such as frequency-domain four-
wave mixing (FWM)24 and three-pulse photon echo peak
shift (3PEPS)25,26 have been used. Regardless of the
system under study, the time-domain experiments mea-
sure the decrease in the frequency-frequency correlation
function27 as a function of time28. Measurement of the
correlation function is sufficient to understand the en-
ergy fluctuations in the limit of equally probable fluctu-
ations to higher and lower energies, which is the strong-
redistribution approximation (SRA)24. This approxima-
tion correctly describes the non-Markovian decay dynam-
ics in atoms29,30, solvation dynamics of molecules31,32

and fluctuating electric fields around single quantum
dots33,34. However, in the case of heterogeneous systems
such as excitons in a QW, static inhomogeneity increases
the complexity. Localized and delocalized excitons, in
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fact, show different spectral diffusion characteristics in
frequency-domain experiments performed on a QW with
sample temperature below 5 K35, which suggests that
the SRA is not necessarily valid. However, until the ad-
vent of 2DCS, experimental techniques were not able to
clearly show that the SRA was invalid. Recently, the
validity of the SRA was experimentally demonstrated
for temperatures above ∼ 30 K36. Nevertheless, the
SRA has been implicitly assumed when interpreting the
decay of the correlation function of excitons in QWs
measured from the time-domain studies even for lower
temperatures25,26,37. In the frequency domain, on the
other hand, only the steady-state population distribu-
tion has been accessible, which conceals all the relevant
localization and diffusion dynamics.
In this paper, we present measurements of spec-

tral diffusion of excitons in disordered QWs using
two-dimensional coherent spectroscopy (2DCS), which
has been previously used for spectral diffusion studies
of vibrational and electronic excitations in molecular
systems38,39, and to quantify spectral diffusion of ex-
citons in QWs for sample temperatures above 30 K36.
Spectrally resolved exciton diffusion dynamics are mea-
sured for the entire inhomogeneously broadened distribu-
tion simultaneously. We observe that the SRA fails for
a sample temperature around 5 K due to preferential re-
laxation of more delocalized excitons to the lower-energy
localized states. This dynamic localization occurs over
a timescale of tens of picoseconds. A theoretical formal-
ism describing 2DCS measurements of spectral diffusion
of excitons in disordered QWs is presented. Comparison
between experiment and simulations reveals the role of
acoustic phonons in spectral diffusion of excitons. A tran-
sition to spectral diffusion that is well-described with the
SRA is observed as the sample temperature is increased,
which is attributed to an increase in the population of
acoustic phonons.
The rest of the paper is organized as follows. The the-

oretical formalism of calculating the excitonic properties
in a disordered QW is discussed in Section II. Section
III discusses the experimental and theoretical details of
2DCS. The results and their discussion are presented in
Section IV, which highlights the spectral diffusion behav-
ior apparent in 2D spectra and changes in exciton pop-
ulation distribution through Green’s function. We also
discuss the process of dynamic localization and the effect
of disorder correlation length on the spectral diffusion
process.

II. THEORY

In this section we give an overview of the theoretical
approach to treat excitons in a disordered QW and its
interaction with light. To overcome the limitations of
previous theoretical studies of excitonic spectral diffu-
sion in QWs, we use a microscopic model that includes
calculations of the exciton transition strength, rates of

the exciton-phonon scattering processes and the exciton
radiative lifetime. The theory is similar to the framework
developed in Refs. 40 and 41 to describe the photolumi-
nescence dynamics of 1s excitons in QWs in the presence
of disorder. In the first subsection, we will introduce the
theoretical model for obtaining the exciton wavefunction,
including the treatment of disorder. The second subsec-
tion discusses scattering processes like exciton-phonon in-
teraction, exciton recombination and the overall dynam-
ics of density matrix elements like exciton coherences and
populations.

A. Exciton states in disordered quantum wells

The two-dimensional exciton wave function Ψ(ρe,ρh),
which describes the excitons states, is a solution to the
stationary two-dimensional Schrödinger equation

EΨ(ρe,ρh) =

(

−
~
2∇2

e

2me

−
~
2∇2

h

2mh

+ Veh(ρe − ρh)

+Vh(ρh) + Ve(ρe)

)

Ψ(ρe,ρh),

(1)

where E is the energy of the exciton, ∇2
i (i = e, h) is the

Laplacian operator for the position, mi is the effective
mass, ρi is the co-ordinate in the plane of the QW, Vi
is the confinement potential, and Veh is the electron-hole
Coulomb-interaction potential. We use subscripts e and
h to denote electrons and holes, respectively, throughout
this paper. As is usual in the envelope approximation,
Veh is modified by the envelope functions ζi(zi) in the
z-direction, which is perpendicular to the plane of the
QW, as

Veh(ρ) =−
e2

4πε0εr
∫

dze

∫

dzh
ζ∗e (ze)ζ

∗
h(zh)ζh(zh)ζe(ze)

√

ρ2 + (ze − zh)2
,

(2)

where e is the electron-charge, ε0 is the vacuum permit-
tivity and εr is the relative permittivity. The envelope
functions are obtained from the equation

(

−
~
2∂zi
2mi

+ Vcon,i(zi)

)

ζi(zi) = Eiζi(zi), (3)

where we assumed an infinite potential well of width
Lw = 10 nm for the confinement potentials Vcon,i(zi).
Since an infinite potential well is assumed, in principle,
an effective QW width has to be used for a direct compar-
ison with a finite potential well in the experiment. How-
ever, for the internal dynamics of the 1s-exciton state,
which is considered here, this detail is of minor impor-
tance and has been ignored in our calculations.
In order to account for disorder due to the spatial fluc-

tuations in the QW width, the confinement potentials
Ve(ρe) and Vh(ρh) are spatially disordered. The vari-
ations in the interface-width w(ρ) are characterized by
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thickness fluctuations (with mean deviation ∆w = 0.19
nm, adjusted to match the inhomogeneous distribution in
the experiment). This thickness fluctuation corresponds
to a disorder of ∼ 1.8 meV in the exciton confinement
potential. The correlation length ξ of the spatial fluc-
tuation of the QW width is defined as 〈w(ρ)w(ρ′)〉 =
α2exp(−|ρ− ρ′|/(2ξ2)), where α is an arbitrary constant
(cf. Ref. 40). Unless otherwise stated, we set the cor-
relation length ξ to 20 nm. The disorder potentials for
electron and hole are both proportional to w(ρ), yielding
Vi(ρ) ∝ w(ρ). The proportionality factor is extracted by
taking the first order contribution of a Taylor expansion
of the sub-band energy Ee or Eh. All calculations are
repeated for different random realizations of the disorder
potential and the resulting spectra are averaged in the
end. Since obtaining Ψ(ρe,ρh) requires the solution of a
four-dimensional partial differential equation, we use the
approximation of factorizing the relative motion of elec-
tron and hole from the center-of-mass (COM) motion
of the exciton: Ψ(ρe,ρh) = ψ(R)φ(r) with the COM co-
ordinate R = (meρe+mhρh)/(me+mh) and the relative
coordinate r = ρh − ρe. First, the Wannier equation for
the relative part of the wavefunction

Eφ(r) =

(

−
~
2∇2

r

2mr

+ Veh(r)

)

φ(r) (4)

is solved numerically using the Petsc42–44 and Slepc45 li-
braries using finite differences for approximating the dif-
ferential operators46. Here, 1/mr = 1/me+1/mh. Since
the important dynamics in the experiment are associated
with the 1s-exciton state and the other states are ener-
getically well separated, only 1s-like exciton solutions are
included in the theoretical framework. After this, the
COM wavefunction ψ(R) of the 1s-exciton is obtained
using the Schrödinger equation of the COM wavefunc-
tion

Eψ(R) =

(

−
~
2∇2

R

2M
+ Vdis(R)

)

ψ(R), (5)

with M = me +mh and the effective disorder potential
for the 1s-state

Vdis(R) =

∫

dr|φ(r)|21s

[

Ve

(

R−
mh

M
r

)

+Vh

(

R+
me

M
r

)]

.

(6)

We calculated the 2500 lowest COM eigenstates, for a
409.6 nm by 409.6 nm computational domain, which in-
cludes the bright-exciton COM states as well as a suf-
ficient number of dark states for describing a realistic
exciton-phonon interaction. Properties obtained from
the microscopic calculation, such as the homogeneous
broadening of individual states, differ in each random
realization. Since the spectroscopic signal depends on
these parameters, we average it over multiple realizations
(usually 40-50). Note that the excitation spot in the ex-
periment is ∼ 50 µm, which is significantly larger than
the computational area.
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FIG. 1. (Color Online) Calculated 1s exciton properties as
a function of exciton energy. The exciton density of states
(DOS) is plotted as a bar graph. The absorption spectrum
(Abs), oscillator strength (OS) and exciton wavefunction size
(Size) are also plotted. The approximate mobility-edge energy
is indicated by the dashed line.

Figure 1 shows the results of the calculation of the
excitonic properties after averaging over random realiza-
tions of the disorder potential. Since the band-gap energy
does not enter the calculation of the exciton states, the
exciton energy in Fig. 1(a), and in the successive plots,
includes an offset to match the experimental data. The
size of the wavefunction ψ is defined as

√

〈(R − 〈R〉)2〉
with some adjustments for the periodic computational
area. The maximum wavefunction size is limited by the
chosen lateral dimension of the QW, and increases with
exciton energy as the exciton transitions from being lo-
calized to delocalized at the mobility edge (dashed line
in Fig. 1(a)), which is estimated from the experimen-
tal data presented later. The oscillator strength (OS)
decreases with increase in exciton energy, which means
that the delocalized excitons are optically “darker” com-
pared to the localized excitons. At the same time, the
density of states (DOS) of the delocalized excitons is sig-
nificantly higher than that of the localized excitons. As a
result, the exciton absorption spectrum, which is roughly
equivalent to the product of the OS and DOS, peaks near
the mobility edge.

B. Scattering processes and equation of motion for

the density matrix

The excitonic states relevant to the calculations are
shown in Fig 2. The energy-level scheme shows the unex-
cited (ground) state g, the one-exciton states x and two-
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FIG. 2. Energy level of 1s-exciton states showing the ground
(g), one-exciton (x1 and x2), and two-exciton (f) states. One-
exciton states x1 and x2 have energies of E1 and E2, respec-
tively. The two-exciton state f has energy of E1+E2+∆x1,x2

,
where ∆x1,x2

is the interaction energy between exctions x1

and x2.

exciton states f , which may be excited by the absorption
of two photons. This two-exciton state comprises two
independent excitons with different COM states. For in-
stance, Fig. 2 shows one-exciton states x1 and x2 form-
ing the two-exciton state f . The creation of a second
exciton at the same disorder position wavefunction (a
bound biexciton) is prevented by the co-circular excita-
tion of the sample in the experiment47, and has been
ignored in the theory. The energy of the single exciton
state x is Ex. In general, the energy of a two exciton
state f that is composed of single excitons x1 and x2
is Ef12 = Ex1

+ Ex2
+ ∆x1,x2

, with an exciton-exciton
interaction strength of ∆x1,x2

(this may result from the
first-order perturbation theory with respect to the two
exciton states). As will be discussed later, from the ex-
perimental results we conclude that ∆x1,x2

is negligible
for the photon-echo experiment and we can safely assume
∆x1,x2

≈ 0.48

In order to model the evolution of excitonic population
distribution we need to consider the dynamics of the var-
ious density matrix elements, which describe the inho-
mogeneous exciton system, without the influence of the
exciton-light interaction. These dynamics are driven by
two types of scattering processes: exciton-phonon scat-
tering and radiative exciton recombination. The exciton-
phonon scattering rate γx→x′ describes the process where
an exciton in COM state x is converted to another ex-
citon state x′ through the emission or absorption of a
phonon. The radiative rate rx, on the other hand, de-
scribes the electron hole recombination processes accom-
panied by the emission of a photon. Both the scatter-
ing rates are calculated using the formulas listed in Ap-
pendix A. Figures 3(a) and (b) shows the calculated
decay rates for sample temperature of 5 and 20 K, re-
spectively. The total exciton decay rate out of state x
due to exciton-phonon scattering is calculated through
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FIG. 3. (Color online) Calculated exciton decay rates as a
function of the exciton energy for sample temperatures of
(a) 5 K and (b) 20 K. The plot shows the total decay rate
(black squares) and its radiative (blue triangles) and phonon-
scattering (red circles) components. The decay rates for ex-
citon states from 10 random realizations are shown.

the summation
∑

x′ 6=x γx→x′ . We find that the radiative
decay rate gets smaller with an increase in exciton energy,
which is expected from the calculation of the oscillator
strength shown in Fig. 1. The contribution due to the
exciton-phonon processes, on the other hand, increases
with increase in energy and eventually saturates around
1546 meV. A consequence of this behavior is that the
radiative processes have a significant contribution to the
exciton decay rate only for the localized states. Further-
more, since the radiative decay of a particular state is
almost independent of the temperature, the relative con-
tribution of radiative decay is diminished with increasing
temperature because the exciton-phonon scattering rate
increases due to an increase in the phonon population.
These results are similar to that shown in Fig. 4.5 in
Ref. 41.

Based on these scattering rates, we can define dephas-
ing rates for the single- and double-exciton states as

γx = 1
2

(

rx +
∑

x′ 6=x γx→x′

)

and γf = γx1
+ γx2

, respec-

tively, which are used to calculate the evolution of vari-
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ous density matrix elements. The ground to one-exciton
coherences obey the dynamics:

∂tρxg = −ı [Ex − Eg − ıγx] ρxg. (7)

This dynamics is similar to the two-exciton to ground
state coherence for f consisting of x1 and x2:

∂tρfg = −ı [Ef − Eg − ıγf ] ρfg. (8)

The dynamics of exciton coherences ρxx′ (with x 6= x′)
are given by

∂tρxx′ = −ı [Ex − Ex′ − ı(γx + γx′)] ρxx′ . (9)

The decay of exciton population ρxx in state x follows
the rate equation

∂tρxx = −2γxρxx +
∑

x̃

γx̃→xρx̃x̃. (10)

The rate of change of population in the ground state ρgg
is related to the radiative decay of the excited states as

∂tρgg =
∑

x

rxρxx. (11)

We define a relaxation tensor Γxx̃ and reformulate the
above equations, that describe the population evolutions,
in the form

∂tρxx =
∑

x̃

Γxx̃ρx̃x̃, (12)

and define the Green’s function Gxx′(t1, t2) with
Gxx′(t1, t1) = δxx′ , where δ is the Kronecker delta and

∂tGxx′(t1, t) =
∑

x̃

Γx′x̃Gxx̃(t1, t). (13)

The Green’s function Gxx′(t, t1) is basically the probabil-
ity that an exciton in state x at time t1 ends up in state
x′ at time t. The Green’s function will be used later for
calculating the contributions of the different Liouville di-
agrams (see Appendix B). The Green’s function plots
presented later can be related to Gxx′(t1, t2) through the
relation

G(Ef , Ei = ωxg;T ) =
∑

x′

Gxx′(T )δ(Ef = ωx′g), (14)

where Ei and Ef are the initial and final exciton energy,
respectively.

III. TWO-DIMENSIONAL COHERENT

SPECTROSCOPY

To study spectral diffusion dynamics of excitons in
QWs without the need to invoke the SRA, we used op-
tical 2DCS. In this section we describe the experimental
procedure and the simulation technique.

A. Experiment

2DCS is similar to a three-pulse FWM experiment with
the addition of phase-stabilized delay between the excita-
tion pulses and detection of the signal field49. Figure 4(a)
depicts the actively phase-stabilized excitation pulses A,
B, and C incident on the sample with wavevectors kA,
kB, and kC , respectively. The signal is detected along
the phase-matched direction kS = −kA + kB + kC . The
excitation scheme in Fig. 4(b) shows excitation pulses
A, B, and C separated by time intervals τ and T , re-
spectively. This pulse sequence is the rephasing time-
ordering with the so-called conjugated pulse A being the
first pulse that is incident on the sample. As a result,
the FWM signal is emitted during time t as a photon
echo due to inhomogeneous broadening. This signal is
heterodyned with a reference pulse and detected through
spectral interferometry, which allows us to measure both
the amplitude and phase of the FWM signal. In a typi-
cal 2DCS experiment, the spectrally-resolved FWM sig-
nal field is recorded as delay τ is scanned, while keeping
delay T constant. A 2D spectrum is obtained by taking a
numerical Fourier transform of the signal with respect to
delay τ . 2D spectra are recorded for different values of T ,
during which the exciton population can evolve incoher-
ently. The fluctuation of exciton energies during this in-
coherent evolution results in spectral diffusion. As will be
discussed later, dynamic evolution of the peak lineshape
in the 2D spectrum informs on the changes in the popu-
lation distribution of excitons. This experiment is iden-
tical to that used to study incoherent coupling between
spectrally-separated excitonic states in a QW and quan-
tum dots50. All the excitation pulses and the radiated
signal are co-circularly polarized so that the bound biex-
citon state is not excited47. The experiments were per-
formed on a four-period 10-nm-wide GaAs QW sample
with 10-nm-wide Al0.3Ga0.7As barriers. Only the heavy
hole (HH) exciton resonance was excited with ∼ 150 fs
long pulses. The sample was held in a sample-in-vapor
Helium flow cryostat. The experiment was repeated for
sample temperatures between 5 – 20 K.

B. Simulation

We use a sum-over-states treatment of the spectro-
scopic signals analogous to Ref. 51 to calculate 2D spec-
tra for comparison with experiments. The relevant states
are the (unexcited) ground g, exciton x and two-exciton
states f , as described in Sec. II B. The FWM signal can
be separated into the Liouville diagrams shown in Fig.
5. Similar to Ref. 51, we have contributions from the
pathways which are referred to as excited state emission
(ESE), excited state absorption (ESA), and ground state
bleaching (GSB). Both ESE and ESA can be separated
into pathways that are coherent and incoherent during
delay T 51. In the case of incoherent pathways, the popu-
lation relaxation is included using the Green’s functions
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FIG. 4. (a) Schematic of the experimental setup. Pulses A,
B, and C are incident on the sample with wavevectors kA,
kB, and kC , respectively. The FWM signal is emitted in the
phase-matched direction kS . (b) Pulse timing for our 2DCS
experiment. Excitation pulses A, B and C are separated by
delays τ and T in the rephasing time-ordering. The signal is
emitted during time t as a photon echo.

of the rate equations. However, in QWs the radiative de-
cay is on a similar time scale as the relaxation induced by
exciton-phonon scattering. Therefore, the entire exciton
population in the sample just after the second pulse is
incident does not stay in the population state when the
third pulse is incident on the sample. Consequently, we
have to include the process where the exciton population
radiatively decays to the ground state during delay T .
This process is described by the GSB (b) diagram in Fig.
5.
The overall signal SkI

(Ω3, T,Ω1) is obtained by sum-
ming over all the contributions from the pathways shown
in Fig. 5. The contributions of the individual path-
ways are listed in Appendix B. The excitation and emis-
sion frequency variables Ω1, Ω3 are obtained by taking a
Fourier transform of the signal along the time delays τ
and t, respectively.

IV. RESULTS AND DISCUSSION

Having discussed the experimental and theoretical
tools that we have used in this work, we will present
our findings in this section.

A. 2D Spectra

We begin by discussing the spectral diffusion of exci-
tons, as seen in 2D spectra. Figures 6 shows the measured
absolute-value 2D spectra with T ranging from 0.2−30 ps
for a sample temperature of 5 K. The excitation energy
is negative to indicate that the phase evolution during
delay τ is opposite to that during t for the rephasing
time-ordering. The peak is elongated along the dashed

diagonal line due to inhomogeneous broadening of the
HH 1s exciton resonance due to the disordered confine-
ment potential. The absence of off-diagonal features in-
dicates that the contribution from a doubly-excited state,
formed due to interactions between two excitons in dif-
ferent COM states, can be neglected (∆x1,x2

≈ 0). The
decay of the total signal strength due to population re-
laxation is accompanied by a change in the peak shape as
T increases. The peak shape for a delay T tell us about
the population distribution of the excitons. Thus the
change in the peak shape reflects evolution in the pop-
ulation distribution due to spectral diffusion caused by
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FIG. 5. The Liouville pathways that contribute to the photon-
echo signal including the coherent and incoherent excited
state emission (ESE), excited state absorption (ESA) and
ground state bleach (GSB) pathways. kA, kB and kC are
the wavevectors of the incident pulses; kS is the wavevector
of the emitted photon-echo signal.
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exciton-phonon scattering between the different localized
and delocalized 1s exciton states. As delay T increases,
signal appears below the diagonal in the circled region
in Fig. 6(d) due to a preferential relaxation of excitons
from the high-energy, more delocalized states to the low-
energy, more localized states. Energy conservation re-
quires that this dynamic localization is accompanied by
stimulated or spontaneous emission of acoustic phonons.
This data shows that the dynamic localization occurs
over a timescale longer than 10 ps, which is consistent
with the time scale of exciton-phonon induced decay of
delocalized exciton states close to the mobility edge (see
Fig. 3(a)). The influence of processes, which increase the
exciton energy due to absorption of phonons, is weaker
due to the small phonon population at this temperature
(c.f. Eqn. (A2)). The SRA, which assumes equal prob-
ability of increase and decrease in exciton energy, is not
valid in this case. We emphasize that it is not possible to
observe the timescale associated with this dynamic local-
ization in either frequency-domain35 or time-domain25,26

FWM experiments that were previously used to study
spectral diffusion in heterogeneous systems.

The excitation energy where the circled feature ap-
pears in Fig. 6(d) provides a clear indication of the en-
ergy at which the mobility edge appears, which is indi-
cated in Fig. 1.

The simulated spectra shown in Fig. 7 reproduce
the experimental findings qualitatively. We note that
all the parameters for calculation of wavefunctions, mi-
crosocopic coupling elements, and rates used in these
simulations are consistent with previously published
studies40,41,52.

In the experimental and simulated data shown in Figs.
6 and 7, respectively, the different behavior of localized
and delocalized excitons is apparent. However, to further
highlight this distinction, we show in Fig. 8 two horizon-
tal slices taken from the 2D spectra shown in Figs. 6
and 7; the excitation energies at which these slices have
been taken are indicated in Figs. 6(a) and 7(a) by the
solid and dashed horizontal lines. The spectral diffusion
of localized and delocalized is indicated by the change
in the lineshape of the low- and high-excitation-energy
slices with increasing delay T . The evolutions of the lo-
calized and delocalized excitons, as shown in Fig. 8, are
distinctly different – while the slice for localized exciton
shows a narrow feature until 30 ps, the narrow feature
is replaced by a broad peak ∼ 20 ps for the delocalized-
exciton slice. This behavior can be seen as a consequence
of the phonon bottleneck of the localized states, which
is visible as the decreased lifetime decay due to exciton-
phonon scattering of the localized states compared to the
delocalized states (cf. Fig 3(a)).

Since exciton-phonon interactions are critical to spec-
tral diffusion of excitons, we repeated the experiments at
different temperatures. Figure 9 shows the 2D spectra
measured for sample temperature of 20 K and the same
values of delay T as shown for 5 K in Fig. 6. We note that
although the peak is still elongated along the diagonal di-
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0

1543 1544 1545 1546

0.05 0.1 0.15

0 0.1

1544 1545 1546

0

-1546

-1545

-1544

-1543

FIG. 6. (Color Online) (a) - (d) Experimental 2D spectra
for T = 0.2, 10, 20, and 30 ps, respectively, with the sample
at a temperature of 5 K. All the spectra are normalized by
the maximum of the peak of the spectrum for T = 0.2 ps.
The horizontal lines in (a) indicate excitation energies for the
slices shown in Fig. 8. Note the relative increase in the signal
within the circled region in (d).

rection, compared to the peak in Fig. 6(a), it is broader
in the perpendicular direction due to increased dephas-
ing arising from exciton-phonon scattering53. We find
that the peak in this case is almost equally broadened
for all excitation frequencies with increasing delay T ,
i.e. in addition to the relaxation of high-energy excitons
to lower energies, the opposite process now is roughly
equally probable due to an increased phonon population.
The transition in spectral diffusion behavior is apparent
at 20 K because the thermal energy is roughly equiva-
lent to the energy needed to overcome the localization
energy of ∼ 1.8 meV, that we estimate for these QWs.
The increase in exciton-phonon scattering for the exciton
states, including the localized ones, is also reflected in the
increased exciton-phonon decay rates in Fig. 3(b). This
behavior is almost in agreement with the SRA, and is re-
produced by the simulated spectra in Fig. 10, although
the validity of the second-order Born-Markov exciton-
phonon scattering is reduced at 20 K due to the increased
importance of multiphonon processes, which are not in-
cluded in our theory.

The transition to the SRA is also supported by the
low and high excitation-energy slices shown in Fig. 11 –
both high- and low-excitation-energy slices become vir-
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FIG. 7. (Color Online) (a) - (d) Simulated 2D spectra for
T = 0.2, 10, 20, and 30 ps, respectively, with the sample at
a temperature of 5 K. All the spectra are normalized by the
maximum of the peak of the spectrum for T = 0.2 ps. The
horizontal lines in (a) indicate excitation energies for the slices
shown in Fig. 8.

tually identical by T = 20 ps in the experimental data.
However, the difference between the two slices, especially
those taken from experimental spectra, for shorter wait-
times suggests that even for this temperature, the low-
energy excitons are somewhat localized in the sense that,
compared to higher-energy excitons, they need more time
to scatter to other states. Nonetheless, the phonon pop-
ulation in the bath is high enough that by 20 ps the final
energy distribution of the exciton population is nearly
independent of the initial energy at which excitons are
created.
The gradual transition from dynamic localization at

low sample temperature to the SRA at higher tempera-
tures is highlighted by the 2D spectra measured for an
intermediate sample temperature of 10 K, which are dis-
cussed in Appendix C.

B. Green’s Function

The change in exciton energy during spectral diffusion,
as interpreted from the 2D spectra shown previously, is
weighted by the transition dipole moments and broad-
ened due to the homogeneous linewidths. The influence
of these effects on spectral diffusion is not present in the
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1543 1544 1545 1546 1543 1544 1545 1546
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 (
a.

u
.)

Emission energy (meV)

(c) (d)

(a) (b)

T = 0.2 ps T = 10 ps

T = 20 ps T = 30 ps

x 1.5

x 2 x 2

Localized

Delocalized

FIG. 8. (Color Online) (a) - (d) Horizontal slices from exper-
imental and simulated 2D spectra for T = 0.2, 10, 20, and
30 ps, respectively, with the sample at a temperature of 5 K.
The slices are for the excitation energies indicated in Figs.
6(a) and 7(a). The lower excitation energy slices are on the
top and the higher excitation energy slices are on the bottom.
The experimental and simulated slices are shown as solid and
dashed lines, respectively. The simulated slices are scaled by
the number indicated in the top right corner of the figures.

simulated Green’s functions, which we discuss next.
Figure 12 illustrates the evolution of the 2D

probability-map of the exciton effectively going from an
initial state to any state at a final energy due to spectral
diffusion at 5 K, with increasing delay T . The initial and
final energies are perfectly correlated for T = 0.2 ps, as
shown in Fig. 12(a). By T = 30 ps, however, inelastic
exciton-phonon scattering has redistributed the exciton
population to other energies as shown in Fig. 12(d). In
particular, we find that the high-energy excitons prefer-
entially relax to lower energy as indicated by the broad
vertical feature around final energy of 1544.8 meV in
Figs. 12(c-d). The strongly localized excitons below this
energy have significant correlation between their initial
and final energies, even for T = 30 ps due to the phonon
bottleneck effect. Thus, spectral diffusion predominantly
results in the dynamic localization of originally delocal-
ized excitons. The scattering of excitons between local-
ized sites54 is relatively a much weaker effect at low tem-
perature, as indicated by the exciton-phonon decay rates
in Fig. 3(a).
We also highlight the change in population distribu-

tion at 20 K through the Green’s function simulations
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0 0.5 1 0 0.05 0.1 0.15 0.2

0 0.05 0.1 0 0.02

FIG. 9. (Color Online) (a) - (d) Experimental 2D spectra
for T = 0.2, 10, 20, and 30 ps, respectively, with the sample
at a temperature of 20 K. All the spectra are normalized by
the maximum of the peak of the spectrum for T = 0.2 ps.
The horizontal lines in (a) indicate excitation energies for the
slices shown in Fig. 11.

shown in Fig. 13. As expected from the measured 2D
spectrum in Fig. 9(a), we find that the initial and final
energies are well-correlated for T = 0.2 ps in Fig. 13(a),
which is similar to the behavior for sample temperature
of 5 K shown in Fig. 12(a). However, phonon with higher
energy are thermally activated at 20 K and more scat-
tering channels are opened. Consequently the initial and
final energies are not correlated even for the low-energy
(more localized) states for longer delays, as shown in Fig.
13(b-d).

C. Dynamic Localization

Now we will take a closer look at the process of dy-
namic localization for different sample temperatures and
time delays. Using the calculated Green’s function, we
can define a measure for the dynamic localization of ini-
tially delocalized excitons to a particular final state as:

P (Ef ;T ) =
1

DOS(Ef )

Emax
∑

Ei=Em

G(Ef , Ei;T )×DOS(Ei),

(15)

0 0.5 1 0 0.02

0 0.01 0.02 0.03 0.01 0.02 0.03

FIG. 10. (Color Online) (a) - (d) Simulated 2D spectra for
T = 0.2, 10, 20, and 30 ps, respectively, with the sample at
a temperature of 20 K. All the spectra are normalized by the
maximum of the peak of the spectrum for T = 0.2 ps. The
horizontal lines in (a) indicate excitation energies for the slices
shown in Fig. 11.

where Ei and Ef are the initial and final exciton en-
ergies, respectively, DOS(Ej) =

∑

x δ(Ex − Ej) is the
density of states, Em is the energy of the mobility edge,
Emax is the maximum energy in the simulations, and G
is Green’s function. Here the product in the summation
gives a measure of the relaxation of a delocalized exciton
to a final localized state. This value is then weighted by
the density of states of the final exciton energy to get the
relative likelihood of the localization process independent
of the variation of the density of states with the exciton
energy. The density of states and the energy of the mo-
bility edge is the same as those shown in Fig. 1. We can
also define the degree of localization of a given exciton
state as:

L(E) =
Rmax

R(E)
, (16)

where E is the energy of the state, Rmax is the
simulation-area-limited maximum wavefunction size, and
R(E) is the size of the wavefunction of state with energy
E, as shown in Fig. 1.
Using the parameters defined above, we can look at

the dependence of the likelihood of dynamic localization
of initially delocalized excitons to a particular state on
the degree of localization of the final state. Figure 14(a)
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FIG. 11. (Color Online) (a) - (d) Horizontal slices from ex-
perimental and simulated 2D spectra for T = 0.2, 10, 20, and
30 ps, respectively, with the sample at a temperature of 20
K. The slices are for the excitation energies indicated in Figs.
9(a) and 10(a). The lower excitation energy slices are on the
top and the higher excitation energy slices are on the bottom.
The experimental and simulated slices are shown as solid and
dashed lines, respectively. The simulated slices are scaled by
the number indicated in the top right corner of the figures.

shows the above dependence at different values of delay T
for sample temperature of 5 K. We find that the dynamic
localization is significantly smaller for the first 10 ps than
at later delays. These values are much higher for T = 20
and 30 ps. We also find that the likelihood of ending up in
a particular state approximately scales linearly with the
degree of localization of the final state. This behavior is a
consequence of multiple scattering events during spectral
diffusion. Thus, as the wait time increases, the excitons
relax to a more localized state. This exciton relaxation
is driven by the thermal distribution of phonons.
Similar data for sample temperature of 20 K, presented

in Fig. 14(b), however, shows a contrasting trend – the
dynamic localization does not increase significantly with
increasing wait times. This observation follows from the
observation of spectral diffusion consistent with the SRA
for temperature of 20 K.
The quantitative data on dynamic localization pre-

sented in this section is consistent with the qualitative
interpretation of measured 2D spectra discussed earlier.
Additionally, it highlights the fact that the degree of lo-
calization increases with the increase in the localization
of the final state.

0 0.2 0.6 0 0.1 0.2 0.3

0 0.05 0.1 0.15 0 0.05 0.1
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 (
m
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)

gy (meV)

FIG. 12. (Color Online) (a - d) Simulated Green’s function
showing the probability distribution of change in the exciton
energy for T = 0.2, 10, 20, 30 ps, respectively, at a sample
temperature of 5 K after averaging for different realizations.
Note that the vertical energy axes in these plots are oriented
opposite to those in 2D spectra.

D. Disorder Correlation Length

In this work so far, we have used a disorder correlation
length ξ = 20 nm in our simulations, which provides a
good match with the experimental results. However, the
calculated spectral diffusion behavior is strongly depen-
dent on this value. Presently, we will discuss the effect
of the correlation length on the spectral diffusion charac-
teristics.
The effect of the disorder correlation length on spec-

tral diffusion can be intuitively understood through its
effect on the excitonic properties shown in Figs. 15(a-
b) for ξ = 10 and 20 nm, respectively. On comparing
the two plots, we find that a decreased correlation length
reduces the number of localized states. Furthermore, a
faster decrease in the oscillator strength with increasing
exciton energy is observed for smaller correlation length.
As mentioned earlier, the absorption spectrum can be
approximately treated as the product of the oscillator
strength and the density of states. As a consequence,
the inhomogeneous broadening of the exciton resonance
increases with the disorder correlation length. This be-
havior is reflected in the increase in the width of the
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FIG. 13. (Color Online) (a - d) Simulated Green’s function
showing the probability distribution of change in the exciton
energy for T = 0.2, 10, 20, 30 ps, respectively, at a sample
temperature of 20 K after averaging for different realizations.
Note that the vertical energy axes in these plots are oriented
opposite to those in 2D spectra.

absorption spectrum with an increase in the disorder cor-
relation length, as shown in Fig. 15.
Figures 16 and 17 show the simulated 2D spectra using

ξ = 10 and 30 nm, respectively, for a sample tempera-
ture of 5 K. For a comparison with the results shown
previously, we show the 2D spectra for the same waiting
times. Due to an increase in the inhomogeneous broad-
ening with an increase in the disorder correlation length,
the 2D spectrum for T = 0.2 ps is significantly more
elongated along the diagonal direction for ξ = 30 nm
[Fig. 17(a)] than for ξ = 10 nm [Fig. 16(a)]. The in-
crease in inhomogeneous broadening is also accompanied
by a more obvious signature of dynamic localization of
excitons. However the time scales of the localization pro-
cess do not change considerably since they depend on the
exciton-phonon scattering rates, which are almost inde-
pendent of the correlation length.

V. CONCLUSION

In summary, we have measured the spectral diffusion of
excitons in QWs, over the entire inhomogeneous distribu-
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FIG. 14. (Color online) Degree of dynamic localization to a
particular final state as a function of the degree of localization
of the final state for T = 0.2, 10, 20, and 30 ps, with the
sample at a temperature of (a) 5 K and (b) 20 K.
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FIG. 15. (Color online) Calculated oscillator strength (OS),
density of states (DOS) and absorption spectrum (Abs) of the
1S exciton resonance for disorder correlation lengths of (a) 10
nm and (b) 30 nm. The sample temperature was set at 5 K.
The energy axis is shifted by the same amount as in Fig. 1.
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FIG. 16. (Color online) (a) - (d) Simulated 2D spectra for T

= 0.2, 10, 20, and 30 ps, respectively, with the sample at a
temperature of 5 K using disorder correlation length ξ = 10
nm. All the spectra are normalized by the maximum of the
peak of the spectrum for T = 0.2 ps.

tion, using 2DCS for sample temperatures in the range 5
– 20 K. We find that the dynamic localization of excitons
through emission of phonons is the dominant process at
5 K, and occurs over timescales of tens of picoseconds,
which is illustrated by the simulated Green’s function. At
higher sample temperatures, redistribution of the exciton
energy occurs uniformly to higher and lower energies due
to an increase in the population of phonons. The simu-
lated Green’s function also allowed us to show that the
degree of dynamic localization to a final state increases
with an increase in its degree of localization. Finally, we
also showed that the dynamic localization is more impor-
tant for samples with higher disorder correlation length.

These results suggest that qualitatively similar exciton
dynamics can be expected in other disordered semicon-
ductors such as layered TMDs and perovskites. Interest-
ingly, the exciton diffusion coefficient in atomically thin
TMDs, which exhibit significantly larger inhomogeneous
broadening and an order-of-magnitude larger many-body
interactions55,56, is comparable to that for excitons in a
GaAs QW57,58 despite the fundamental difference in the
nature of exciton localization15. 2DCS experiments may
shed light on the limitations of exciton diffusion in these
novel materials.

0 0.5 1 0.05 0.1 0.15 0.2

0 0.02 0.06 0 0.01 0.02 0.03

FIG. 17. (Color online) (a) - (d) Simulated 2D spectra for T

= 0.2, 10, 20, and 30 ps, respectively, with the sample at a
temperature of 5 K using disorder correlation length ξ = 30
nm. All the spectra are normalized by the maximum of the
peak of the spectrum for T = 0.2 ps.
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Appendix A: Scattering rates

1. Radiative decay

In order to describe the dynamics of the density matrix
elements, the scattering rates for the various excitation
decay processes were calculated. One of these processes is
the radiative recombination of the exciton to the ground
state. We use the formulas from Ref. 41 for the limit of
well-localized exciton states to obtain the radiative decay
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rate rx for the exciton state x

rx =
4

3~εB
|dcv|

2|φ21s(0)|
2ω

3
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n3

∣

∣

∣
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∫

dRψx(R)
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∣
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2 ∣
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∣

∣

∫

dzζ∗e (z)ζh(z)

∣

∣

∣

∣

2

,

(A1)

with dcv being the dipole moment of the semiconductor
intra-band transitions, the transition frequency of the ex-
citon ωx and the dielectric background constant εB and
the material refractive index n. For the more delocalized
exciton states this formula overestimates the radiative
decay slightly41. Since a qualitative agreement with the
experiment is sufficient, this systematic error is not rele-
vant for this work.

2. Exciton-Phonon scattering

The second important scattering process is the exciton-
phonon scattering within the manifold of different disor-
der states of the 1s-exciton. We use the rates derived in
Ref. 59, which uses the fact that the dominant quasi-
momentum transfer is in the z direction. For the scat-
tering of exciton from state x to x′, the applied formula
has the form

γx→x′ =
n(Ex′ − Ex)(Ex′ − Ex)

~2v3sρ
|DcKe(qz)

−DvKh(qz)|
2

∫

dR|Ψx(R)|2|Ψx′(R)|2,

(A2)

with qz = |Ex′ − Ex|/vs, Ki(qz) =
∫

dzζ∗i (z)ζi(z)e
ıqzz,

the speed of sound vs = 0.00370 nm/fs52, deformation
potentials Dv = −8.6 eV and Dc = 8.7 eV for the va-
lence and conduction bands, respectively,52 and density
of GaAs ρ = 5370 kg/m3.

Appendix B: Pathway contributions

We will now present the contribution of individual
pathways shown in Fig. 5 to the FWM signal.
The first coherent ESE contribution is

SkS ,ESE(a)(Ω3, T,Ω1) =

−
∑

xx′

µ∗
x′g ·E

∗
sµxg · E3µx′g ·E2µ

∗
xg ·E

∗
1 ×

e−ıΘx′xT

~3(Ω3 −Θx′g)(Ω1 −Θgx)
(B1)

with Θij = Ei −Ej − ı(γi + γj) and the dipole moments
µxg. The dipole moments are proportional to the inte-
gral

∫

dRψn(R) for the corresponding COM wavefunc-
tion of the one-exciton states. Since we consider only the
spectral dynamics within a very small spectral range, we
neglected the influence of the pulse bandwidth.

The second ESE contribution features an incoherent
population relaxation during delay T

SkS ,ESE(b)(Ω3, T,Ω1) =

−
∑

xx′

µ∗
x′g ·E

∗
sµx′g · E3µxg ·E2µ

∗
xg ·E

∗
1 ×

Gx′x(T )

~3(Ω3 −Θx′g)(Ω1 −Θgx)
, (B2)

which is incorporated through the relaxation Green’s
function Gx′x(T ).
Similar coherent and incoherent contributions are also

visible in the ESA diagrams:

SkS ,ESA(a)(Ω3, T,Ω1) =
∑

fxx′

µ∗
fx′ ·E∗

sµfx′ ·E3µx′g · E2µ
∗
xg ·E

∗
1 ×

e−ıΘx′xT

~3(Ω3 −Θfx)(Ω1 −Θgx)
(B3)

SkS ,ESA(b)(Ω3, T,Ω1) =
∑

fxx′

µ∗
fx · E∗

sµfx′ · E3µxg · E2µ
∗
xg ·E

∗
1 ×

Gx′x(T )

~3(Ω3 −Θfx′)(Ω1 −Θgx)
. (B4)

The dipole moment of the one-exciton to two-exciton
states are related to µgx. For a two-exciton state f com-
posed from two single excitons x1, x2, µfx = δxx1

µx2g +
δxx2

µx1g within our approximations for non- or weakly
interacting excitons.
The standard GSB diagram has the following form:

SkS ,GSB(a)(Ω3, T,Ω1) =

−
∑

xx′

µ∗
x′g ·E

∗
sµx′g · E3µxg ·E2µ

∗
xg ·E

∗
1 ×

1

~3(Ω3 −Θx′g)(Ω1 −Θgx)
, (B5)

Besides this contribution, we also have a GSB contribu-
tion for the case the when the one-exciton population has
decayed during delay T

SkS ,GSB(b)(Ω3, T,Ω1) =
∑

xx′

µ∗
x′g · E

∗
sµx′g · E3µxg · E2µ

∗
xg ·E

∗
1 ×

1−
∑

x̃Gxx̃(τ)

~3(Ω3 −Θx′g)(Ω1 −Θgx)
, (B6)

where 1−
∑

x̃Gxx̃(τ) represents the probability, that the
system is decayed to the ground state after time delay T
starting from single exciton state x.

Appendix C: Data for intermediate temperature

We have shown that the SRA is clearly not valid for
the sample at a temperature of 5 K. However, at the
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FIG. 18. (Color online) (a) - (d) Experimental 2D spectra for
T = 0.2, 10, 20, and 30 ps, respectively, with the sample at
a temperature of 10 K. All the spectra are normalized by the
maximum of the peak of the spectrum for T = 0.2 ps.

temperature of 20 K we find that spectral diffusion of
excitons proceeds roughly as expected from the SRA. In
order to highlight this transition, we show the 2D spectra
for sample temperature of 10 K in Fig. 18. As expected,
we find that the spectral diffusion characteristics for 10 K
are intermediate between those observed for 5 and 20 K.
Specifically, while the whole spectrum gets broader with
increasing T , the peak shape is distinctly asymmetric for
T = 30 ps [Fig. 18(d)]. Once again the simulated spectra
qualitatively reproduces this behavior, as shown in Fig.
19.
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0 0.01 0.02 0.03 0 0.01 0.02 0.03

FIG. 19. (Color online) (a) - (d) Simulated 2D spectra for T

= 0.2, 10, 20, and 30 ps, respectively, with the sample at a
temperature of 10 K. All the spectra are normalized by the
maximum of the peak of the spectrum for T = 0.2 ps.
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