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We study the time evolution of a 1D interacting fermion system described by the Luttinger model
starting from a non-equilibrium state defined by a smooth temperature profile T (x). As a specific
example we consider the case when T (x) is equal to TL (TR) far to the left (right). Using a series
expansion in ε = 2(TR−TL)/(TL+TR), we compute the energy density, the heat current density, and
the fermion two-point correlation function for all times t ≥ 0. For local (delta-function) interaction,
the first two are computed to all orders giving simple exact expressions involving the Schwarzian
derivative of the integral of T (x). For non-local interaction, breaking scale invariance, we compute
the non-equilibrium steady state (NESS) to all orders and the evolution to first order in ε. The heat
current in the NESS is universal even when conformal invariance is broken by the interaction, and its
dependence on TL,R agrees with numerical results for the XXZ spin chain. Moreover, our analytical
formulas predict peaks at short times in the transition region between different temperatures and
show dispersion effects that, even if non-universal, are qualitatively similar to ones observed in
numerical simulations for related models, such as spin chains and interacting lattice fermions.

PACS numbers: 05.30.-d, 05.60.Gg, 71.27.+a, 75.10.Pq

I. INTRODUCTION

Experiments on ultracold atomic gases have led to re-
newed interest in non-equilibrium properties of isolated
1D quantum systems.1–6 This field also has roots in a rich
history of theoretical works studying both classical7–13

and quantum systems14–24 out of equilibrium. One often
studied protocol is to join, at time t = 0, disconnected left
and right parts of an infinite system, where each part is
in thermal equilibrium with temperatures TL and TR, re-
spectively. For t > 0 the system is evolved with a fully
translational invariant Hamiltonian; this produces a heat
current and, for long times, the system tends to a non-
equilibrium steady state (NESS) if TL ≠ TR. This is usu-
ally referred to as the partitioning protocol.

Using the above protocol, exact results for the NESS
were obtained for simple integrable models such as the
XX and XY spin chains using C∗-algebraic methods25–28

and non-equilibrium Green’s functions29 (Keldysh for-
malism). When written in terms of fermions, these mod-
els are all non-interacting: they can be mapped to 1D sys-
tems of spinless lattice fermions with Hamiltonians that
are quadratic in the fermion fields. For general systems of
free lattice fermions, results for the NESS were obtained
using a generalized Landauer-Büttiker formula.18,19

For interacting fermions the partitioning protocol was
successfully used to obtain exact results for systems de-
scribed by conformal field theories (CFTs).30–34 Beyond
CFT there are otherwise few exact results for the NESS,
and even fewer for the evolution, of interacting fermions;
see, e.g., Refs. 35–41. Using the same protocol, the time
evolution and properties of the NESS have been stud-
ied extensively numerically42–44 and by approximate an-
alytical methods45–47 in various models. Recently, effec-

tive hydrodynamic equations for the long-time and large-
distance dynamics for Bethe ansatz-solvable models were
proposed;48,49 see also Refs. 50 and 51. We also mention
recent studies of the heat current and the thermal Drude
weight based on Bethe ansatz,52 density matrix renor-
malization group,53 and hydrodynamics.54–56

Most results for systems of interacting fermions, such
as those mentioned above, rely on approximate methods
or on assumptions, and it is thus interesting to obtain ex-
act results for specific models that can serve as a bench-
mark. In this paper we present some exact results for the
full time evolution (not just the NESS) of a continuum
system of interacting fermions described by the Luttinger
model57–60 on the real line starting, at t = 0, from a non-
equilibrium state defined by a smooth temperature profile
T (x). This is related to but different from the partition-
ing protocol. Specifically, if H(x) is the energy density
operator defining the Hamiltonian, H = ∫ dxH(x), then
the initial state is given by ρ̂ = e−G/Tr e−G with

G = ∫ dxβ(x)H(x), (1)

where β(x) ≡ T (x)−1 = β[1 + εW (x)] for some smooth
function W (x) with β the average inverse temperature
and ε the distance from equilibrium. (We use units such
that h̵ = kB = 1.) We will mainly be concerned with
the case of a step-like profile T (x) equal to TL (TR) far
to the left (right), e.g., W (x) = −(1/2) tanh(x/δ) with
δ > 0, where β and ε are determined by β(∓∞) = T −1

L,R.
The evolution of the system is given by H, and we are
interested in non-equilibrium expectation values (ε ≠ 0) of
local observables O,

⟨O(t)⟩ ≡ Tr ρ̂O(t), (2)
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where O(t) = eiHtOe−iHt. If ε = 0, then ⟨O(t)⟩ = ⟨O⟩β
is an equilibrium expectation value with temperature
T = β−1. For the Luttinger model, such equilibrium
properties are well-known since a long time from the cel-
ebrated exact solution in Ref. 60 using bosonization; see
also, e.g., Refs. 61–68.

We use a series expansion in ε to compute the time
evolution and the NESS for the Luttinger model both
in the case of local (delta-function) and non-local inter-
actions starting from a non-equilibrium state. We show
that the NESS is factorized in terms of the eigenmodes
of the interacting Hamiltonian (plasmons)60 and not in
terms of the fermions; the presence of interaction is mani-
fested by interaction-dependent exponents in the fermion
two-point correlation function. In contrast, we find that
the final heat current is universal even for an interac-
tion that breaks conformal invariance, and the form of its
dependence on TL,R confirms previous numerical results
for interacting lattice fermion models, such as the XXZ
spin chain studied in Ref. 42. For non-interacting lattice
models such results for the temperature dependence were
obtained analytically.18,19,25,29

For local interaction, our series for the energy and heat
current densities can be summed into exact formulas for
the time evolution. These results contain the Schwarzian
derivative69 of the integral of T (x), which is very sug-
gestive in view of the conformal invariance in the local
case. Its presence produces peaks in the energy and heat
current densities at zero time in the transition region
between different temperatures. These resemble what
is found numerically in related models,42,45 even if the
shapes of such peaks clearly are non-universal.

For non-local interaction, breaking conformal invari-
ance, we obtain analytical results for the NESS to all
orders and for the time evolution to first order in ε. In
this case, dispersive effects appear in the evolution, which
look qualitatively similar to those seen numerically in lat-
tice models. (Such dispersive effects are absent for local
interactions.)

The following two methods are used to compute non-
equilibrium expectation values: Method 1 based on the
Dyson series and Method 2 using one-particle operators;
see Sec. V A and Sec. V B, respectively. Method 1 allows
one to compute non-equilibrium results to first order in ε
from equilibrium ones, and it can be used even for non-
exactly solvable models. Method 2 allows one to compute
results for the Luttinger model to all orders in ε, and it is
in general applicable only to models that are quasi-free.

We consider the Luttinger model given by

H =∑
r
∫ dx ∶ψ+r (x) (−irvF∂x)ψ

−

r (x)∶ (3)

+λ∑
r,r′
∫ dxdy V (x − y) ∶ψ+r (x)ψ

−

r (x)∶ ∶ψ
+

r′(y)ψ
−

r′(y)∶

with fermion fields ψ−r (x) and ψ+r (x) = ψ
−

r (x)
†, where r =

+(−) denotes right(left)-moving fermions, ∶⋯∶ indicates
Wick (normal) ordering, vF > 0 is the Fermi velocity,

V (x) is the interaction potential, and λ is the coupling
constant. We use notation similar to Refs. 41 and 60; cf.
also Refs. 39 and 67 and references therein. Let V̂ (p) =

∫ dxV (x)e−ipx denote the Fourier transform of the po-

tential. The interaction must satisfy λV̂ (p) > −πvF /2,
and V (x) can be local, V (x) = πvF δ(x)/2, which requires
renormalizations, or non-local with interaction range a >
0, e.g., V (x) = πvF /[4a cosh(πx/2a)]. The above exam-
ples of potentials are used in Figs. 1 and 2 to illustrate
our analytical results, but we emphasize that these re-
sults hold true for a large class of interactions.41,67

In what follows we study the evolution of the en-
ergy density E(x, t) ≡ ⟨H(x, t)⟩, the heat current den-
sity J(x, t) ≡ ⟨J (x, t)⟩, and the fermion two-point cor-
relation function Sr(ξ, τ, x, t) ≡ ⟨ψ+r (x+ ξ, t+ τ)ψ

−

r (x, t)⟩,
where J (x, t) is determined by the continuity equation
∂tH(x, t) + ∂xJ (x, t) = 0. We start in Sec. II by present-
ing results for the NESS. This serves as a useful bench-
mark for the finite-time results presented in Sec. III for
local interaction and in Sec. IV for non-local interaction.
Our methods are described in Sec. V, and concluding re-
marks are given in Sec. VI. Some computational details
are deferred to an appendix.

II. NON-EQUILIBRIUM STEADY STATE

It is well-known that the Fourier modes of the fermion
densities, ρr(p) ≡ ∫ dx ∶ψ+r (x)ψ

−

r (x)∶ e
−ipx, define boson

operators,60 and that the Luttinger Hamiltonian can be
written as H =H+ +H− with

Hr =
1

2
∫ dq v(q) ∶ρ̃r(−q)ρ̃r(q)∶ (4)

using Bogoliubov transformed fermion densities ρ̃r(p) =
ρr(p) coshϕ(p) − ρ−r(p) sinhϕ(p), where tanh 2ϕ(p) =

−λV̂ (p)/[πvF + λV̂ (p)], and the renormalized Fermi ve-

locity v(p) = vF

√

1 + 2λV̂ (p)/πvF .41,60,68 The ρ̃r(p) are
commonly referred to as plasmons, and the Luttinger
Hamiltonian is diagonal in terms of these.60 To find the
NESS we write ρ̂(t) = e−iHtρ̂eiHt = e−G(−t)/Tr(e−G(−t))
with G(t) = ∫ dxβ(x)H(x, t) and express H(x, t) in

terms of ρ̃r(p, t) = ρ̃r(p)e
−irω(p)t where ω(p) = v(p)p.

Taking t → ∞ in ρ̂(t) by making use of the Riemann-
Lebesgue lemma (cf., e.g., Ref. 41), which can be justified
for expectation values using Method 2, we find

lim
t→∞

Tr ρ̂(t)O =
Tr e−β+H+−β−H−O

Tr e−β+H+−β−H−

(5)

with β+ = T −1
L and β− = T −1

R . This NESS describes a
translation invariant state factorized into right- and left-
moving plasmons at equilibrium with temperatures T± =
β−1
±

. A similar NESS was obtained in Refs. 30–32 for
CFTs and in Refs. 25–28 for the XX chain; in the latter
case the same factorization of the NESS is valid also in
terms of right- and left-moving fermions, whereas in our
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case only the plasmons factorize in such a way but not
the fermions.

The long time limit of expectation values for all local
observables can be computed using (5) by straightfor-
ward generalizations of well-known equilibrium compu-
tations. By recalling that ∫ dxH(x) = ∑rHr with Hr

in (4) and using the continuity equation to show that

∫ dxJ (x) = ∑r(r/2) ∫ dq (dω(q)/dq)v(q) ∶ρ̃r(−q)ρ̃r(q)∶ ,
we obtain

lim
t→∞

E(x, t) = wλ +∑
r
∫
R+
dq

2π

ω(q)

eβrω(q) + 1
,

lim
t→∞

J(x, t) =∑
r

r∫
R+
dq

2π

dω(q)

dq

ω(q)

eβrω(q) + 1
,

(6)

where wλ is the ground state energy density,41,60 using
that the NESS is translation invariant. Similarly, for the
fermion two-point correlation function, using the well-
known bosonization formula expressing fermions as ex-
ponentials of plasmons (see, e.g., Refs. 41, 65–67 and
references therein), we find

lim
t→∞

Sr(ξ, τ, x, t) =
i

2πur
exp(∫

R+
dq

q
{eiqur(q)−eiqur})

× exp(∫
R+
dq

q
sinh2 ϕ(q){eiqur(q) + eiqu−r(q) − 2e−q0

+

})

× exp(∫
R+
dq

q
[cosh2 ϕ(q)

2{cos(qur(q)) − 1}

eβrω(q) − 1

+ sinh2 ϕ(q)
2{cos(qu−r(q)) − 1}

eβ−rω(q) − 1
]), (7)

where ur(p) ≡ r[ξ − rv(p)τ] + i0
+ and ur = ur(0).

The second integral in (6) gives the final energy flow
and appears to depend on the interaction. However, by
the change of variables u = βrω(q) we obtain

lim
t→∞

J(x, t) =∑
r

r
πT 2

r

12
=
π

12
(T 2
L − T

2
R) ≡ J (8)

due to the presence of the group velocity dω(q)/dq in
the integrand (assuming dω(q)/dq > 0, which is true for
a large class of interaction potentials41). It follows that
the final heat current only depends on TL,R and is inde-
pendent of microscopic details. Such universal behavior,
previously observed in CFTs,30–32 thus remains true for
the Luttinger model even when scale invariance is broken
by the interaction. This results supports the conjecture,
based on numerical simulations of the XXZ chain,42 that
for interacting fermions, J = f(TL) − f(TR), where, in
general, f is a non-universal function tending to the uni-
versal CFT result30 in the low-temperature limit.

For non-interacting fermions, the temperature depen-
dence J = f(TL) − f(TR) corresponds to the above men-
tioned factorization of the NESS and was previously
obtained analytically by different methods.18,19,25,29 In
fact, using these analytical results, the function f for
the XX chain can be computed analytically: f(T ) =

(π/12)T 2 [1 −R(b+) −R(b−)] with non-universal correc-
tions R(b±) = (6/π2) ∫

∞

b±
dxx/(ex + 1) governed by b± =

(vF /Ta0)[1 ± cos(νπ)]/sin(νπ), where a0 is the lattice
spacing and 0 < ν < 1 is the filling factor (specifying the
Fermi momentum kF = νπ/a0). If Ta0/vF is small, the
corrections are exponentially suppressed, and the univer-
sal result becomes exact in the scaling limit Ta0/vF → 0.

The first integral in (6) expresses the energy density
in the NESS as a sum of energy densities at equilibrium
with temperatures TL,R and is non-universal. Indeed,
it depends on the interaction, and only in the local case,
when v(p) = v and ϕ(p) = ϕ are constant, does it simplify
to

lim
t→∞

E(x, t) =∑
r

π

12v
T 2
r =

π

12v
(T 2
L + T

2
R) (9)

after an additive renormalization corresponding to sub-
tracting the (diverging) constant wλ. Similarly, the
two-point correlation function in the local case, after a
multiplicative renormalization of the fermion fields (not
needed in the non-local case), becomes

lim
t→∞

Sr(ξ, τ, x, t)

=
1

2π ˜̀
(

iπTr ˜̀/v

sinh(πTrur/v)
)

1+η/2

(
iπT−r ˜̀/v

sinh(πT−ru−r/v)
)

η/2

,

(10)

where ur = r[ξ − rvτ]+ i0
+, with the equilibrium anoma-

lous exponent60 η = 2 sinh2 ϕ and a length parameter ˜̀

due to the renormalization; cf. also Refs. 41 and 67. This
exponent depends on the interaction and is non-zero if
the interaction is non-zero. Clearly, unless η = 0, the
NESS does not factorize into right(left)-moving fermions
with temperatures TL (TR) as for the XX chain.

III. FINITE-TIME RESULTS: LOCAL
INTERACTION

The Luttinger model with local interaction is confor-
mally invariant, implying that H(x, t) and J (x, t) satisfy
the wave equation, and thus

E(x, t) =
1

2
[G(x − vt) +G(x + vt)] ,

J(x, t) =
v

2
[G(x − vt) −G(x + vt)]

(11)

for some function G(x). Using Method 2, G(x) can be
computed as a series expansion in ε to all orders (see Ap-
pendix A), and, after summation, we obtain the following
remarkably simple result:

G(x) =
π

6v

1

β(x)2
+

v

12π

⎛

⎝

β′′(x)

β(x)
−

1

2
(
β′(x)

β(x)
)

2
⎞

⎠

=
π

6v
T (x)2

−
v

12π

⎛

⎝

T ′′(x)

T (x)
−

3

2
(
T ′(x)

T (x)
)

2
⎞

⎠
.

(12)
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The term (π/6v)T (x)2 is expected from the equilibrium
result for a uniform temperature profile, but the pres-
ence of the derivative terms has apparently been over-
looked in the previous literature. Thus, in the case of
a non-uniform temperature profile, (11) and (12) show
that E(x, t) and J(x, t) also depend on the first and sec-
ond derivatives of T (x), but not on higher-order ones.
This is true even at t = 0.

The evolution of the energy flow can be easily un-
derstood using (11) and (12). For a step-like β(x) =

β[1 + εW (x)] with W (x) = −(1/2) tanh(x/δ), as in the
introduction, the energy profile at t = 0 away from x = 0
is essentially proportional to the local temperature, i.e.,
E(x,0) equals (π/12v)T 2

L,R far to the left and right.
However, in the transition region, for small δ > 0 and
ε ≠ 0, the derivative terms in (12) produce peaks; see
Fig. 1(a). As t increases a region develops around the
origin with a uniform energy density bounded by two
rigid fronts (their shape does not change with time) that
move ballistically to the right (left) with constant veloc-
ity v (−v); see Fig. 1(b). In the same region the current
has a non-vanishing constant value. For large times we
recover the results for the NESS in (8) and (9).

As we discuss in Sec. IV, peaks qualitatively similar
to those described above are seen in other related mod-
els, including interacting lattice models, such as the XXZ
chain, and non-interacting models, such as the XX chain.
It is important to stress that the shape of the peaks is
non-universal and depends on (short-distance) details:
this is clear already from the interaction dependence of
the derivative terms that appear in (11) due to (12).

It is interesting to note that G(x) can be written as

G(x) =
πT 2

6v
g′(x)2

−
v

12π
(Sg)(x) (13)

using the function g(x) = ∫
x

0 dx′ T (x′)/T and the so-

called Schwarzian derivative69

(Sg)(x) =
g′′′(x)

g′(x)
−

3

2
(
g′′(x)

g′(x)
)

2

. (14)

By recalling that the Luttinger model with local interac-
tion is a CFT with central charge c = 1, this result has
a simple interpretation as follows. In a CFT, the energy
and heat current densities are given by expectation val-
ues of the renormalized energy-momentum tensor T (z)
and T̄ (z̄) as follows:

E(z, z̄) = −
1

2π
[⟨T (z)⟩ + ⟨T̄ (z̄)⟩] ,

J(z, z̄) = −
iv

2π
[⟨T (z)⟩ − ⟨T̄ (z̄)⟩]

(15)

using z = x+ivτ and z̄ = x−ivτ with τ denoting imaginary
time.33,69 Moreover, under a conformal transformation
z → w(z), the renormalized energy-momentum tensor in
a CFT transforms as T (z)→ T (w) with

T (z) = (
dw

dz
)

2

T (w) +
cv

12
(Sw)(z) (16)

using the Schwarzian derivative S.69 From the above one
obtains (11) by a Wick rotation τ → it and the iden-
tification G(x) = −π−1⟨T (z)⟩∣z=x, using that E(x, t) =

E(z, z̄) and J(x, t) = −iJ(z, z̄). Our results in (11) and
(13) are therefore equivalent to what one would obtain
by a conformal transformation determined by the func-
tion g(x) = ∫

x
0 dx′ T (x′)/T from the equilibrium result

⟨T (w)⟩β = ⟨T̄ (w̄)⟩β = −cπ
2T 2/6v (for the latter see, e.g.,

Ref. 32). As we discuss in Sec. VI, it would be interesting
to check if this is true also for other observables.

IV. FINITE-TIME RESULTS: NON-LOCAL
INTERACTION

We now consider the Luttinger model with non-local
interaction. Such an interaction breaks conformal invari-
ance and gives rise to dispersion effects since the renor-
malized Fermi velocity v(p) depends on momenta. These
effects are qualitatively similar to ones observed in lat-
tice models. (The interaction range introduces a scale
similar to the lattice spacing.) We compute quantities
only to first order in ε using Method 1. Comparison with
our all-order results for the NESS and for finite times in
the local case suggests that such first-order approxima-
tion works well for small ε: e.g., for ε = −0.01, used below
in Figs. 1 and 2, first- and all-order results are practi-
cally indistinguishable, and thus the deviations seen in
these figures between the plots for local and non-local
interactions can be fully attributed to dispersive effects.

For the energy and heat current densities we obtain

E(x, t) = E0 + εE1(x, t) +O(ε2),

J(x, t) = εJ1(x, t) +O(ε2),
(17)

where E0 is equal to limt→∞E(x, t) in (6) for β+ = β− = β,

E1(x, t) = − ∑
r1,r2
⨏
R

dp

2π
∫
R

dq

4π
Ŵ (p)A(p − q, q),

J1(x, t) = − ∑
r1,r2
⨏
R

dp

2π
∫
R

dq

4π
Ŵ (p)

i

p

∂

∂t
A(p − q, q)

(18)

with

A(p1, p2) = e
i(p1+p2)x−i[r1ω(p1)+r2ω(p2)]t

×
[r1v(p1) + r2v(p2)]

2

4v(p1)v(p2)

[r1e
2ϕ(p1) + r2e

2ϕ(p2)]2

4e2[ϕ(p1)+ϕ(p2)]

×
eβ[r1ω(p1)+r2ω(p2)] − 1

r1ω(p1) + r2ω(p2)

r1ω(p1)

eβr1ω(p1) − 1

r2ω(p2)

eβr2ω(p2) − 1
.

Similarly, for the two-point correlation function, we ob-
tain

Sr(ξ, τ, x, t) = ⟨ψ+r (ξ, τ)ψ
−

r (0,0)⟩βe
εB1;r(ξ,τ,x,t)+O(ε2),

(19)
where ⟨ψ+r (ξ, τ)ψ

−

r (0,0)⟩β is equal to limt→∞ Sr(ξ, τ, x, t)
in (7) for β+ = β− = β,

B1;r(ξ, τ, x, t) = − ∑
r1,r2
⨏
R
dp∫

R

dq

4π
Ŵ (p)C(p− q, q) (20)
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with

C(p1, p2) = e
i(p1+p2)x−i[r1ω(p1)+r2ω(p2)]tθ(−r1r2p1p2)

×
v(p1) + v(p2)

2
cosh(ϕ(p1) − ϕ(p2))

×
eβr[ω(p1)+ω(p2)] − 1

r[ω(p1) + ω(p2)]
F r1r (p1)F

r2
r (p2)

and

F r
′

r (p′) =
e−ϕ(p

′
) + rr′eϕ(p

′
)

2

eir
′p′ur′(p

′
) − 1

eβrω(p′) − 1
.

The above results agree, to first order in ε, with (6) and
(7) as t→∞.

Similar to the discussion for the local case in Sec. III
for a step-like β(x), our analytical results in (17) and (18)
show, for small δ > 0 and ε ≠ 0, that peaks are produced
in the transition region between different temperatures;
see Fig. 1(a). As t increases a region develops around
the origin with a uniform energy density bounded by two
ballistically moving non-rigid fronts (their shape changes
with time); see Fig. 1(b).

In Fig. 2 we plot the current through x = 0 as a func-
tion of time. The plotted results contain an initial peak.
As seen from the dotted line in Fig. 2, such a peak is
absent in the local case if the second term in (13) is
omitted. A qualitatively similar peak is present in nu-
merical results for the XXZ chain; see, e.g., Fig. 1(a)
in Ref. 42 (at low temperatures) and Fig. 3 in Ref. 47
(at high temperatures) showing the heat current through
the contact point in the partitioning protocol. As em-
phasized in Sec. III and also in Ref. 42, the shape of
such peaks is non-universal: in the Luttinger model the
shape depends on the interaction and in the XXZ chain
on the anisotropy and the dispersion relation. However,
the presence of the peaks seems to be a generic feature.

To further support our claim about the peaks, we
also present, as an example for non-interacting lattice
fermions, plots of the corresponding results for the XX
chain computed to first order in ε using Method 1; see
Figs. 3 and 4. Peaks and dispersion effects that are qual-
itatively similar to the ones in Figs. 1 and 2 are clearly
visible. Moreover, we checked numerically and analyti-
cally, to first order in ε, that the results for the XX chain
approach those of the non-interacting Luttinger model in
the scaling limit; plots of the latter are given by the red
(plain) line in Figs. 3 and 4. This is true even at finite
times.

V. METHODS

Our results are based on rigorous bosonization meth-
ods well-known from studies of the Luttinger model in
equilibrium; see, e.g., Refs. 41, 60, 65, and 67. We work
on the circle −L/2 ≤ x ≤ L/2 of length L > 0 with the
fermion fields ψ±r (x) satisfying anti-periodic boundary
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(b) Evolution for t > 0

Figure 1. Interacting fermions. Plots of analytical results
for the energy density e(x, t) = v(E(x, t) − E0)/J in an in-
terval [−`, `] around x = 0 at times (a) t = 0 and (b) t > 0
for the Luttinger model with local and non-local interac-
tions. The results in the local case are given by (11) for
V (x) = πvF δ(x)/2 and in the non-local case by (17) for
V (x) = πvF /[4a cosh(πx/2a)] with a = 0.100` and a = 0.200`,
respectively. The coupling constant is λ = 0.6, and the other
parameters are β = 20, ε = −0.01, δ = 0.06`, t0 = `/vF , and
vF = 1. The value of ε is small enough that O(ε2)-corrections
are negligible.
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Figure 2. Interacting fermions. Plots of analytical results
for the heat current j(0, t) = J(0, t)/J through x = 0 for the
Luttinger model using the same parameters as in Fig. 1. Also
included is the local case without the second term in (13)
(black dotted line).
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(b) Evolution for t > 0

Figure 3. Non-interacting fermions. Plots of analytical results
for the energy density e(x, t) = v(E(x, t)−E0)/J in an interval
[−`, `] around x = 0 at times (a) t = 0 and (b) t > 0 for the non-
interacting Luttinger model and for the XX chain. The results
for the former are given by (11) and (12) with vF instead of
v. The XX chain is considered close to half filling on a lattice
with spacing a0 = 0.025` and a0 = 0.050`, respectively. The
other parameters are the same as in Fig. 1.
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Figure 4. Non-interacting fermions. Plots of analytical results
for the heat current j(0, t) = J(0, t)/J through x = 0 for the
non-interacting Luttinger model and for the XX chain using
the same parameters as in Fig. 3.

conditions and take the thermodynamic limit L → ∞

only after computing expectation values for finite t ≥ 0.
The order, first L→∞ and then t→∞, is important for
computing results in the long time limit.30,41

A. Method 1

To compute ⟨O⟩ we write G in (1) as β(H +W) with
W = ε ∫ dxW (x)H(x) and use the fact that U(β) ≡

eβHe−β(H+W) satisfies

∂βU(β) = −eβHWe−β(H+W)
= −W(β)U(β) (21)

with W(β) = eβHWe−βH . Solving this by iteration we
obtain a series expansion in ε (the Dyson series):

⟨O⟩ = ⟨O⟩β − ε [⟨CO⟩β − ⟨C⟩β⟨O⟩β] +O(ε2) (22)

with C = ∫
β

0 dβ′ ∫ dxW (x)H(x,−iβ′). It follows that
non-equilibrium expectation values are expressed as sums
of equilibrium ones. This method can be used for com-
puting non-equilibrium results to first order in ε for any
model where equilibrium results are computable. Com-
putations of the energy and heat current densities and the
two-point correlation functions for the Luttinger model
are straightforward but tedious using Wick’s theorem;
the details will be presented elsewhere.

B. Method 2

Higher-order terms can be computed using general
mathematical results for quasi-free models; see, e.g.,
Ref. 70. For the bosonized Luttinger Hamiltonian we
write H = dΓ̂(K) to mean boson second quantization of

the one-particle operator K, and similarly W = dΓ̂(W )

for some W . (We note that the second quantization map

dΓ̂ is in a non-trivial representation of the boson field al-
gebra and that there are certain technical requirements
on the one-particle operators70,71 that are fulfilled in the
cases of interest to us.) For O = dΓ̂(O) with some one-
particle operator O, one can show (e.g., using results in
Ref. 70) that ⟨O⟩ − ⟨O⟩β can be written as

Tr(e−βdΓ̂(K+W )dΓ̂(O))

Tr(e−βdΓ̂(K+W ))
−

Tr(e−βdΓ̂(K)dΓ̂(O))

Tr(e−βdΓ̂(K)

= tr({[e2β(K+W )
− 1]

−1
− [e2βK

− 1]
−1

}O)

=
1

β
∑
ν

tr ({[iν − 2(K +W )]
−1
− [iν − 2K]

−1}O)

=
∞

∑
n=1

1

β
∑
ν

tr ([iν − 2K]
−1

(2W [iν − 2K]
−1

)
nO) ,

(23)

where tr is the one-particle trace and the ν-sum is over
all boson Matsubara frequencies ν ∈ (2π/β)Z. (Note
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that the second and third identities in (23) are stan-
dard expansions.) The computation of G(x) in (12) us-
ing (23) for the Luttinger model with local interaction is
explained in Appendix A.

VI. CONCLUSIONS

We derived analytical results for the NESS and for
the full time evolution of the Luttinger model with both
local and non-local interactions starting from a non-
equilibrium state defined by a smooth non-uniform tem-
perature profile. These results were computed using
methods based on a series expansions in the distance ε
from equilibrium in the initial state. We showed that
the NESS is factorised in terms of the eigenmodes of the
interacting Hamiltonian and that its fermion two-point
correlation function contain interaction-dependent expo-
nents. On the contrary, the final heat current is equal
to the universal CFT result30 even if conformal invari-
ance is broken by the interaction. Moreover, the form of
the temperature dependence of the heat current agrees
with the one found numerically in Ref. 42 for interacting
fermions and analytically in Refs. 18, 19, 25, and 29 for
non-interacting fermions.

For local interaction (and thus a priori for the non-
interacting case), the series for the energy and heat
current densities were computed to all orders in ε and
summed into simple exact formulas valid at all times.
These formulas contain a Schwarzian-derivative term [cf.
(11) and (13)], which captures a qualitative feature that
appears rather generically, namely the presence of non-
universal peaks at short times in the transition region
between different temperatures. We also showed that
these formulas coincide with the result obtained by a par-
ticular conformal transformation from the corresponding
equilibrium result. It would be interesting to find an ex-
planation for this and to check if this is true also for other
observables and in other CFT models; if true, this would
be similar in spirit to results in Ref. 33 but for a differ-
ent physical situation. Also, it would be interesting to
investigate if this can be used to gain some insight into
non-equilibrium properties of interacting lattice models,
such as the XXZ chain.

For non-local interaction, we computed the time evo-
lution of the energy and heat current densities and of the
fermion two-point correlation function to first order in ε.
This truncated expansion can be seen as a linear-response
approach (cf., e.g., Ref. 42) and can, in principle, be used
even for models that are not exactly solvable.
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Appendix A: Computational details

For a local interaction, the one-particle operators K
and W in (23) are given by Kr,r′(p, p

′) = (rvp/2)δr,r′δp,p′

and Wr,r′(p, p
′) = ε(rv sgn(p)

√
∣pp′∣/2L)δr,r′Ŵ (p−p′), re-

spectively. Since G(x) = E(x,0) [cf. (11)] it follows that

G(x) = ⟨H(x)⟩ = ⟨dΓ̂(O)⟩ with O given by Or,r′(p, p
′) =

(rv sgn(p)
√

∣pp′∣/2L)δr,r′e
i(p′−p)x. Using (23) we obtain

G(x) = ∑
∞

n=0 ε
nGn(x), where G0(x) = π/6vβ

2 is the equi-
librium result and

Gn(x) = ∫
Rn+1

dp0 . . . dpn
(2π)n+1

(
n−1

∏
j=0

Ŵ (pj − pj+1))

×
1

2
∑
r

1

β
∑
ν

(
n

∏
j=0

rvpj

iν − rvpj
)ei(p0−pn)x (A1)

for n = 1,2, . . .. While this formula can be generalized
to non-local interaction, the local case is special in that
it is possible to compute the integrals exactly: changing
variables to qj = pj−1 − pj for j = 1, . . . , n and p = pn, and
renaming ν → rν, we can write

Gn(x) =
v

4π
∫
Rn

dq1 . . . dqn
(2π)n

In(q)(
n

∏
j=1

Ŵ (qj)e
iqjx)

(A2)
with

In(q) =
2

v
∫
R
dp

1

β
∑
ν

⎛

⎝

n

∏
j=0

v(p +Qj)

iν − v(p +Qj)

⎞

⎠
, (A3)

where q = (q1, . . . , qn) and Qj = ∑
n
k=j+1 qk. The integral

in (A3) can be computed exactly, and, after a lengthy
computation, we obtained the following remarkably sim-
ple result:

In(q) ≃
(−1)n

6
{(n + 1) (

2π

βv
)

2

+ 2q2
1 + (n − 1)q1q2} ,

(A4)
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where ≃ is defined by qjqk ≃ q
2
1 if j = k and qjqk ≃ q1q2 if

j ≠ k. Inserting (A4) into (A2) yields

Gn(x) = (−1)n(
(n + 1)π

6vβ2
W (x)n (A5)

−
v

12π
[W ′′

(x)W (x)n−1
+
n − 1

2
W ′

(x)2W (x)n−2
]).

Using this the series G(x) = ∑
∞

n=0 ε
nGn(x) can be

summed giving the result in (12).
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18 W. Aschbacher, V. Jakšić, Y. Pautrat, and C.-A. Pillet, J.

Math. Phys. 48, 032101 (2007).
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