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In 2+1-dimensional space-time, gapped quantum states are always gapped quantum liquids (GQL)
which include both topologically ordered states (with long range entanglement) and symmetry
protected topological (SPT) states (with short range entanglement). In this paper, we propose
a classification of 241D GQLs for both bosonic and fermionic systems: 241D bosonic/fermionic
GQLs with finite on-site symmetry are classified by non-degenerate unitary braided fusion categories
over a symmetric fusion category (SFC) &, abbreviated as UMTC ¢, together with their modular
extensions and total chiral central charges. In our classification, SFC £ describes the symmetry,
which is Rep(G) for bosonic symmetry G, or sRep(G* ) for fermionic symmetry G’. As a special case
of the above result, we find that the modular extensions of Rep(G) classify the 241D bosonic SPT
states of symmetry G, while the ¢ = 0 modular extensions of sRep(Gf ) classify the 2+1D fermionic
SPT states of symmetry G¥. Many fermionic SPT states are studied based on the constructions from
free-fermion models. But free-fermion constructions cannot produce all fermionic SPT states. Our
classification does not have such a drawback. We show that, for interacting 241D fermionic systems,
there are exactly 16 superconducting phases with no symmetry and no fractional excitations (up to
Es bosonic quantum Hall states). Also, there are exactly 8 Zs x Z;—SPT phases, 2 Zg-SPT phases,
and so on. Besides, we show that two topological orders with identical bulk excitations and central
charge always differ by the stacking of the SPT states of the same symmetry.
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I. INTRODUCTION

Topological order'™ is a new kind of order beyond
the symmetry breaking orders? in gapped quantum sys-
tems. Topological orders are patterns of long-range en-
tanglement® in gapped quantum liquids (GQL)®. Based
on the unitary modular tensor category (UMTC) the-
ory for non-abelian statistics”®, in Ref. 10 and 11, it is
proposed that 241D bosonic topological orders are clas-
sified by {UMTC} x {iTOp}, where {UMTC} is the set
of UMTCs and {iTOg} is the set of invertible topolog-
ical orders (iTO)'%'? for 2+1D boson systems. In fact
{iTOp} = Z which is generated by the Eg bosonic quan-
tum Hall (QH) state, and a table of UMTCs was obtained
in Ref. 11 and 13. Thus, we have a table (and a classifi-
cation) of 241D bosonic topological orders.

In a recent work', we show that 241D fermionic
topological orders are classified by {UMTC/sRep(zg)} X
{iTOFr}, where {UMTC/sRep(zg)} is the set of non-
degenerate unitary braided fusion categories (UBFC)
over the symmetric fusion category (SFC) sRep(Z]) (see
Definition 3). We also require UMTC, sRep(z])S 10 have
modular extensions. {iTOp} is the set of invertible
topological orders for 241D fermion systems. In fact
{iTOr} = Z which is generated by the p + ip su-
perconductor. In Ref. 14 we computed the table for
UMTC / sRep(2{)S and obtained a table (and a classifi-
cation) of 241D fermionic topological orders.

In Ref. 14, we also point out the importance of modular
extensions. If a UMTC/SRep(ZQf) does not have a mod-
ular extension, it means that the fermion-number-parity
symmetry is not on-site (i.e. anomalous!®). On the other
hand, if a UMTC (z1) does have modular extensions,
then thte UMTC/SRep(Zg) .
of fermions. In this case, a given UMTC/ SRep(z]) Ay

/ sRep
is realizable by a lattice model

have several modular extensions. We found that different
modular extensions of UMTC / (z) contain informa-
tion of iTOps.

Our result on fermionic topological orders can be eas-
ily generalized to describe bosonic/fermionic topological
orders with symmetry. This will be the main topic of this
paper. (Some of the results are announced in Ref. 14). In
this paper, we will consider symmetric GQL phases for
2+1D bosonic/fermionic systems. The notion of GQL
was defined in Ref. 6. The symmetry group of GQL is G
(for bosonic systems) or G¥ (for fermionic systems). If
a symmetric GQL has long-range entanglement (as de-
fined in Ref. 5 and 6), it corresponds to a symmetry en-
riched topological (SET) order®. If a symmetric GQL
has short-range entanglement, it corresponds to a sym-
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FIG. 1.  Bosonic topological orders with symmetry G are
classified by three unitary categories: SFC & = Rep(G) C
UBFC C ¢ UMTC M, which describe quasiparticle excita-
tions and symmetry-twist defects. The particles connected by
lines have non-trivial mutual statistics between them.
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FIG. 2. Fermionic topological orders with symmetry G¥ are
classified by three unitary categories: SFC £ = sRep(GY) C
UBFC C ¢ UMTC M.

metry protected trivial (SPT) order [which is also known
as symmetry protected topological (SPT) order]*¢-20.

In this paper, we are going to show that, 241D sym-
metric GQLs are classified by UMTC ¢ plus their modu-
lar extensions and chiral central charge. In other words,
GQLs are labeled by three UBFCs £ € C € M plus the
central charge ¢ (see Fig. 1 and 2). Roughly speaking, a
UBFC can be viewed as a set of quasiparticle types, plus
the data on quasiparticle fusion and braiding:

1. £ is a special kind of UBFC called SFC where all
the quasiparticles have trivial mutual statistics be-
tween each other. Such a SFC & describes the local
excitations (i.e. the excitations that can be created
by local operators). The types of those local ex-
citations are described the representations of the
symmetry group. Thus £ is given by £ = Rep(Q)
for bosonic cases, or & = sRep(GY) for fermionic
cases.

2. The UBFC C contains both local excitations and
topological excitations (i.e. the excitations that
cannot be created by local operators), and thus £ C
C. Those topological excitations can carry frac-
tional statistics and fractional angular momentum
s, which will be called topological spin. The topo-
logical excitations may also have symmetry frac-
tionalization (such as fractional symmetry quan-
tum numbers). We also require £ to include all
the excitations that have trivial mutual statistics
with every excitation in C (which can be viewed as
an operational definition of the so called local ez-
citation), which leads to a mathematical notion of
UBFC over SFC & (denoted as UMTC ¢).



3. The UBFC M contains both quasiparticle exci-

tations and symmetry-twist defects?' 23, and thus
C C M. We require that every particle in M (ex-
cept the trivial one) has a non-trivial mutual statis-
tics with at least one particle in M. A UBFC satis-
fying such a condition is called UMTC, and we call
the extension from C to M a modular extension.
(To be more precise, a modular extension of C, M,
is a UMTC with a fully faithful embedding C — M.
In particular, even if the UMTC M is fixed, dif-
ferent embeddings correspond to different modular
extensions.) The existence of modular extensions
for C is an anomaly-free condition for C: the quasi-
particles described by C can be realized by a well
defined local lattice model with on-site-symmetry in

the same dimension'®.

The chiral central charge ¢ for the edge states describes
the invertible topological orders which have trivial bulk
excitations.

We like to remark that symmetry charges by carried
topological excitations are in general not well defined. In
other words, a topological excitation may not carry a rep-
resentation of the symmetry group. This phenomenon is
called symmetry fractionalization. In general, a topolog-
ical excitation may not even carry a projective represen-
tation of the symmetry group (which corresponds to frac-
tionalized symmetry quantum numbers). In other words,
a topological excitations can carry something more exotic
than projective representations of the symmetry group.
For example, in a gauge theory with gauge group K and
symmetry group G, a topological excitation (a gauge
charge) may carry a representation of group H which
satisfies H/K = G. So symmetry fractionalization can
be more general than fractionalized quantum numbers
and projective representations of the symmetry group.

One example of the classified bosonic SET (see Table
VI) is given by the Z5""#® spin liquid®*?° with excitations
1,e,m, f, where 1 is the trivial excitation, e the Z5""'&°
charge, m the Z5™'®° vortex, and f the bound state of
e and m. The excitation 1,e,m are bosons and [ is a
fermion. There is also a Z5"™ symmetry which exchanges
e and m?%728, The excitations in such a SET state are la-
beledby 14, 1_, fy, f—, e®m, which form the UBFC C.
They have topological spins s; = 0,0, %, %, 0 and quan-
tum dimensions d; =1,1,1,1,2. 1, and 1_ are the local
excitations with Z5"™ charge 0 and 1. The two exci-
tations 1 and 1_ form the SFC & = Rep(Z5"™). f+
and f_ are topological fermionic excitations with Z5*™
charges 0 and 1. e @ m is a doublet excitation that cor-
responds to degenerate e and m (just like the spin-1/2
doublet that corresponds to degenerate spin-up and spin-
down). This is why e @& m has a quantum dimension 2.
The modular extension is obtained by adding the Z3¥™-
symmetry twist defect, as well as its bound states with
excitations fy, f_, e ®m. Fig. 1 happens to describe
such a SET.

As a second example, Fig. 2 describes the topological

order F4, ¢) in Table I of Ref. 14, which has a G/ = Zg

TABLE I.

Some mathematical concepts and their physical

correspondences, as well as the meaning of some notations.

Mathematical term

Physical correspondence

UBFC (unitary braided
fusion category) C

Set of excitations that can braid
and fuse

SFC (symmetric fusion
category) &, which is a
special kind of UBFC

Set of local excitations carry-
ing representations of symmetry

group

UMTC (unitary modu-
lar tensor category) M,
which is a special kind
of UBFC

Set of excitations such that every
non-trivial excitation has a non-
trivial mutual statistics with at
least one excitation

UMTC ¢
(UBFC over &)
a special kind of UBFC

Set of excitations that contain
a subset SFC &, where & is
formed by the excitations that
have trivial mutual statistics with
all excitations

Modular extension

Adding symmetry-twist defects
(i.e. gauging the symmetry)

Chiral central charge ¢

The number of right-moving edge
modes minus the number of left-
moving edge modes (¢ can be
fractional)

Topological spin s;

Fractional part of 2D angular mo-
mentum of the quasiparticle ¢

Quantum dimension d;

The effective dimension of the
Hilbert space for the internal de-
grees of freedom of the quasiparti-
cle 7 (d; can be non-integer)

N Number of particle types (also
called rank of category)

D V2o, d? (total quantum dim.)

) D—l Zz errisidlz — |6|627Tic/8

Nle‘ A short label of topological orders

NB When |0 = 1, rewrite NC‘el as NP

o sin ”(:Z:_ng) /sin 5

(An, k) Topological order of SU(n + 1)
level-k Chern-Simons theory

(Bn, k) Topological order of SO(2n + 1)
level-k Chern-Simons theory

(Cn, k) Topological order of Sp(2n) level-
k Chern-Simons theory

(Dn, k) Topological order of SO(2n) level-
k Chern-Simons theory

X Stacking of two states

® Fusion of two particles

symmetry. The state has two types of local excitations
with Zg—charge 0 (a boson) and 1 (a fermion) that form
the SFC & = sRep(Zg). They have topological spin
s; =0, % The state also has two types of topological ex-
citations with topological spin s; = %, —i and quantum
dimension d; = 1 + \/5, 1+ /2. The local and topologi-
cal excitations form the UBFC C. The modular extension



is obtained by adding the Z2f -symmetry twist defect, as
well as its bound state with the excitations in C, which
gives rise to three types of symmetry twist defects.

There is another more precise and mathematical way
to phrase our result: we find that the structure & —
C — M (plus the chiral central charge ¢) classifies the
241D GQLs with symmetry &£, where < represents the
embeddings and E§G* = C (see Definition 2).

As a special case of the above result, we find that
bosonic 241D SPT phase with symmetry G are classified
by the modular extensions of Rep(G), while fermionic
241D SPT phase with symmetry G/ are classified by
the modular extensions of sRep(G/) that have central
charge ¢ = 0.

We like to mention that Ref. 29 has classified bosonic
GQLs with symmetry G, using G-crossed UMTCs. This
paper uses a different approach so that we can classify
both bosonic and fermionic GQLs with symmetry. For
bosonic systems, the two approaches produces identical
classification. We also like to mention that there is a
mathematical companion Ref. 30 of this paper, where
one can find detailed proof and explanations for related
mathematical results.

The paper is organized as the following. In Section II,
we review the notion of topological order and introduce
category theory as a theory of quasiparticle excitations
in a GQL. We will introduce a categorical way to view
the symmetry. In Section III, we discuss invertible GQLs
and their classification based on modular extensions. In
Sections IV and V, we generalize the above results and
propose a classification of all GQLs. Section VI inves-
tigates the stacking operation from physical and math-
ematical points of view. Section VII describes how to
numerically calculate the modular extensions and Sec-
tion VIII discusses some simple examples. For people
with physics background, one way to read this paper is
to start with the Sections II and V, and then go to Sec-
tion VIII for the examples. The Table I summarizes some
important mathematical concepts and their physical cor-
respondences.

II. GAPPED QUANTUM LIQUIDS,
TOPOLOGICAL ORDER AND SYMMETRY

A. The finite on-site symmetry and symmetric
fusion category

In this paper, we consider physical systems with an
on-site symmetry described by a finite group G. For
fermionic systems, we further require that G contains
a central Z, fermion-number-parity subgroup. More pre-
cisely, fermionic symmetry group is a pair (G, f), where
G is a finite group, f # 1 is an element of G satisfying
f2f: 1,fg = gf,Vg € G. We denote the pair (G, f) as
G7.

There is another way to view the on-site symmetries,
which is nicer because bosonic and fermionic symme-

tries can be formulated in the same manner. Consider a
bosonic/fermionic product state |1) that does not break
the symmetry G: Ug|Y) = |¢), g € G. Then the new
way to view the symmetry is to use the properties of the
excitations above the product state to encode the infor-
mation of the symmetry G.

The product state contain only local excitations that
can be created by acting local operators O on the
ground state O|y). For any group action U, U,O¢) =
U,OUIUy|th) = UyOUf|4h) is an excited state with the
same energy as O|y). Since we assume the symmetry to
be on-site, UgOU;r is also a local operator. Therefore,

U,OU] ) and Oly) correspond to the degenerate local
excitations. We see that local excitations “locally” carry
group representations. In other words, different types
of local excitations are labeled by irreducible representa-
tions of the symmetry group.

By looking at how the local excitations (more pre-
cisely, their group representations) fuse and braid with
each other, we arrive at the mathematical structure called
symmetric fusion categories (SFC). By definition a SFC
is a braided fusion category where all the objects (the
excitations) have trivial mutual statistics (i.e. centralize
each other, see next section). A SFC is automatically a
unitary braided fusion category.

In fact, there are only two kinds of SFCs: one is repre-
sentation category of G: Rep(G), with the usual braiding
(all representations are bosonic); the other is sRep(GY)
where an irreducible representation is bosonic if f is rep-
resented trivially (+1), and fermionic if f is represented
non-trivially(—1).

It turns out that SFC (or the fusion and braiding
properties of the local excitations) fully characterize the
symmetry group (which is known as Tannaka duality>!).
Therefore, a finite on-site symmetry is equivalently given
by a SFC £. Also, by checking the braiding in £ we know
whether it is bosonic or fermionic. This is the new way,
the categorical way, to view the symmetry. Such a cat-
egorical view of bosonic/fermionic symmetry allows us
to obtain a classification of symmetric topological/SPT
orders.

B. Categorical description of topological
excitations with symmetry

In symmetric GQLs with topological order (i.e. with
long range entanglement), there can be particle-like exci-
tations with local energy density, but they cannot be cre-
ated by local operators. They are known as (non-trivial)
topological excitations. Topological excitations do not
necessarily carry group representations. Nevertheless, we
can still study how they fuse and braid with each other;
so we have a unitary braided fusion category (UBFC)
to describe the particle-like excitations. To proceed, we
need the following key definition on “centralizers.”

Definition 1. The objects X,Y in a UBFC C are said



to centralize (mutually local to) each other if
cy,x ocxy = idxgy, (1)
where cxy : X ® Y 2Y ® X is the braiding in C.

Physically, we say that X and Y have trivial mutual
statistics.

Definition 2. Given a subcategory D C C, its centralizer
D™ in C is the full subcategory of objects in C that
centralize all the objects in D.

We may roughly view a category as a “set” of particle-
like excitations. So the centralizer Dg*" is the “subset”
of particles in C that have trivial mutual statistics with
all the particles in D.

Definition 3. A UBFC £ is a symmetric fusion category
if £g" = €. A UBFC C with a fully faithful embedding
E — C&" is called a UBFC over £. Moreover, C is called
a non-degenerate UBFC over £, or UMTC /¢, if C&*" = £.

Definition 4. Two UBFCs over &£, C and C’ are equiva-
lent if there is a unitary braided equivalence F : C — C’
such that it preserves the embeddings, i.e., the following
diagram commute.

£ (2)

I

EC——

We denote the category of unitary braided auto-
equivalences of C by Aut(C) and its underlining group
by Aut(C).

We recover the usual definition of UMTC when €& is
trivial, i.e. the category of Hilbert spaces, denoted by
Vec = Rep({1}). In this case the subscript is omitted.

Physically, a UBFC C is the collection of all bulk topo-
logical excitations plus their fusion and braiding data.
Requiring C to be a UMTC ¢ means: (1) the set of local
excitations, £ (which is the set of all the irreducible rep-
resentations of the symmetry group), is included in C as a
subcategory; (2) C is anomaly-free, i.e. all the topological
excitations (the ones not in £) can be detected by mutual
braiding!'?. In other words, every topological excitation
must have non-trivial mutual statistics with some exci-
tations. Those excitations that cannot be detected by
mutual braiding (i.e., C3*") are exactly the local excita-
tions in £. Moreover, we want the symmetry to be on-site
(gaugeable), which requires the existence of modular ex-
tensions (see Definition 6). Such an understanding leads
to the following conjecture:

Conjecture 1. Bulk topological excitations of topolog-
ical orders with symmetry £ are classified by UMTC ¢’s
that have modular extensions.

We like to remark that UMTC /¢’s fail to classify topo-
logical orders. This is because two different topologi-
cally ordered phases may have bulk topological excita-
tions with the same non-abelian statistics (i.e. described
by the same UMTC ¢). However, UMTC /¢’s, with mod-
ular extensions, do classify topological orders up to in-
vertible ones. See next section for details. The relation
between anomaly and modular extension will also be dis-
cussed later.

III. INVERTIBLE GQLS AND MODULAR
EXTENSION

A. Invertible GQLs

There exist non-trivial topological ordered states that
have only trivial topological excitations in the bulk (but
non-trivial edge states). They are “invertible” under the
stacking operation!'®'? (see Section VI for details). More
generally, we define

Definition 5. A GQL is invertible if its bulk topological
excitations are all trivial (i.e. can all be created by local
operators).

Consider some invertible GQLs with the same sym-
metry €. The bulk excitations of those invertible GQLs
are the same which are described by the same SFC &.
Now the question is: How to distinguish those invertible
GQLs?

First, we believe that invertible bosonic topological or-
ders with no symmetry are generated by the Eg QH state
(with central charge ¢ = 8) via time-reversal and stack-
ing, and form a Z group. Stacking with an Fg QH state
only changes the central charge by 8, and does not change
the bulk excitations or the symmetry. So the only data
we need to know to determine the invertible bosonic topo-
logical order with no symmetry is the central charge c.
The story is parallel for invertible fermionic topological
orders with no symmetry, which are believed to be gen-
erated by the p 4+ ip superconductor state with central
charge ¢ = 1/2.

Second, invertible bosonic GQLs with symmetry are
generated by bosonic SPT states and invertible bosonic
topological orders (i.e. Eg states) via stacking. We
know that the bosonic SPT states with symmetry G are
classified by the 3-cocycles in H3[G,U(1)]. Therefore,
bosonic invertible GQLs with symmetry G are classified
by H3[G,U(1)] x Z (where Z corresponds to layers of Eg
states).

However, this result and this point of view is not nat-
ural to generalize to fermionic cases or non-invertible
GQLs. Thus, we introduce an equivalent point of view,
which can cover boson, fermion, and non-invertible GQLs
in the same fashion.



B. Modular extension

First, we introduce the notion of modular extension of
a UMTC /¢:

Definition 6. Given a UMTC ¢ C, its modular exten-
sion is a UMTC M, together with a fully faithful em-
bedding ¢pq : C — M, such that 53 = C, equivalently
dim(M) = dim(C) dim(&).

Two modular extensions M and M’ are equiva-
lent if there is an equivalence between the UMTCs
F : M — M’ that preserves the embeddings, i.e., the fol-
lowing diagram commute.

C—— M (3)

|

C— M

We denote the set of equivalent classes of modular exten-
sions of C by M.+(C).

Remark 1. Since the total quantum dimension of modu-
lar extensions of a given C is fixed, there are only finitely
many different modular extensions, due to Ref. 32. In
principle we can always perform a finite search to ex-
haust all the modular extensions.

Remember that C describes the particle-like excitations
in our topological state. Some of those excitations are
local that have trivial mutual statistics with all other
excitations. Those local excitation form & C C. The
modular extension M of C is obtained as adding parti-
cles that have non-trivial mutual statistics with the local
excitations in &£, so that every particle in M will always
have non-trivial mutual statistics with some particles in
M. Since the particles in £ carry “charges” (i.e. the ir-
reducible representations of G), the added particles cor-
respond to “flux” (i.e. the symmetry twists of G). So
the modular extension correspond to gauging?' the on-
site symmetry G. Since we can use the gauged symmetry
to detect SPT orders®?, we like to propose the following
conjecture

Conjecture 2. Invertible bosonic GQLs with symme-
try &€ = Rep(Q) are classified by (M, ¢) where M is a
modular extension of £ and ¢ = 0 mod 8.

C. Classify 241D bosonic SPT states

Invertible bosonic GQLs described by (M, ¢) include
both bosonic SPT states and bosonic topological orders.
Among those, (M, ¢ = 0) classify bosonic SPT states. In
other words:

Corollary 1. 2+1D bosonic SPT states with symmetry
G are classified by the modular extensions of Rep(G)
(which always have ¢ = 0).

In Ref. 18-20, it was shown that 2+1D bosonic SPT
states are classified by H3[G,U(1)]. Such a result agrees
with our conjecture, due to the following theorem, which
follows immediately from results in Ref. 33.

Theorem 2. The modular extensions of Rep(G) 1-to-
1 correspond to 3-cocycles in H3[G,U(1)]. The central
charge of these modular extensions are ¢ = 0 mod 8.

Remark 2. In Sec. VID, we give more detailed expla-
nation of the 1-to-1 correspondence in Theorem 2. More-
over, we will prove a stronger result in Theorem 11. It
turns out that the set Mz (Rep(G)) of modular ex-
tensions of Rep(G) is naturally equipped with a phys-
ical stacking operation such that M.,:(Rep(G)) forms
an abelian group, which is isomorphic to the group

H3[G,U(1)).

Remark 3. ¢/8 determines the number of layers of the
Es QH states, which is the topological order part of in-
vertible bosonic symmetric GQLs. In other words

{invertible bosonic symmetric GQLs}
= {bosonic SPT states} x {layers of Eg states}. (4)

D. Classify 241D fermionic SPT states

The above approach also apply to fermionic case. Note
that, the invertible fermionic GQLs with symmetry G¥
have bulk excitations described by SFC & = sRep(G/).
So we would like to conjecture that

Conjecture 3. Invertible fermionic GQLs with symme-
try GY are classified by (M, c), where M is a modular
extension of & = sRep(G¥), and c is the central charge
determining the layers of v = 8 IQH states.

Remark 4. Note that, the central charge ¢ mod 8 is
determined by M, while (¢ — mod(c,8))/8 determines
the number of layers of the v = 8 IQH states.

Remark 5. Invertible fermionic symmetric GQLs in-
clude both fermion SPT states and fermionic topological
orders. (M, ¢) with ¢ = 0 classify fermionic SPT states.

In other words,

Corollary 3. 241D fermionic SPT states with symme-
try G are classified by the ¢ = 0 modular extensions of
sRep(GY).

Remark 6. Unlike the bosonic case, in general

{invertible fermionic symmetric GQLs} (5)
# {fermionic SPT states} x {layers of p + ip states}.

For example (see Table XV)

{invertible Z/ fermionic symmetric GQLs}  (6)
= {fermionic Z{-SPT states} x

{layers of v = 1 integer quantum Hall states}.



But we have

{invertible fermionic symmetric GQLs} (7)
= {invertible fermionic symmetric GQLs with ¢ € [0,8)}
x {layers of Eg-states}.

Or when Gf = Gy x 7]

{invertible fermionic symmetric GQLs} (8)
= {fermionic SPT states} x {layers of p + ip states},

where the fermions in the p+ ip states are Gp-invariant .

When there is no symmetry, the invertible fermionic
GQLs become the invertible fermionic topological or-
der, which have bulk excitations described by & =
sRep(Zf). sRep(Z]) has 16 modular extensions, with
central charges ¢ = n/2,n = 0,1,2,...,15. There is
only one modular extension with ¢ = 0, which corre-
spond to trivial product state. Thus there is no non-
trivial fermionic SPT state when there is no symmetry,
as expected.

The modular extensions with ¢ = n/2 correspond to
invertible fermionic topological order formed by n layers
of p + ip states. Since the modular extensions can only
determine ¢ mod 8, in order for the above picture to be
consistent, we need to show the following

Theorem 4. The stacking of 16 layers ¢ = 1/2 p + ip
states is equivalent to a v = 8 IQH state, which is in
turn equivalent to a Eg bosonic QH state stacked with a
trivial fermionic product state.

Proof. First, two layers of p 4+ ip states is equal to one
layer of v = 1 IQH state. Thus, 16 layers c =1/2 p+ ip
states is equivalent to a v = 8 IQH state. To show v =8
IQH state is equivalent to EFg bosonic QH state stacked
with a trivial fermionic product state, we note that the
v = 8 IQH state is described by K-matrix K, —g = Igxs
which is a 8-by-8 identity matrix. While the Eg bosonic
QH state stacked with a trivial fermionic product state
10

0 -1)’
where K, is the matrix that describe the Eg root lat-
tice. We also know that two odd®* K-matrices K; and
K5 describe the same fermionic topological order if after
direct summing with proper number of (

1 01,
S:
0 —1
1 0
K=K
1 1@(0 1)@

K§:K2€B<1 O>@~-, (9)

is described by K-matrix Kg,xr, = Kg, ®

0 -1
K1 and K} become equivalent, i.e.

K| =UKyUT, UeSL(N,2Z). (10)

Notice that K,,_g® and Kg,xr, have the same

determinant —1 and the same signature. Using the result
that odd matrices with +1 determinants are equivalent
if they have the same signature, we find that K,_g &

1
and Kgxr, are equivalent. Therefore v = 8

0 -1
IQH state is equivalent to Eg bosonic QH state stacked
with a trivial fermionic product state. O

IV. A FULL CLASSIFICATION OF 241D GQLS
WITH SYMMETRY

We have seen that all invertible GQLs with symmetry
G (or G') have the same kind of bulk excitations, de-
scribed by Rep(G) (or sRep(GY¥)). To classify distinct
invertible GQLs that shared the same kind of bulk exci-
tations, we need to compute the modular extensions of
Rep(G) (or sRep(GY)). This result can be generalized to
non-invertible topological orders.

In general, the bulk excitations of a 2+1D
bosonic/fermionic SET are described by a UMTC ¢ C.
However, there can be many distinct SET orders that
have the same kind of bulk excitations described by the
same C. To classify distinct invertible SET orders that
shared the same kind of bulk excitations C, we need to
compute the modular extensions of C. This leads to the
following

Conjecture 4. 2+1D GQLs with symmetry & (i.e. the
241D SET orders) are classified by (C, M, ¢), where C is
a UMTC ¢ describing the bulk topological excitations,
M is a modular extension of C describing the edge state
up to Ejg states, and c is the central charge determining
the layers of Ejg states.

Let M be a modular extension of a UMTC /¢ C. We
note that all the simple objects (particles) in C are con-
tained in M as simple objects. Assume that the particle
labels of M are {i,7,...,x,y,...}, where 4,j,--- corre-
spond to the particles in C and z,y,--- the additional
particles (not in C). Physically, the additional particles
x,y, -+ correspond to the symmetry twists of the on-site
symmetry??. The modular extension M describes the
fusion and the braiding of original particles i, j,--- with
the symmetry twists. In other words, the modular exten-
sion M is the resulting topological order after we gauge
the on-site symmetry?".

Now, it is clear that the existence of modular extension
is closely related to the on-site symmetry (i.e. anomaly-
free symmetry) which is gaugable (i.e. allows symme-
try twists). For non-on-site symmetry (i.e. anomalous
symmetry'®), the modular extension does not exist since
the symmetry is not gaugable (i.e. does not allow sym-
metry twists). We also have



Conjecture 5. 2+1D GQLs with anomalous
symmetry!® £ are classified by UMTC s¢’s that have no
modular extensions.

It is also important to clarify the equivalence relation
between the triples (C, M, c). Two triples (C, M, c) and
(C", M, ) are equivalent if: (1) ¢ = ¢/; (2) there exists
braided equivalences F¢ : C — C’ and Fpg : M — M’
such that all the embeddings are preserved, i.e., the fol-
lowing diagram commutes.

EC—C—5 M (11)

ERE

EC— 0 —as M

The equivalence classes will be in one-to-one correspon-
dence with GQLs (i.e. SET orders and SPT orders).

Note that the group of the automorphisms of a
UMTC ¢ C, denoted by Aut(C) (recall Definition 4), nat-
urally acts on the modular extensions M., (C) by chang-
ing the embeddings, i.e. F' € Aut(C) acts as follows:

CM)—(CL5Cc—M)

For a fixed C, the above equivalence relation amounts
to say that GQLs with bulk excitations described by a
fixed C are in one-to-one correspondence with the quo-
tient M, (C)/Aut(C) plus a central charge ¢. When
C = &, the GQLs with bulk excitations described by &£
and central charge ¢ = 0 are SPT phases. In this case, the
group Aut(&), where £ is viewed as the trivial UMTC /¢,
is trivial. Thus, SPT phases are classified by the modular
extensions of & with ¢ = 0.

V. ANOTHER DESCRIPTION OF 241D GQLS
WITH SYMMETRY

Although the above result has a nice mathematical
structure, it is hard to implement numerically to pro-
duce a table of GQLs. To fix this problem, we propose a
different description of 24+1D GQLs. The second descrip-
tion is motivated by a conjecture that the fusion and the
spins of the particles, (N II(J ,S1), completely characterize
a UMTC. We conjecture that

Conjecture 6. The data (N2, 35.; N, si; NE, Sr;e),
up to some equivalence relations, gives a one-to-one clas-
sification of 2+1D GQLs with symmetry G (for bo-
son) or G/ (for fermion), with a restriction that the
symmetry group can be fully characterized by the fu-
sion ring of its irreducible representations. The data
(N2, 5, N7, sis N, Spic) satisfies the conditions de-
scribed in Appendix C (see Ref. 11 for UMTCs).

Here (Ngb,éa;N,ij,si;Nf(J,S[;c) is closely related to
(£;C; M;¢) discussed above. The data (N, 3,) de-
scribes the symmetry (i.e. the SFC £): a = 1,--- ,N
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label the irreducible representations and N, ab are the fu-
sion coefficients of irreducible representations. §, = 0
or 1/2 depending on if the fermion-number-parity trans-
formation f is represented trivially or non-trivially in
the representation a. The data (N}’,s;) describes fu-
sion and the spins of the bulk particles i = 1,--- , N in
the GQL. The data (N,’, s;) contains (N2, §,) as a sub-
set, where a is identified with the first N particles of the
GQL. The data (N%’,S;) describes fusion and the spins
of a UMTC, and it includes (N,”,s;) as a subset, where
i is identified with the first N particles of the UMTC.
Also among all the particles in UMTC, only the first NV
(i.e. I = 1,---,N) have trivial mutual statistics with
first N particles (i.e. I =1,--- ,N) Last, ¢ is the chiral
central charge of the edge state.

If the data (NZ° 3,; N, s;) fully characterized the
UMTC g, then the Conjecture 6 would be equivalent
to the Conjecture 4. However, for non-modular tensor
category, (N2, 3,; N,”, s;) fails to to fully characterize a
UMTC ¢. In other words, there are different UMTC ¢’s

that have the same data (N§b7§a; N,ij, s;). We need to
include the extra data, such as the F-tensor and the R-
tensor, to fully characterize the UMTC ¢.

In Appendix A, we list the data (N2, 3,; N}/, s;) that
satisfy the conditions in Appendix C (without the mod-
ular extension condition) in many tables. Those tables
include all the UMTC ¢’s (up to certain total quantum
dimensions), but the tables are not perfect: (1) some en-
tries in the tables may be fake and do not correspond
to any UMTC ¢ (for the conditions are only necessary);
(2) some entries in the tables may correspond to more
then one UMTC ¢ (since (N2, 5,; N}’, s;) does not fully
characterize a UMTC /¢ ).

We then continue to compute (V47 Sr; ¢), the modular
extensions of (N2, 3,; N7, s;). We find that the modu-
lar extensions can fix the imperfectness mentioned above.
First, we find that the fake entries do not have modular
extensions, and are ruled out. Second, as we will show
in Section VI, all UMTC ¢’s have the same numbers of
modular extensions (if they exist); therefore, the entry
that corresponds to more UMTC ¢’s has more modular
extensions. The modular extensions can tell us which en-
tries correspond to multiple UMTC /¢’s. This leads to the
conjecture that the full data (N2%, 5,; N}, s;; N, Sric)
gives rise to an one-to-one classification of 241D GQLs,
and allows us to calculate the tables of 2+1D GQLs,
which include 241D SET states and 2+1D SPT states.
Those are given in Section VIII.

As for the equivalence relation, we only need to con-
sider (ML, 8r;¢), since the data (N2, 3,; N,7, s;) is in-
cluded in (N, Sr;¢). Two such data (N, Sr;¢) and
(NE Sr;¢) are called equivalent if ¢ = ¢, and (N, Sy)
and (N7, S;) are related by two permutations of indices
in the range Ny > I > N and in the range N > I > N,
where Ny is the range of I. Such an equivalence rela-
tion corresponds to the one in eqn. (11) and will be called



the TO-equivalence relation. We use the TO-equivalence
relation to count the number of GQL phases (i.e. the
number of SET orders and SPT orders).

We can also define another equivalence relation,
called ME-equivalence relation: we say (N II(J ,Sr;¢) and
(NE,S1;€) to be ME-equivalent if ¢ = ¢ and they only
differ by a permutation of indices in range I > N. The
ME-equivalence relation is closely related to the one de-
fined in eqn. (3). We use the ME-equivalence relation to
count the number of modular extensions of a fized C.

Last, let us explain the restriction on the symmetry
group. In the Conjecture 6, we try to use the fusion N2
of the irreducible representations to characterize the sym-
metry group. However, it is known that certain different
groups may have identical fusion ring for their irreducible
representations. So we need to restrict the symmetry
group to be the group that can be fully characterized
by its fusion ring. Those groups include simple groups
and abelian groups®®. If we do not impose such a re-
striction, then the Conjecture 6 give rise to GQLs with a
given symmetry fusion ring, instead of a given symmetry

group.

VI. THE STACKING OPERATION OF GQLS
A. Stacking operation

Consider two GQLs C; and Cy. If we stack them to-
gether (without introducing interactions between them),
we obtain another GQL, which is denoted by C; X Cs.
The stacking operation X makes the set of GQLs into a
monoid. X does not makes the set of GQLs into a group,
because in general, a GQL C may not have an inverse
under K. i.e. there is no GQL D such that C X D be-
comes a trivial product state. This is because when a
GQL have non-trivial topological excitations, stacking it
with another GQL can never cancel out those topological
excitations.

When we are considering GQLs with symmetry £, the
simple stacking X will “double” the symmetry, leads to
a GQL with symmetry ERE (Rep(G x G) or sRep(G7 x
GY)). In general we allow local interactions between the
two layers to break some symmetry such that the result-
ing system only has the original symmetry £ (In terms of
the symmetry group, keep only the subgroup G — Gx G
with the diagonal embedding g — (g,¢)). This leads to
the stacking between GQLs with symmetry &, denoted
by Kg. Similarly, K¢ makes GQLs with symmetry £ a
monoid, but in general not all GQLs are invertible.

However, if the bulk excitations of C are all local
(i.e. all described by SFC &), then C will have an in-
verse under the stacking operation Mg, and this is why
we call such GQL invertible. Those invertible GQLs in-
clude invertible topological orders and SPT states.

B. The group structure of bosonic SPT states

We have proposed that 2+1D SPT states are classified
by ¢ = 0 modular extensions of the SFC £ that describes
the symmetry. Since SPT states are invertible, they form
a group under the stacking operation Xg. This implies
that the modular extensions of the SFC should also form
a group under the stacking operation. So checking if the
modular extensions of the SFC have a group structure is
a way to find support for our conjecture.

However, in this section, we will first discuss such
stacking operation and group structure from a physical
point of view. We will only consider bosonic SPT states.

It has been proposed that the bosonic SPT states
are described by group cohomology H1[G, U(1)]1820.
However, it has not been shown that those bosonic SPT
states form a group under stacking operation. Here we
will fill this gap. An ideal bosonic SPT state of symmetry
G in d 4 1D is described the following path integral

Z:Z H Va+1(9is 95, ) (12)
{g:} {ég-}

where v411(9i, 95, ) is a function G4*! — U(1), which
is a cocycle v4,1 € H¥L[G,U(1)]. Here the space-time
is a complex whose vertices are labeled by 4,7, ---, and
II (oo } is the product over all the simplices of the space-
time complex. Also ) {9} is a sum over all g; on each
vertex.

Now consider the stacking of two SPT states described
by cocycle v}, and vy ;:

Z = Z H Vél—&-l(g;’g;'v"')V(/i/+1(gglag;/v"')'

{9i.9)} {i.d, }
(13)

Such a stacked state has a symmetry GxG andisa GXG
SPT state.

Now let us add a term to break the G x G-symmetry
to G-symmetry and consider

Z = Z H V&+1(g£ag;7'”)l/g+l(g£/,g;‘/7"')x
{9597} {isds }

| (14)
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where |¢’ — ¢”| is an invariant distance between group
elements. As we change U = 0 to U = +o00, the
stacked system changes into the system for an ideal
SPT state described by the cocycle vgi1(gs, 95, ) =
Vy1(9is9js - Wi41(9i, g5, -+ ). If such a deformation
does not cause any phase transition, then we can show
that the stacking of a v, ,-SPT state with a v} _-SPT
state give rise to a vg11 = v, v, -SPT state. Thus,
the key to show the stacking operation to give rise to the
group structure for the SPT states, is to show the theory
eqn. (14) has no phase transition as we change U = 0 to
U = +o0.



To show there is no phase transition, we put the system
on a closed space-time with no boundary, say S¢+!. In
this case, H{ihj,m 1 V&Jrl(g;mgg'? e )V(/i/+1(g7/,'/7 g;’,7 e ) = 17
since v, , and v],, are cocycles. Thus the path integral
(14) is reduced to

7= % Lot = (0 ooy,
g

{99!} @
(15)

where N, is the number of vertices and |G| the order of
the symmetry group. We see that the free energy density

f=-— lim InZ/N, (16)
N, —00
is a smooth function of U for U € [0, 00). There is indeed
no phase transition.

The above result is highly non trivial from a categori-
cal point of view. Consider two 241D bosonic SPT states
described by two modular extensions M’ and M” of
Rep(G). The natural tensor product M’ K M" is not
a modular extension of Rep(G), but a modular exten-
sion of Rep(G) W Rep(G) = Rep(G x G). So, M' K M”
describes a G x G-SPT state. According to the above dis-
cussion, we need to break the G x G-symmetry down to
the G-symmetry to obtain the G-SPT state. Such a sym-
metry breaking process correspond to the so call “anyon
condensation” in category theory. We will discuss such
anyon condensation later. The stacking operation Mg,
with such a symmetry breaking process included, is the
correct stacking operation that maintains the symmetry

G.

C. Mathematical construction of the stacking
operation

We have conjectured that a 2+1D topological order
with symmetry & is classified by (C, Mc,¢), where C is a
UMTC/¢ , Mc is a modular extension of C, and c is the
central charge. If we have another topological order of
the same symmetry £ described by (C', Mc/, '), stacking
(C,Mc,c) and (C', M/, ') should give a third topologi-
cal order described by similar data (C"”, Mcr,c"”):

(C,Mc,c) &g (CI,MC/,C/) = (C”,Mc//,cu) (17)

In this section, we will show that such a stacking oper-
ation can be defined mathematically. This is an evidence
supporting our Conjecture 4. We like to point out that
a special case of the above result for C=C" =C" =& =
Rep(G) was discussed in section VIB.

To define K¢ mathematically, first, we like to introduce

Definition 7. A condensable algebra in a UBFC C is a
triple (A,m,n), A€ C,m: A®A - A, n:1— A
satisfying

e Associative: m(idg ®m) = m(m ®id4)
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e Unit: m(n®id) = m(ida ®n) =ida
e Isometric: mmt = idy

e Connected: Hom(1,4) =C

e Commutative: mcy 4 =m

Physically, such an condensable algebra A is a compos-
ite self-bosonic anyon satisfies additional conditions such
that one can condense A to obtain another topological
phase.

Definition 8. A (left) module over a condensable alge-
bra (A,m,n) in C is a pair (X,p), X €C,p: A®X — X
satisfying

p(ida ®p) = p(m ®idar),
p(n®idpy) = idy - (18)

It is further a local module if

PCM,ACAM = P-

We denote the category of left A modules by C4. A
left module (X, p) is turned into a right module via the
braiding, (X, pcx .a) or (X, pc,'y), and thus an A-A bi-
module. The relative tensor functor ®4 of bimodules
then turns C4 into a fusion category. (This is known as
a-induction in subfactor context.) In general there can
be two monoidal structures on C4, since there are two
ways to turn a left module into a bimodule (usually we
pick one for definiteness when considering C4 as a fusion
category). The two monoidal structures coincide for the
fusion subcategory CY of local A modules. Moreover, C4
inherited the braiding from C and is also a UBFC. The lo-
cal modules are nothing but the anyons in the topological
phases after condensing A.

Lemma 1 (DMNO?36).

) _ dim(C)
If C is a UMTC, then so is CY, and
) dim(C)
0y _
dlm(cA) = dim(A)2 .

A non-commutative algebra A is also of interest. We
have the left center A; of A, the maximal subalgebra such
that mca, 4 = m, and the right center A,, the maximal
subalgebra such that mca 4, = m. A; and A, are com-
mutative subalgebras, thus condensable.

Theorem 5 (FFRS®7). There is a canonical equivalence
between the categories of local modules over the left and
right centers, C§ = CY .

Definition 9. The Drinfeld center Z(A) of a monoidal
category A is a monoidal category with objects as pairs
(X € Abx,_), where bx_ : X ® — - — ® X are
half-braidings that satisfy similar conditions as braidings.
Morphisms and the tensor product are naturally defined.



Z(A) is a braided monoidal category. There is a for-
getful tensor functor for : Z(A) — A, (X,bx_) — X
that forgets the half-braidings.

Theorem 6 (Miiger®®). Z(A) isa UMTC if A is a fusion
category and dim(Z(A)) = dim(A)2.

Definition 10. Let C be a braided fusion category and
A a fusion category, a tensor functor F': C — A is called
a central functor if it factorizes through Z(A), i.e., there
exists a braided tensor functor F’ : C — Z(.A) such that
F = F'fory.

Lemma 2 (DMNO?®%). Let F : C — A be a central
functor, and R : A — C the right adjoint functor of F.
Then the object A = R(1) € C has a canonical structure
of condensable algebra. C4 is monoidally equivalent to
the image of F, i.e. the smallest fusion subcategory of A
containing F'(C).

Example 1. If C is a UBFC, it is naturally embedded
into Z(C), so is C. Therefore, CKC < Z(C). Compose
this embedding with the forgetful functor forec : Z(C) —
C we get a central functor

CRC—C
XXY — XQ®Y.

Let R be its right adjoint functor, we obtain a condens-
able algebra Lc := R(1) = @;(i Xi) € CXC (i denotes
the dual object, or anti-particle of i) and C = (CXC)p..,
dim(L¢) = dim(C). In particular, for a symmetric cat-
egory £, Lg is a condensable algebra in £ X &, and
E=(ERE), = (ERE)], for £ is symmetric, all Leg-
modules are local. Condensing L¢g is nothing but break-

ing the symmetry from £ X € to &.

Now, we are ready to define the stacking operation for
UMTC ¢’s as well as their modular extensions.

Definition 11. Let C,D be UMTC ¢’s, and Mc, Mp
their modular extensions. The stacking is defined by:

CR:D:=(CRD),, MecRe Mp:=(Mc8Mp)),

Note that in Ref. 39, the tensor product K¢ for
UMTC ¢’s is defined as (CX D)r.. For UMTC ¢’s the
two definitions coincide (C D)} = (CK D)y, for Le
lies in the centralizer of C X D which is € X €. But for
the modular extensions we have to take the unusual def-
inition above.

Theorem 7. CX¢ D is a UMTC ¢, and M¢ g Mp is
a modular extension of C K¢ D.

Proof. The embeddings € = (EK &)}, — (CR D)), =
CWe D — (Mc B Mp)) = Mc Ke Mp are obvious.
So CXg D is a UBFC over £. Also
dim(CX D)

dim(Lg)

dim(C) dim(D)
dim(&)

dim(C R D) =
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and M¢ Re Mp is a UMTC,

dim(./\/lc X Mp)

dim(Mce Kg Mp) = dim(Le)?

= dim(C) dim(D).

Thus, M¢ Keg Mp is a modular extension of CXe D. [

Take D = £. Note that C Kg &€ = C. Therefore, for
any modular extension Mg of £, M Keg Mg is still a
modular extension of C. In the following we want to
show the inverse, that one can extract the “difference”, a

modular extension of £, between two modular extensions
of C.

Lemma 3. We have (CK ()9, = C&™.

Proof. (CKC)p, is equivalent to C (as a fusion category).
Moreover, for X € C the equivalence gives the free mod-
ule Le®(XX1) 2 Le®(1KX). Le®(XK1)is alocal Le
module if and only if XX1 centralize Le. This is the same
as X € C¢™. Therefore we have (CKC)9 = C&™. O

Theorem 8. let M and M’ be two modular extensions
of the UMTC ¢ C. There exists a unique K € My (€)
such that K Xe M = M’. Such K is given by

= (M EM)]..

Proof. K is a modular extension of £  This follows
Lemma 3, that £ = C& = (CX ()}, is a full sub-
category of K. K is a UMTC by construction, and

dim () = LGOI — iy (£)?,

To show that K = (M'KM) . satisfies M' = KR M,
note that M’ = M'KVec = M'K(M @M)%H. It suffies
that

(M RIE Mg, = (M BRI, 8 M,

=MRMK M)(()chl)@)(l&Ls)‘

This follows that 1 X Ly and (Le X 1) ®
left and right centers of the algebra (L¢X1)®
If M =KRg M= (KKM)]_, then

(1X Lg) are
(1X Lyy).

K=KRMRM)g;,, = K”RMEM) 515
= (KR M)RM]?_ =

®(1KLc)
(M'X M)LC.

It is similar here that 1 X L and (Le X 1) ® (1 X L¢)
are the left and right centers of the algebra (Lg K1) ®
(1 X Laq). This proves the uniqueness of K.

O

Let us list several consequences of Theorem 8.
Theorem 9. M.,;(€) forms an finite abelian group.

Proof. Firstly, there exists at least one modular exten-
sion of a symmetric fusion category £, the Drinfeld center
Z(E). So the set Mz (€) is not empty. The multipli-
cation is given by the stacking Xg¢. It is easy to verify



that the stacking K¢ for modular extensions is associa-
tive and commutative. To show that they form a group
we only need to find out the identity and inverse. In
this case K = (M' R M)9 . = M’ Kg M, Theorem 8 be-
comes M'Mg MXg M = M’, for any modular extensions
./\/l, M of €. ThuS, W&g./\/ll = W&gM'&gﬂ@gM =
MKXe M, ie. MXg M, is the same category for any
extension M, which turns out to be Z(€). It is exactly
the identity element. It is then obvious that the inverse
of M is M. The finiteness follows from Ref. 32. O

Example 2. For bosonic case we find that
Met(Rep(G)) = H3*(G,U(1)), which is discussed
in more detail in the next subsection. For fermionic
case a general group cohomological classification is
still lacking. =~ We know some simple ones such as
Mewt(sRep(Zg)) = Zi6, which agrees with Kitaev’s
16-fold way®.

Theorem 10. For a UMTC ¢ C, if the modular exten-
sions exist, M.(C) form a M., (E)-torsor. In particu-

lar, |Mext(c)| = |Mext(5)|-

Proof. The action is given by the stacking X¢. For any
two extensions M, M’, there is a unique extension K of
&, such that M K¢ K = M’'. To see Z(€) acts trivially,
note that M’ X Z(g) = MK KXg Z(g) = MK K=
M’ holds for any M’. Due to uniqueness we also know
that only Z¢ acts trivially. Thus, the action is free and
transitive. O

This means that for any modular extension of C, stack-
ing with a nontrivial modular extensions of £, one always
obtains a different modular extension of C; on the other
hand, starting with a particular modular extension of C,
all the other modular extensions can be generated by
staking modular extensions of £ (in other words, there is
only on orbit). However, in general, there is no preferred
choice of the starting modular extension, unless C is the
form Cyp X & where Cy is a UMTC.

D. Modular extensions of Rep(G)

We set £ = Rep(G) throughout this subsection. Let
(M, tp) be a modular extension of Rep(G). ¢ is the
embedding tnq : £ — M that we need to consider ex-
plicitly in this subsection. The algebra A = Fun(G) is
a condensable algebra in Rep(G) and also a condensable
algebra in M. Moreover, A is a Lagrangian algebra in
M because (dim A)? = |G|? = (dim Rep(G))? = dim M.
Therefore, M ~ Z(M4), where M4 is the category of
right A-modules in M. In other words, M describes
the bulk excitations in a 241D topological phase with a
gapped boundary (see Fig. 3). Moreover, the fusion cate-
gory M4 is pointed and equipped with a canonical fully
faithful G-grading®?, which means that

Ma =&gec(Ma)g, (Ma)g >~ Vec, Vg € G,
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e € Rep(G) c M

M a

FIG. 3. Consider a physical situation in which the excitations
in the 2 4+ 1D bulk are given by a modular extension M of
Rep(G), and those on the gapped boundary by the UFC M 4.
Consider a simple particle e € Rep(G) in the bulk moving
toward the boundary. The bulk-to-boundary map is given by
the central functor — ® A : M — M4, which restricted to
Rep(G) is nothing but the forgetful functor F : Rep(G) —
Vec. Let x be a simple excitation in M 4 sitting next to F'(e).
We move F'(e) along the semicircle 71 (defined by the half-
braiding), then move along the semicircle 2 (defined by the
symmetric braiding in the trivial phase Vec).

and ®: (Ma)g R (Ma)y = (Ma)gh.

Let us recall the construction of this G-grading. The
physical meaning of acquiring a G-grading on M 4 after
condensing the algebra A = Fun(G) in M is depicted in
Figure 3. The process in Figure 3 defines the isomorphism
Fle) ®4 2z -2 2 ®4 F(e) = F(e) ®4 @, which further
gives a monoidal automorphism ¢(x) € Aut(F) = G of
the fiber functor F' : Rep(G) — Vec.

Since ¢ is an isomorphism, the associator of the
monoidal category M4 determines a unique w(aq,,,,) €
H3(G,U(1)) such that M4 ~ Vecf, as G-graded fusion
categories.

Theorem 11. The map (M, tr1) = wia,.,,) defines a
group isomorphism M..:(Rep(G)) ~ H*(G,U(1)). In
particular, we have

(Z(Vee: ), 1y Re (Z(Vec?), tuy) = (Z(Vec ), 10, 1.

For the proof and more related details, see also Ref. 30.

E. Relation to numerical calculations

In Section V we proposed another way to characterise
GQLs, using the data (N2, 5,; N7, s;; NI, Sp; ¢) which
is more friendly in numerical calculations. We would like
to investigate how to calculate the stacking operation in
terms of these data.

Assuming that C and C’ can be characterized by data
(N7, s;) and (N7, ). Let (N7, sP) be the data that
characterizes the stacked UMTC ¢ D = C K¢ C'.



To calculate (N ,? "7 sP), let us first construct
Nyl = NJINGT L s = si+ s (19)

Note that, the above data describes a UMTC ege D' =
CXC (i.e. with centralizer £ K E), which is not what we
want. We need reduce centralizer from EXE to £. This is
the G X G to G process and C-C’ coupling, or condensing
the L¢ algebra, as discussed above
To do the EXE to & reduction (i.e. to obtain the real
stacking operation X¢), we can introduce an equivalence
relation. Noting that the excitations in D' = C K C’ are
labeled by 4’ = i X ¢/, the equivalence relation is
it ~jj', ifii’ ® Le = j5j' ® Le. (20)
where Le = ®qaa,a € £. In the simple case of abelian
groups, where all the a’s are abelian particles, the equiv-
alence relation reduces to
(a®i)i’ ~i(a®i), Vi€l iel,ac& (21)
Mathematically, this amounts to consider only the free
local Lg modules. The equivalent classes [ii'] are then
some composite anyons in D = C K¢ C’
[ii]=k®la®---, for some k,l,--- €D. (22)
In other words, they form a fusion sub ring of D. More-
over, the spin of 77’ is the same as the direct summands

Sii/:SEZSZD:“‘ (23>

Since it is limited to a subset of data of UMTC ¢’s, we
can only give these necessary conditions. However, as we
already give a large list of GQLs in terms of these data,
they are usually enough to pick the resulting CXe C’ from
the list.

VII. HOW TO CALCULATE THE MODULAR
EXTENSION OF A UMTC ¢

A. A naive calculation

How do we calculate the modular extension M of
UMTC ¢ C from the data of C? Actually, we do not know
how to do that. So here, we will follow a closely related
Conjecture 6, and calculate instead (NZ’,Sy,c) (that
fully characterize M) from the data (N, 3.; N, s;)
(that partially characterize C). In this section, we will
describe such a calculation.

We note that all the simple objects (particles) in C
are contained in M as simple objects, and M may con-
tain some extra simple objects. Assume that the particle
labels of M are {I,J,---} = {i,4,...,2,y,...}, where
we use 1i,j,--- to label the particles in C and z,vy,- -
to label the additional particles (not in C). Also let us
use a, b, --- to label the simple objects in the centralizer
of C: €& = C&. Let N}/, Sr be the fusion coefficients
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and the spins for M, and N}, s; be the fusion coeffi-
cients and the spins for C. The idea is to find as many
conditions on (N7, S;) as possible, and use those con-
ditions to solve for (N7, Sr). Since the data (NL/,S;)
describe the UMTC M, they should satisfy all the con-
ditions discussed in Ref. 11. On the other hand, as a
modular extension of C, (N4, S;) also satisfy some ad-
ditional conditions. Here, we will discuss those additional
conditions.

First, the modular extension M has a fixed total quan-
tum dimension.

dim(M) = dim(€) dim(C). (24)

In other words

dodi=>d2Y d:. (25)

IeM acé ieC

Physically, the modular extension M is obtained by
“gauging” the symmetry &£ in C (i.e. adding the sym-
metry twists of £). So the additional particles x,y, - -
correspond to the symmetry twists. Fusing an original
particle ¢ € C to a symmetry twist « ¢ C still give us a
symmetry twist. Thus

N = N#t = N1 = 0, (26)
Therefore, N; for i € C is block diagonal:
A/i - Ni D Nia (27)

where (N;)jx =N = N}7 and (N;),y = N¥.
If we pick a charge conjugation for the additional par-
ticles x — &, the conditions for fusion rules reduce to

N =Ny = N7 = N,
S ONINGT = NFNIY. (28)

keC 2¢C

With a choice of charge conjugation, it is enough to con-
struct (or search for) the matrices N; and N*¥ to deter-
mine all the extended fusion rules N/.

Besides the general condition (28), there are also some
simple constraints on N; that may speed up the numerical
search. Firstly, observe that (28) is the same as

NNy = NI R (29)
keC

where ¢,j,k € F. This means that N; satisfy the same
fusion algebra as N;, and N,? = N, is the structure con-
stant; therefore, the eigenvalues of N; must be a subset
of the eigenvalues of N;.

Secondly, since Zy CN;”dy = d;d;, by Perron-
Frobenius theorem, we know that d; is the largest eigen-
value of N;, with eigenvector v,v, = d,. (d; is also the
largest absolute values of the eigenvalues of Nl) Note

that N;NZ = J\Afll\A/';7 N; = ]\AfZ-T. Thus, d? is the largest



eigenvalue of the positive semi-definite Hermitian matrix
NJNi. For any unit vector v we have vTNiTNiv < d?, in
particular,

(N Ni)ao = Y (Ni7)? < 2. (30)

Y

The above result is very helpful to reduce the scope of
numerical search.

Once we find the fusion rules, N/, we can then use
the rational conditions and other conditions to determine
the spins S; (for details, see Ref. 11). The set of data
(NE,Sp) that satisfy all the conditions give us the set
of modular extensions.

The above proposed calculation for modular extensions
is quite expensive. If the quantum dimensions of the par-
ticles in C are all equal to 1: d; = 1, then there is another
much cheaper way to calculate the fusion coefficient N7’
of the modular extension M. Such an approach is ex-
plained in Appendix B. We will also use such an approach
in our calculation.

Last, we would like to mention that two sets of data
(NE . Sp) and (N7, S;) describe the same modular ex-
tension of C, if they only differ by a permutation of in-
dices € M but = ¢ C. So some times, two sets of data
(N, Sr) and (NE,S;) can describe different modular
extensions, even through they describe the same UMTC.
(Two sets of data (ML, Sr) and (NE7,Sy) describe the
same UMTC, if they are only different by a permutation
of indices I € M.)

Why we use such a permutation in the calculation of
modular extensions. (which is the ME-equivalence rela-
tion discussed before)? This is because when we consid-
ering modular extensions, the particle z € M but z ¢ C
correspond to symmetry twists. They are extrinsic exci-
tations that do not appear in the finite energy spectrum
of the Hamiltonian. While the particle ¢ € C are intrinsic
excitations that do appear in the finite energy spectrum
of the Hamiltonian. So z ¢ C and i € C are physically dis-
tinct and we do not allow permutations that mix them.
Also we should not permute the particles a € £, because
they correspond to symmetries. We should not mix, for
example, the Zs symmetry of exchange layers and the Zs
symmetry of 180° spin rotation.

B. The limitations of the naive calculation

Since a UMTC,¢ C is not modular, the data
(N2 5,3 N, s;) may not fully characterize C. To fully
characterize C, we need to use additional data, such as
the F-tensor and the R-tensor®!'!.

In this paper, we will not use those additional data.
As a result, the data (N ab §a,le ,S;) may correspond
to several dlfferent UMT C se C’s. In other words,
(Ngb, Sa; Nk , 8;) is a one-to-many labeling of UMTC /¢’s.

So in our naive calculatlon When we calculate the mod-
ular extensions of (N, 5,; N/ 5 8i), we may actually cal-
culate the modular extension of several different C’s that
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TABLE II. The bottom two rows correspond to the two mod-

1
ular extensions of Rep(Z2) (denoted by N® = 232). Thus
we have two different trivial topological orders with Z2 sym-

metry in 241D (i.e. two Z2 SPT states). We use Ncle)| to

label UMTC /¢’s, where © = D713, e?™iid? = |@|e?™i¢/8
and D* =Y, d;.

Ncle‘ D?|di,ds,--- | 81,82, -+ | comment

2 | 2 |11 0,0 Rep(Z)

48 | 4 |1,1,1,1 [0,0,0,% |Z; gauge

48 | 4 1,1,1,1 |0,0,%,2 |double semion

TABLE IIL The two modular extensions of N1©! = 35, 352
has a centralizer Rep(Z2). Thus we have two topological or-
ders with Z> symmetry in 241D which has only one type of
spin-1/3 topological excitations.

Nc‘e‘ D? dy,ds,--- 81,82, " comment
32 |6 |1,1,2 0,0,% K:(jl ;1)
59 |12 [1,1,2,¢5,6 =v3(0,0,1, 2,5 {(A41,4)

58 112(1,1,2,¢4, ¢4 0, 0,;,3,%

are described by the same data (N2, 5,; N7, s;). But for
UMTC ¢’s that can be fully characterized by the data
(N2 5,3 N, s;), our calculation produce the modular
extensions of a single C. For example, the naive cal-
culation can obtain the correct modular extensions of
C = Rep(G) and C = sRep(G/), When G and Gf are
abelian groups, or srmple finite groups?®

If the (N ab 5. N;?,s;) happen to descrlbe two differ-
ent UMTC ¢’s, we ﬁnd that our naive calculation will
produce the modular extensions for both of UMTC ¢’s
(see Section VIIID). So by computing the modular exten-
sions of (N2 sa,Nk ,8i), we can tell if (N2, 5,;N,”,s;)
corresponds to none, one, two, etc UMTC se’s. This leads
to the Conjecture 6 that (N, 5,; N} & I si, NI Sr;¢) can
fully and one-to-one classify GQLs in 2+1D.

VIII. EXAMPLES OF 241D SET ORDERS AND

SPT ORDERS

In this section, we will discuss simple examples of
UMTC/¢ C’s, and their modular extensions M. The
triple (C, M, c) describe a topologically ordered or SPT
phase. A single UMTC ¢ C only describes the set of bulk
topological excitations, which correspond to topologically
ordered states up to invertible ones.

However, in this section we will not discuss exam-
ples of UMTC/e C. What we really do is to dis-
cuss examples of the solutions (N, 5,; Ny, s;) (which
are not really UMTC ¢’s, but closely related). We
will also discuss the modular extensions (N7, Sr;e) of
(N2 543 N si). (N2, 5.5 N si) will correspond to



UMTC¢ C if it has modular extensions (N7, Ss;c).
This allows us to classify GQLs in terms of the data
(Ncaba§a;N;J7SiaN]I(JaSI;C)'

A. 75 bosonic SPT states

Tables XXII, XXIII, and XXIV list the solu-
tions (N2%,5,; N,,s;) when (N2 3,) describes a SFC
Rep(Z2). The table contains all UMTC gep(z,)’s but
may contain extra fake entries. Physically, they describe
possible sets of bulk excitations for Z5-SET orders of
bosonic systems. The sets of bulk excitations are listed
by their quantum dimensions d; and spins s;.

For example, let us consider the entry ngl = 2621 in
Table XXII. Such an entry has a central charge ¢ = 0.
Also N = 2, hence the Z5-SET state has two types of
bulk excitations both with d; = 1 and s; = 0. Both types
of excitations are local excitations; one is the trivial type
and the other carries an Z, charge.

The first question that we like to ask is that “is
such an entry a fake entry, or it corresponds to some
Zo-symmetric GQL’s?” If it corresponds to some Zs-
symmetric GQL’s, how many distinct Z-symmetric
GQL phases that it corresponds to? In other word, how
many distinct Zs-symmetric GQL phases are there, that
share the same set of bulk topological excitations de-

1
scribed by the entry 282?
Both questions can be answered by computing the

modular extensions of 26é (which is also denoted as
Rep(Z2)). We find that the modular extensions exist,
and thus Rep(Z3) does correspond to some Zs-symmetric
GQL’s. In fact, one of the Zj-symmetric GQL’s is
the trivial product state with Zs symmetry. Other Zs-
symmetric GQL’s are Zy SPT states.

After a numerical calculation, we find that there are
only two different modular extensions of Rep(Zz) (see
Table II). Thus there are two distinct Zs-symmetric
GQL phases whose bulk excitations are described by
the Rep(Zs2). The first one corresponds to the trivial
product states whose modular extension is the Z; gauge
theory which has four types of particles with (d;,s;) =
(1,0),(1,0),(1,0), (1, %) (Gauging the Z; symmetry of
the trivial product state gives rise to a Zy gauge the-
ory.) The second one corresponds to the only non-trivial
Z5 bosonic SPT state in 2+1D, whose modular exten-
sion is the double-semion theory which has four types
of particles with (d;,s;) = (1,0),(1,0),(1,3),(1,—3).
(Gauging the Zs symmetry of the Zy-SPT state gives
rise to a double-semion theory?!.) So the Z-SPT phases
are classified by Zs, reproducing the group cohomology
result!® 29, In general, the modular extensions of Rep(G)
correspond to the bosonic SPT states in 241D with sym-
metry G.
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TABLE IV. The fusion rule of the N!®' = 3% Z,-SET order.
The particle 1 carries the Zs-charge 0, and the particle s
carries the Zs-charge 1. From the table, we see that c ® o =
1dsdo.

si |00 3

d; |11 2
35 |1

5 s o
1|1 s e

s |s 1 o

o |lococ 1dsho

TABLE V. The fusion rules of the two Nc|®| = 4? Z5 symme-
try enriched topological orders with identical d; and s;. We
see that one has a Z» X Z5 fusion rule and the other has a Z4
fusion rule.

si |0 0 X 1 s (001 2
d[1 1 1 1 d; (1111
42|00 01 10 11 £lo21 3
00|00 01 10 11 0/o0213
01 (01 00 11 10 22031
10 |10 11 00 01 11320
11|11 10 01 00 3310 2

B. Z5-SET orders for bosonic systems

The entry Nl@‘ = 3521 in Table XXII corresponds to
more non-trivial UMTC gep(z,)- It describes the bulk
excitations of Zo-SET orders which has only one type of
non-trivial topological excitation(with quantum dimen-
sion d = 2 and spin s = 1/3, see Table IV). The other
two types of excitations are local excitations with Zs-

charge 0 and 1. We find that 3g21 has modular extensions
and hence is not a fake entry.

To see how many SET orders that have such set of
bulk excitations, we need to compute how many mod-

ular extensions are there for 3§5. We find that 3321 has
two modular extensions (see Table IIT). Thus there are
two Z5-SET orders with the above mentioned bulk exci-
tations. It is not an accident that the number of Z5-SET
orders with the same set of bulk excitations is the same
as the number of Z5 SPT states. This is because the dif-
ferent Z5-SET orders with a fixed set of bulk excitations
are generated by stacking with Zy SPT states.

We would like to point out that for any G-SET state,
if we break the symmetry, the G-SET state will reduce
to a topologically ordered state described by a UMTC.
In fact, the different G-SET states described by the
same UMTC ¢ (i.e. with the same set of bulk excita-
tions) will reduce to the same topologically ordered state
(i.e. the same UMTC). In Appendix D, we discussed
such a symmetry breaking process and how to compute
UMTC from UMTCs. We found that the two Z;-SET



1
orders from 3g2 reduce to an abelian topological order

-1
. This is indicated

2
described by a K-matrix <

2

XXIL In other place, we use SB:NZ or SB:Nf'(§) to in-
dicate the reduced topological order after the symmetry
breaking (for bosonic or fermionic cases). (The topolog-
ical orders described by NP or N () are given by the
tables in Ref. 11 or Ref. 14.)

As we have mentioned, there are two Z5-SET orders
with the same bulk excitations. But how to realize those
Z5-SET orders? We find that one of the Z>-SET orders

by SB:K = in the comment column of Table

-1 2
(same as the reduced topological order after symmetry
breaking), where the Zs symmetry is the layer-exchange
symmetry. The quasiparticles are labeled by the I-vectors

2 -1
is the double layer FQH state with K-matrix < >

L

l = . The two non-trivial quasiparticles are given

SONCI

whose spins are all equal to %
Since the layer-exchange Z, symmetry exchanges [y

2
by

1 0
and [o, we see that the two excitations 0) <1> al-

ways have the same energy. Despite the Z5 symmetry has
no 2-dim irreducible representations, the above spin-1/3
topological excitations has an exact two-fold degeneracy
due to the Zy layer-exchange symmetry. This effect is
an interplay between the long-range entanglement and
the symmetry: degeneracy in excitations may not always
arise from high dimensional irreducible representations
of the symmetry.

Such two degenerate excitations are viewed as one type
of topological excitations with quantum dimension d = 2
(for the two-fold degeneracy) and spin s = % (see Ta-
ble XXII). The Z> symmetry twist in such a double-layer
state carry a non-abelian statistics with quantum dimen-
sion d = /3. In fact, there are two such Z, symmetry
twists whose spin differ by 1/2.

The other Z5-SET order can be viewed as the above

double layer FQH state K = stacked with a

-1
Zy SPT state.

C. Two other Z>-SET orders for bosonic systems

The fourth and fifth entries in Table XXII describe
the bulk excitations of two other Z5-SET orders. Those
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1
TABLE VI. The four modular extensions of Ncle‘ = 562 with

1
Zo X Zo fusion. 582 has a centralizer Rep(Z2). The first pair
and the second pair turns out to be equivalent.

NCI(-)( D?|dy,dg,- - 81,82, - comment
59 | 8 [1x42  [0,01 L0

96 | 16 |1xa2.¢hxa|00, 4 4048 4 7. & 135, , R3P,
9(})3 16 |1 x4,2.¢d xa]o0,0, 4,10 3 13 11 3 333/2&3]23/2
95; 16 |1 x4,2,¢d xa 0,003,104, 2. &, & 3{3/2&3}_31/2
95 |16 [1xazcixajo0d b0 & 5 1 [305, K35,

TABLE VII. The four modular extensions of NC‘@‘ = 5? with
1
Zo X Zo fusion. 552 has a centralizer Rep(Z2).

NI°T p? di,da,-+- | S1,S2, " comment

T
572 | 8 [1x4,2  [0,0,3,1,1

9P |16 [1xazchxalo0d. 4.3 & & 5 5 (302 K30,
9]13 16 [1x4,2,¢3 xa|o0,0, 4,5, 4,13 13 5 5 3?3/2&353/2
9{3 16 [1x4,2,¢3 x4|0,0, 4,5, 4,15, 3 T 11 3131/2&3?/2
9P |16 |1xazchxao03.4.8 3.8 8. % (35,835,

bulk excitations have identical s; and d;, but they have
different fusion rules N,” (see Table V).

Both entries have two modular extensions, and corre-
spond to two SET orders. Among the two SET orders
for the Zy x Z5 fusion rule, one of them is obtained by
stacking a Zy neutral v = 1/2 Laughlin state with a triv-
ial Z5 product state. The other is obtained by stacking a
Zs neutral v = 1/2 Laughlin state with a non-trivial Z,
SPT state.

The entry with Z, fusion rule also correspond to two
SET orders. They are obtained by stacking a Zs charged
v = 1/2 Laughlin state with a trivial or a non-trivial
Z5 SPT state. Here, charged means that the particles
forming the v = 1/2 Laughlin state carry Zs-charge 1.
In this case, the anyon in the v = 1/2 Laughlin state
carries a fractional Zs-charge 1/2. So the fusion of two
such anyons give us a Zs-charge 1 excitation instead of
a trivial neutral excitation. This leads to the Z, fusion
rule.

D. The rank N =5 Z5-SET orders for bosonic
systems

The first and the second entries in Table XXIII de-
scribe two N = 5 UMTC,Rep(z,)’s.  They describe
two different sets of bulk excitations for Z,-SET orders.
Those bulk excitations have identical s; and d;, but they
have different fusion rules N,’: the 4 d = 1 particles
have a Z5 x Z5 fusion rule for the first entry, and they
have a Z, fusion rule for the second entry (as indicated
by F:Zy x Z3 or F:Z, in the comment column of Table
XXIIT).




TABLE VIII. The first and the third entries in Table VI have
different fusion rules, despite they have the same (d;, s;

~
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TABLE IX. The third and the fourth entries in Table VII
have different fusion rules, despite they have the same (d;, s;).

si100 3 3 0 % 1§ 1§ 18 si[00 3 3 3 % 1§ 1 18
di|1 111 2 G G G G di|1 111 2 G G G G
9112 3 4 5 6 7 8 9 9111 2 3 4 5 6 7 8 9
1|12 3 4 5 6 7 8 9 1123 4 5 6 7 8 9
2|12 14 3 5 8 9 6 7 2(2 14 3 5 8 9 6 7
33412 5 8 7 6 9 3|1341 2 5 8 7 6 9
4143 21 5 6 9 8 7 4|43 21 5 6 9 8 7
5|/5555 1520304 749 6058 769 658 5(/5555 1520304 709 658 7TG9 658
6|6 886 709 14 5 2®3 5 6|6 88 6 709 1®4 5 2®3 5
TIT9 79 638 5 1®3 5 2d4 77979 638 5 1®3 5 234
8|86 6 8 709 203 5 1®4 5 8|8 6 6 8 709 203 5 144 5
919797 638 5 2®4 5 133 9|9 797 638 5 2®4 5 133
si]00 3 3 0 % 1 1§ 19 si[00 3 3 3 % 1 1. 18
di|1 111 2 3 : G G di|1 111 2 3 2 2 G
9112 3 4 5 6 7 8 9 9111 2 3 4 5 6 7 8 9
1|12 3 4 5 6 7 8 9 1123 4 5 6 7 8 9
2|12 14 3 5 8 9 6 7 2(2 14 3 5 8 9 6 7
33412 5 6 9 8 7 3|1341 2 5 6 9 8 7
414321 5 8 7 6 9 4|43 21 5 8 7 6 9
5|/5555 10520304 749 6058 769 658 5(/5555 1520304 749 608 7TG9 658
6|6 86 8 709 13 5 2®4 5 6|6 86 8 709 1®3 5 2®4 5
TIT9 97 638 5 1®4 5 233 7|7T997 638 5 1®4 5 203
8|8 6 8 6 709 204 5 1®3 5 8|8 6 86 709 204 5 1®3 5
99779 638 5 2®3 5 154 9|9 779 638 5 203 5 144

1. The first entry in Table XXIIT

Let us compute the modular extensions of the first en-

try (i.e. 585 with Zs x Zs fusion). Since the total quan-
tum dimension of the modular extensions is D? = 16, the
modular extensions must have rank N = 13 or less (since
quantum dimension d > 1).

Now we would like to show N = 13 is not possible.
If a modular extension has N = 13, then it must have
12 particles (labeled by a = 1,---,12) with quantum
dimension d, = 1, and one particle (labeled by z) with
quantum dimension d, = 2, so that 12 x 12422 = D? =
16. In this case, we must have the fusion rule

a@r=z, zRr=10203¢4. (32)

where x ® = is determined by the fusion rule of the
UMTC, Rep(2,)- The above determines the fusion ma-
trix N, defined as (N;);; = N j“ The largest eigenvalue
of N, should be 2, the quantum dimension of x. Indeed,
we find that the largest eigenvalue of N, is 2. But we also
require that N, can be diagonalized by a unitary matrix
(which happens to be the S-matrix). N, fails such a test.
So N cannot be 13.

N also cannot be 12. If N = 12, then the modular
extension will have 10 particles (labeled by a = 1,--- , 10)

with quantum dimension d, = 1, one particle (labeled
by z) with quantum dimension d, = 2, and one particle
(labeled by y) with quantum dimension d, = v/2. The
fusion of 10 d, = 1 particles is described by an abelian
group Zyg or Zs X Zs. None of them contain Zs X Zy as
subgroup. Thus N = 12 is incompatible with the Zs x Zo
fusion of the first four d, = 1 particles.

We searched the modular extensions with N up to
11. We find four N = 9 modular extensions (see Table
VI), and thus the first entry corresponds to valid Z,-SET
states.

In fact one of the Z5-SET states is the Zs gauge theory
with a Z5 global symmetry, where the Z; symmetry ac-
tion exchange the Zs-charge e and the Zs-vortex m. The
degenerate e and m give rise to the (d,s) = (2,0) parti-
cle (the fifth particle in the table). The bound state of e
and m is a fermion f. It may carry the Zs-charge 0 or
1, which correspond to the third and the fourth particle
with (d,s) = (1,1/2) in the table.

However, from the discussion in the last few sections,
we know that a UMTC) gep(z,) always has 2 modular
extensions, corresponding to the 2 bosonic Z>-SPT states
in 24+1D. This seems contradictory with the above result

1
that the Z,-SET state, 562 with Z x Z5 fusion, has four
different modular extensions.



TABLE X. The fusion rules of the first and the second entries
in Table VII.

si[00 3 3 3 % 16 1 16
i1 111 2 1 1 1 1
9111 2 3 4 5 6 7 8 9
1(12 3 4 5 6 7 8 9
2|12 14 3 5 8 9 6 7
33412 5 8 7 6 9
414321 5 6 9 8 7
5|/5555 1020304 709 608 709 608
6|6 8 86 7TP9 14 5 2®3 5
7TIT9 79 6®8 5 103 5 204
8|86 6 8 TP9 203 5 194 5
919797 6@ 8 5 204 5 103
si[00 3 3 3 i 15 16 1o
di|1 111 2 (3 3 ;G
9111 2 3 4 5 6 7 8 9
1(12 3 4 5 6 7 8 9
2|12 14 3 5 8 9 6 7
3/341 2 5 8 7 6 9
414321 5 6 9 8 7
5|/5555 1020304 709 6068 709 608
6|6 8 86 7TD9 14 5 2®3 5
7TIT9 79 6®8 5 103 5 204
8|86 6 8 7T®9 203 5 194 5
919797 6®8 5 204 5 193

In fact, there is no contradiction. Here, we only use
(N7, si) to label different entries. However, a UMTC ¢

is fully characterized by (IVj; ,sz) plus the F-tensors and
the R-tensors. To see this point, we note that the Ising-
like UMTC NEZ =3B 'm =1,3,---,15 (with central

m/2’
charge ¢ = m/2) has three particles: 1, f with (dy,sy) =
(1,1/2), and o with (d, s,) = (v/2,m/16). Its R-tensor
is given by

Rl = -1, R =RI7=—im, (33)
oo miol _imy oo m?o1 smo,
BY7 = (~)"T e I Ry = ()T e
and some components of the F-tensor are given by
Fi7e = FigT7 = 1. (34)

The values of RS/ and R/ are not gauge invariant. But
if we fix the values of the F-tensor to be the ones given
above, this will fix the gauge, and we can treat RS/ and
Rf% as if they are gauge invariant quantities.

If we stack N =30 , and NP =37, , together, the
induced UMTC 3m/2®3ﬁ,/2 contains particles 1 = (1, 1),
2=(£f)3=(f1),4=(Lf), 5= (0,0"). Those 5
particles are closed under the fusion, and correspond to
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1

the 5 particles in UMTC Rep(2s) 5f3+m,. We note that

some components of the R-tensor of 35/2 X 35172 are

given by
(f1),(0.0") _ ploo”)(£1) _ _im
Booy "~ = o) -7,
RE}T i/) J(o,07) REZ Z,) (Lf ) im/. (35)

Taking (m,m') = (—1,1) and (1,—1), it is clear the
3?1/2 X 3{3/2 and 3{3/2 X 3]_31/2 give rise to two different

R-tensors that have identical (NN, ,ij ,8:). So the first entry

in Table XXIII (i.e. 5021 with Zy x Zs fusion) split into
two different entries if we include the R-tensors. Each
give rise to two modular extensions, and this is why we
got four modular extensions. In Table VI, the first two
modular extensions have the same (N,”, s;), F-tensor and
R-tensors when restricted to the first 5 particles. The
second pair of modular extensions also have the same
(N;?,s;), F-tensor and R-tensor when restricted to the
first 5 particles, but their R-tensor is different from that
of the first pair. However, note that under the exchange
of the two fermions, the R-tensor of the first pair becomes
that of the second pair.

We like to stress that Table VI is obtained using the
ME-equivalence relation, i.e. the different entries are dif-
ferent under the ME-equivalence relation (see Section V).
We see that for each fixed UMTC) Rep(z,) (i-e. for each

fixed set of (IV; 7 s;), F-tensor and R-tensor), there are
two modular extensions, which agrees with our general
result for modular extensions. However, if we ignore F-
tensor and R-tensor, then for each ﬁxed set of (N7, s;),

we get four modular extensions. This is because (N ,j )
is only a partial description of a UMTC gep(z,), and as
discussed above, in this case there are two ways to assign
F-tensor and R-tensor to them. This is why each fixed
(N}, s;) has four modular extensions, while each fixed

(N}, si, F, R) has only two modular extensions.

On the other hand, under the TO-equivalence relation
(see Section V), the two ways to assign F-tensor and
R-tensor are actually equivalent (related by exchanging
the two fermions), and the first entry in Table XXIII
corresponds to only one UMTC gep(z,)- Thus, the first
entry is equivalent to the third entry, and the second
entry is equivalent to the fourth entry in Table VI. So
the four entries of Table VI in fact represent only two
distinct Z5-SET orders.

One of the two Z5-SET orders have been studied ex-
tensively. It corresponds to Z; gauge theory with a Zs
global symmetry that exchanges the Zs-gauge-charge e
and the Z,-gauge-vortex m?2627,

2.  The second entry in Table XXIII

Next, we compute the modular extensions of the sec-
1
ond entry in Table XXIII (i.e. 562 with Z, fusion). Again,



we can use the same argument to show that modular ex-
tensions of rank 12 and above do not exist. We searched
the modular extensions with N up to 11, and find that
there is no modular extensions. So the second entry is not
realizable and does not correspond to any valid bosonic
Z5-SET in 24+1D. This is indicated by NR in the com-
ment column of Table XXIIT.

Naively, the (none existing) state from the second entry
is very similar to that from the first entry. It is also a Z5
gauge theory with a Z5 global symmetry that exchange
e and m. However, for the second entry, the f particles
(the third and the fourth particles) are assigned fraction
Zy-charge of +1/2. This leads to the Z, fusion rule. Our
result implies that such an assignment is not realizable

1
(or is illegal). It turns out that all the 5e's with Z4
fusion do not have modular extensions. They are not

realizable, and do not correspond to any 241D bosonic
Z5-SET orders.

8. The third entry in Table XXIII

Third, let us compute the modular extensions of the

third entry in Table XXIII (i.e. 5 with Zp x Zo fu-
sion). We find that the entry has four modular ex-
tensions. In fact, the entry corresponds to two dif-
ferent UMTC) Rep(z,)s, each with two modular exten-
sions, as implied by the two Zs- SPT states. The two
UMTC/Rep(ZZ)s have identical (N,”7,s;,¢), but differ-
ent F-tensors and R-tensors. Sometimes two different
UMTC ¢’s (with different F-tensors and the R-tensors)
can have the same (N,”, s;)’s. The third, seventh,. .., en-
tries of Table XXIII provide such examples. We like to
stress that this is different from the first entry in Table
XXIIT which corresponds to one UMTC gep(z,)-

To see those different F-tensors and R-tensors, we note

that one of the two 5% with Zs x Z, fusion has modular
extensions given by 3{3/2 ®3119/2 and 3133/2 XSSB/z. We find

1
the R-tensor for this first 5%2 with Zy x Z5 fusion is given
by

R(f 1),(o,0") _ — Rloo DAY _

(o,0") (o,0")
R = RO — (36)

1
The second 51 with Zg X Z9 fusion has modular exten-
sions given by 38 212 XZ} 72 and 33/2 &3?1/2. We find the

R-tensor for the second 5%2 with Zs x Zy fusion is given
by

(f1),(0,0") _ plo,o”),(f,1) _ -
R(ma’) R(a o’) =1,
Rig) "7 = Ry =1 (37)

We see that the two 5%21’5 with Zs X Z5 fusion are really
different UMTC Rep(z,)- Each 5% has two modular ex-
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TABLE XI. The three modular extensions of Rep(Z3).

NPT D2 dy, do, -+ | 51,82, - comment
35 [ 3,1 [0,00 Rep(Zs)
9% 19 [1x9 0,0,0,0,0,%,%,2 2 | Z3 gauge
95 | 9 |[1x9 0,0,0,5,5:5:5 579
9 |9 ]1x9  ]0,0,0,53,5,5,5:5

TABLE XII. The six modular extensions of Rep(S3).

Nclg‘ D? di,da, -+ S1,82,° - comment
351 6 [1,1,2 0,0,0 Rep(S3)
85 |36(1,1,2,2,2,2,3,3/0,0,0,0, 3,2,0,% |53 gauge
88 136(1,1,2,2,2,2,3,3 oooog,g,;g

85 |36(1,1,2,2,2,2,3,3/0,0,0,3,5,7,0,3 | (B4,2)
8¢ |361,1,2,2,2,2,3,3 ooo,g,g,g,i,g

87 |36(1,1,2,2,2,2,3,3/0,0,0,2,3,%,0,1 | (B4, —2)
8y |361,1,2,2,2,2,3,3(0,0,0,2,2,5 % 2

tensions, and that is why we have four entries in Table
VII.

Again, Table VII is obtained using the ME-equivalence
relation, and is not a table of GQLs. Under the TO-
equivalence relation, the third entry is equivalent to the
fourth entry of Table VII. So the four entries in Table
VII actually describe three different Zo-SET orders. This
has a very interesting consequence: The Zs-SET state de-
scribed by the third (or fourth) entry in VII, after stacked
with an Zs-SPT state, still remains in the same phase.
This is an example of the following general statement
made previously: The GQLs with bulk excitations de-
scribed by C are in one-to-one correspondence with the
quotient M, (C)/Aut(C) plus a central charge c. In such
an example Aut(C) is non-trivial.

1
It is worth noting here that for the second 5%, two
modular extensions 37, , K38, and 35, K37, , are ac-
tually equivalent UMTCs. This is an example that dif-
ferent embedings leads to different modular extensions.
1

For 3B Zip W 33/2 the first fermion in 5% is embedded
into 38 212 and the second fermion is embedded into 3:,])3/2,
whlle for 33 i X 38 1/2 the first fermion is embedded into
and the second fermion 1s embedded into . e
3/2 d th d fermion i bedded i 331/2 Th
equivalence between 37 1/2®33/2 and 33/2®3 1/2 that ex-
changes both fermions and symmetry twists fails to relate
the two embeddings, as they differ by a non-trivial auto-

1
morphism of 5% that exchanges only the two fermions.
This is an example that the Aut(C) action permutes the
modular extensions, as discussed in Section IV.



TABLE XIII. The 16 modular extensions of sRep(ZJ).

Ncle‘ D?|di,da,--- | s1, 82, -+ | comment
2 12 ]1,1 0,1 sRep(Z])
48 |4 |1,1,1,1 {0,1,0,0 |Z> gauge
47 |4 |1,1,1,1 |0,4, %L |F:Zy

42 | 4 |1,1,1,1 |0,1, 2,2 |F:Zy x 2,
48 | 4 |1,1,1,1 |0,4,2,2 |F:Z,

47 |4 |1,1,1,1 |0,1, 31 | FZy x 2,
4%, 14 11,1,1,1 |0,%,2,2 |F:24
48, 14 11,1,1,1 |0,%,2,3 1F:Z, x 2o
4%, 14 11,1,1,1 |0,3,L,% |F:Z,
309 | 4(1,L,G 0,%,% |p+ipSC
350 | 4(1,1,8 0,3, =

350 | 4(1,1,¢ 0,3, 2

3%, | 4(1,1,8 0,3 1=

35,5 4 | L1,G 0,3, =

3%, 4 |L,LG |03, 1

38, 4 |L1,G 0,3, 13

3?1/2 4 1,1,¢ 0,3, 12

E. Zs, Z5, and S3 SPT orders for bosonic systems

We also find that Rep(Z3) has 3 modular extensions
(see Table XI), Rep(Zs) has 5 modular extensions (see
Table XIV), and Rep(Ss3) has 6 modular extensions (see
Table XII). They correspond to the 3 Z3-SPT states, the
5 Z5-SPT states and the 6 S3-SPT states respectively.
These results agree with those from group cohomology
theory!?.

We note that for Rep(Z2), Rep(Z3), and Rep(Ss), their
modular extensions all correspond to distinct UMTCs.
However, for Rep(Zs), its 5 modular extensions only cor-
respond to 3 distinct UMTCs. Rep(Zs) has 5 modular
extensions because Rep(Zs) can be embedded into the
same UMTC in different ways. The different embeddings
correspond to different modular extensions.

F. Invertible fermionic topological orders

We find that sRep(Z{ ) has 16 modular extensions
(see Table XIII) which correspond to invertible fermionic
topological orders in 241D. One might thought that the
invertible fermionic topological orders are classified by
Z16. But in fact, the invertible fermionic topological or-
ders are classified by Z, obtained by stacking the ¢ = 1/2
p—+ ip states. The discrepancy is due to the fact that the
modular extensions cannot see the ¢ = 8 Eg states. The
16 modular extensions exactly correspond to the invert-
ible fermionic topological orders modulo the Fg states.

We also find that the modular extensions with ¢ = even
have a Zy X Z5 fusion rule, while the modular extensions
with ¢ = odd have a Z, fusion rule (indicated by F: Zy x Z5
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or F:Z, in the comment column of Table).

The Zg -SPT states for fermions is given by the modu-
lar extensions with zero central charge. We see that there
is only one modular extension with central charge ¢ = 0.
Thus there is no non-trivial 24-1D fermionic SPT states
with Zg symmetry. In general, the modular extensions
of sRep(GY) with zero central charge correspond to the
fermionic SPT states in 2+1D with symmetry G.

To calculate the Zy x Z{ SPT orders for fermionic
systems, we first compute the modular extensions for
sRep(Zyx Z1). We note that sRep(Zyx Z4) = sRep(Z4 x
Z1). Thus, the modular extensions for sRep(Zs x Z3) is
the modular extensions of sRep(ZJ] x ZJ). Some of the
modular extensions of sRep(ZJ x ZI) are given by the
modular extensions of sRep(Z]) stacked (under ) with
the modular extensions of sRep(ZQf ). Some of the modu-
lar extensions of sRep(Zs x Zg ) are given by the modular
extensions for Rep(Z2) stacked (under X) with the mod-
ular extensions of SRep(Z'Qf ).

The above mathematical statements correspond to the
following physical picture: Some fermionic GQLs with
Zy X Z{ symmetry can be viewed as bosonic GQLs with
Zo symmetry stacked with fermionic GQLs with Zg sym-
metry. Also some fermionic GQLs with Z{ X Zg symme-
try can be viewed as fermionic GQLs with Zg symmetry
stacked with fermionic GQLs with Z{ symmetry.

Using eqn. (B12), we find that the modular extensions
for Z5 x Zg symmetry must have ranks 7,9,10,12,16. By
direct search for those ranks, we find that the modular
extensions of sRep(Zy x Z) are given by Tables XVII,
XVIII, XIX and XX. The N = 9 modular extensions of
sRep(Zy x Zg ) in Table XVII are given by the stacking of
the N = 3 modular extensions of SRep(ZQf) and the N =
3 modular extensions of sRep(Z4). The N = 16 modular
extensions of sRep(Zs x Zg ) in Table XX are given by the
stacking of the N = 4 modular extensions of sRep(Zéc )
and the N = 4 modular extensions of sRep(ZJ). There
are also 64 N = 12 modular extensions of sRep(Zy x Z3)
given by the stacking of the N = 4 (N = 3) modular
extensions of sRep(Zg) and the N = 3 (N = 4) modular
extensions of sRep(Z7).

Many of the modular extensions have non-trivial topo-
logical orders since the central charge c is non-zero. There
are eight modular extensions for each central charge
¢ =0,1/2,1,3/2,...,15/2, and in total 8 x 16 = 128
modular extensions. Those eight with ¢ = 0 correspond
to the Z5 x Zg fermionic SPT states. Those are all the
Zy X Zg fermionic SPT states®.

G. ZJ SPT orders for fermionic systems

We also find the modular extensions for sRep(ZZ ),
sRep(Z{), and sRep(Z{) (see Tables XV, XXI, and X VI).
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TABLE XIV. The five modular extensions of Rep(Zs).

Nc\(—)l D2[dy,da, - | 81,80, comment
5° | 5 [1x5  ]0,0,0,0,0
25¢ |25 |1x25 ooooooooog,g,g,g,g,g,g,g,g,g,g,g,é,g,g,g 56 K55
25 |25 |1x25 00000*fifffiffffifffifffﬁ
TABLE XV. All the 8 modular extensions of sRep(Z]).
Ncle‘ D? dyi,da, - 81, S2, - comment
49 14 1,1,1,1 007;,; sRep(Z])
165 | 16|1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, %, 3,0,0,0,0,0,0, %, 4,3, 1,3 3
167 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 (0,0, 3,3, &5, &5, 2, L L 1 9 8 AT 17 25 28
168 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,%, 2, & L 1 171 1 5 "5 9 9 13 13188 K2f
165 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 (0,0, 4,3, 2 2 1L L 333 8 19 19 27 27
167 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0, 4,2 4 1 3 3 L 11 1 55 7 1 1P 4P
16%; |16 {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0,%, 1, 2 5 18 13 5 5 5 5 21 21 29 29
165,16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0,%, 1, 2 3 T T L Ll 873 33 15 15185 K25,
162, |16 {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0,%, 4, L T 15 15 23 23 7 T 7 7 31 31

Again, many of them has non-trivial topological orders
since the central charge c¢ is non-zero.

For Z Z group, only one of them have ¢ = 0. So there
is no non-trivial Z 4{ fermionic SPT states. For Zg group,
only three of them have ¢ = 0. So, the Zg fermionic
SPT states are described by Z3. For Zg group, only two
of them have ¢ = 0. So, the Zg fermionic SPT states
are described by Z,. Those results are consistent with
the results in Ref. 41 and 42. However, the calculation
present here is more complete.

IX. SUMMARY

GQLs contain both topologically ordered states and
SPT states. In this paper, we present a theory that clas-
sify GQLs in 241D for bosonic/fermionic systems with
symmetry.

We propose that the possible non-abelian statistics (or
sets of bulk quasiparticles excitations) in 2-+1D GQLs are
classified by UMTC ¢, where £ = Rep(G) or sRep(G¥)
describing the symmetry in bosonic or fermionic systems.
However, UMTC ¢’s fail to classify GQLs, since differ-
ent GQL phases can have identical non-abelian statistics,
which correspond to identical UMTC /¢.

To fix this problem, we introduce the notion of modular
extensions for a UMTC,¢. We propose to use the triple
(C, M, ¢) to classify 241D GQLs with symmetry G (for
boson) or GY (for fermion). Here C is a UMTC /¢ with
& = Rep(G) or sRep(G7), M is a modular extension of
C and c is the chiral central charge of the edge state. We

show that the modular extensions of a UMTC ¢ has a
one-to-one correspondence with the modular extensions
of £. So the number of the modular extensions is solely
determined by the symmetry £. Also, the ¢ = 0 modular
extensions of a € (£ = Rep(G) or sRep(GY)) classify the
2+1D SPT states for bosons or fermions with symmetry

G or G7.

Although the above result has a nice mathematical
structure, it is hard to implement numerically to pro-
duce a table of GQLs. To fix this problem, we propose a
different description of 2+1D GQLs. We propose to use
the data (N2, 5,; N” , i NE Sr; ¢), up to some permu-
tations of the 1ndlceb to describe 241D GQLs with sym-
metry G (for boson) or GY (for fermion), with a restric-
tion that the symmetry group G can be fully character-
ized by the fusion ring of its irreducible representations
(for example, for simple groups or abelian groups). Here
the data (N® 3,) describe the symmetry and the data

(N ., s;) describes fusion and the spins of the bulk parti-
cles in the GQL. The modular extensions are obtained by
“gauging” the symmetry G or GY. The data (N, S;)
describes fusion and the spins of the bulk particles in the
“gauged” theory. Last, c¢ is the chiral central charge of
the edge state.

In this paper (see Appendix C) and in Ref. 11, we
list the necessary and the sufficient conditions on the
data (N2, 5, N, si; N, Sy ¢), which allow us to ob-
tain a list of GQLs. However, in this paper, we did
not give the list of GQLs directly. We first give a
list of (N ab §a,NkJ,sZ) which is an imperfect list of
UMTC¢’s. We then compute the modular extensions
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TABLE XVI. The two ¢ = 0 modular extensions of sRep(Zg) imply that the Zg fermionic SPT phases are described by Zs.

All other modular extensions only appear for integer ¢ and are all abelian (two modular extensions for each integer c).

]
NC‘ ‘ D? S1,82," - comment
0 1 1
80 8 075705570757055
B 1 1 11111
640 64 0,5,0,5,0,5,0,5,0,0,0,070,0,0707070,0 987818V 8494474740474 478787878
1111111155553 332333233777T7
272722292727272787878787474747474
645 | 64 0,%,0,2,0,%,0,% 0,0,0,0,0,0,0,0,0,0,0,0, % L L L 3 8 3 3 11115 5 5 5
0 » 99 Yy 95 Yy 5y Yy 5,y Uy Uy Uy UL UL, U, U, U, U U Y, 16’ 162 16° 16° 16° 16° 16° 16’ 4’ 4> 42 4> 16° 16° 16° 16"
T 1111 9 9 9 9 11 3 13 13 13 15 15

162 162 167 162 27 27 22 2’ 16’ 16° 16’ 16 16’ 16’ 162 16> 4> 4’ 4’ 4° 16’ 16’ 16’ 16’ 16’ 16’ 16’ 16

TABLE XVIIL. All the 32 modular extensions of sRep(Z2 x ZJ) with N = 9.

Ncle| D? di,da, -+ 81,82, - comment
49 | 4 |1,1,1,1 0,0,1,2 sRep(Z2 x ZJ)
9¢ |16 [1,1,1,1,(3,¢3,¢3,(3,2(0,0, 4, 4, &, &, %, 12,0 (35, ,, W37,
9F |16 [1,1,1,1,¢3,¢3,¢3,¢5,2|0,0, 2,2 L 7 9 15 35,5, W30,
9F |16 [1,1,1,1,¢2,¢3,¢3,¢5,2/0,0, 4,4, 3 5 1l 13 355, W35,
o8 |16 [1,1,1,1,¢3,¢4,¢3,¢5,2|0,0,4, 1 3 5 1L 13 355, K35,
9% |16 1,1,1,1,¢3,¢3,¢3,¢3,210,0, 302 B30,
98 |16 [1,1,1,1,¢,¢3,¢3,¢3,2] 0,0, 35, ,, W35,
98 |16 [1,1,1,1,¢,¢,¢,¢,2]0,0, 35, . W35,
98 |16 [1,1,1,1,¢3,¢3,¢3,¢3,2]0,0, 355, W35,
9% |16 |1,1,1,1,¢3,¢3,¢3,¢3,210,0, 35 K37,
98 116 |1,1,1,1,¢3,¢3,¢3,¢3,210,0, 35, K37,
98 |16 [1,1,1,1,¢,¢,¢3,¢3,2]0,0, 38, . W35,
9F |16 [1,1,1,1,¢,¢3,¢3,¢3,2]0,0, 35, ,, W35,
9% |16 |1,1,1,1,¢3,¢3,¢3,¢3,210,0, 35, ®37),
9% 116 |1,1,1,1,¢3,¢3,¢3,¢3,210,0, 35, K37,
9F |16 |1,1,1,1,¢3,¢3,¢3,¢2,210,0, 350 K35,
98 |16 [1,1,1,1,¢,¢,¢5,¢2,2]0,0, 35, ,, W37,
98 |16 |1,1,1,1,¢3,¢3,¢3,¢2,210,0, 37, K37,
98 |16 1,1,1,1,¢3,¢3,¢3,¢3,210,0, 37, K37,
98 |16 |1,1,1,1,¢3,¢3,¢3,¢2,210,0, 35, K3,
9F |16 1,1,1,1,83,¢3,¢3,¢3,210,0, 35, K35,
98, |16 [1,1,1,1,¢3,¢3,¢5,¢3,210,0, 3%, K30,
98, 116 |1,1,1,1,¢3,¢3,¢(3,¢5,210,0, 37, K35,
95, 116 |1,1,1,1,¢3,¢3,¢3,¢3,20,0, 37, K3,
98, 116 |1,1,1,1,¢3,¢(3,¢(3,¢,210,0, 35, ®3Y,
98, |16 [1,1,1,1,¢3,¢3,¢3,¢3,210,0, 35, K30,
98, |16 [1,1,1,1,¢3,¢3, ¢, 3,21 0,0, 355, W30,
98, 116 |1,1,1,1,¢3,¢3,¢5,¢5,210,0, 35, K30,
95, 116 |1,1,1,1,¢3,¢3,¢(3,¢5,210,0, 37, K35,
9B, 116 [1,1,1,1,¢3,¢3,¢5,¢3,210,0, 38, K30,
98, |16 [1,1,1,1,¢3,¢3,¢5,¢3,2] 0,0, 385, W30,
9B, 116 [1,1,1,1,¢3,¢3,¢5,¢3,210,0, 35, W35,
9%, |16 |1,1,1,1,(3,¢5,¢3,¢3,20,0, %, 2 3P, K37,

(NE  Sp;¢) for each entry (Ngb,éa;N,z],si), which al-
lows us to obtain a perfect list of GQLs (for certain
symmetry groups). As a special case, we calculated the
bosonic/fermionic SPT states for some groups in 2+1D.

In Ref. 30, we will give a more mathematical descrip-

tion of our theory. Certainly we hope to generalize the
above framework to higher dimensions. We also hope to
develop more efficient numerical codes to obtain bigger
tables of GQLs.




TABLE XVIIL The first 32 modular extensions of sRep(Zz x ZJ) with N = 12.

Nlel D?|di,da,- - 81,82, - comment
49 14 [1,1,1,1 0,0,1,1 sRep(Zs x Z1)
121/2 16 (1,1,1,1,1,1,1,1,(3,¢3,¢,¢3 | 0,0, 5, 5,0,0, 3, 3, 75> 15> 150 15 |40 ®37)s
121/2 16 (1,1,1,1,1,1,1,1,(3,¢3,¢3,¢3 | 0,0, 3, 3,0,0, 3, 3, 15 15> 15+ 15 |40 K37
121/2 16 [1,1,1,1,1,1,1,1,(3,¢3,¢2,63 | 0,0, 3, 3, 5, 5, 5, 25 15> 150 150 12 | 453 3P,
121/2 16 [1,1,1,1,1,1,1,1,(3,(3,¢2,(3 | 0,0, 3, 3, 5. 5. 2, 2, 15, 150 150 12 | 453 3D,
121/2 16 1,1,1,1,1,1,1,1,¢3,¢3,¢3,¢3 0,0, 3,3, 5, 4,3, 3, L L 2 18168, ,K2p
121/2 16 (1,1,1,1,1,1,1,1,(3,¢3,¢3,¢3 | 0,0, 3,3, 4, 4, 2,2 & & 5 2 |67, , 2P

4
121/2 16 1717111717171117C21>C2114217C21 070 777777771777L' i i E 4§1|X333/2

272787878787 167 167 167 16
121/2 16 1717171715171717C217C217C217<21 050 %7%7%5%7%7%7%7%7%7% 4§1|Z333/2
123/2 16 171717171717111762174%14217<21 0707%7%70707% i %7%7%7% 4(%3&333/2
123/2 16 1717171715171717C217C217C217€21 0507%7570507% % %7%7%7% 403&333/2
1 11

123/2 16 11,1,1,1,1,1,1,1,$3,(3,(3, (3 | 0,0, 5, 5, 5. 5 50 5+ 150 150 150 15 | 40 B30
123/2 16 (1,1,1,1,1,1,1,1,(3,(3,63,(3 [ 0,0, 5, 3, 4,5, 2, 2, 55, & 15 15 |47 30
123/2 16 [1,1,1,1,1,1,1,1,¢3,¢3,¢2,¢3 10,04, 2 L 18 8 8 '8 7 15 61/2®23
123/2 16 (1,1,1,1,1,1,1,1,(3,(3,¢2,G3 | 0,0, 5, 5, 1. 1. 3.2 5, 550 150 12 | 67 W27
123/2 16 11,1,1,1,1,1,1,1,¢3,¢3,¢3,¢3 | 0,0, 3,5, 5,3, £, 5, &, &, 5 12 [ 451 W30,

272787828787 167 167 16’ 16
123/2 16 (1,1,1,1,1,1,1,1,(3,¢3,¢2,¢3 | 0,0, 3,3, 2,2, L, L, &, &, 55 12 | 451 W30,
125/2 16 11,1,1,1,1,1,1,1,¢3,¢3,¢3,¢3 | 0,0, 5, 5,0,0, 5, 5, 15 15> 15> 1o | 40 X35
125/2 16 (1,1,1,1,1,1,1,1,(3,¢3,¢3,¢3 | 0,0, 3, 3,0,0, 3, 3, 3% 15> 15> 1o |40 M35,
1 1 1

125/2 16 1717171717171717C21,C217C217<21 0707777777l7§7§7i s 24 4IB®33B/2

272787878787 167 167 16’ 16
125/2 16 (1,1,1,1,1,1,1,1,(3,(3,63,¢3 [ 0,0, 5, 3, 4,5, 2, 2, 5. & 5> 16 |47 M35
125/2 16 [1,1,1,1,1,1,1,1,(3,¢3,¢3,¢3 | 0,0, 5,5, 5, 5. 2,3 &, &, 5, 5 | 65, W27
125/2 16 (1,1,1,1,1,1,1,1,(3,(3,¢3,¢3 | 0,0, 5, 5, 1. 5. 5. 3 150 50 150 16 | 052 M 27

4
125/2 16 [1,1,1,1,1,1,1,1,(3,¢3,¢2,¢3 | 0,0, 3,3, 2,2, L, L, &, &, 5. 12 | 451 K37,
128516 (1,1,1,1,1,1,1,1,$3,¢3,¢3,¢3 [ 0,0, 3,3, 3, 3, £, £, 15> 150 150 12 | 451 3P,
122,16 (1,1,1,1,1,1,1,1,$3,¢3,¢3,¢3 [ 0,0, 3,3,0,0, 3, 3, 15, 15> 15> 1o 45 K37,
128516 |1,1,1,1,1,1,1,1,¢3,¢3,¢3,¢3 | 0,0, 35115 16 150 1o |46 ®3%),
122516 |1,1,1,1,1,1,1,1,$3,(3,(3,63 [ 0,0, 3,3, 5, §: 5+ 57 15> 150 150 12 | 40 K35,

- 9o Qo
e L
-
=
4
4
4
-
o

=Rl M= N
=N = N

2727878787816 16’ 16’ 16
B 1 ~1 1 1 111155 5 7 7 13 B B
127/2 16 17171’1717171717CQ7C2’C27C2 070 2727887878216’ 16° 16’ 16 41 ®35/2
B 1 ~1 1 1 11 1 3 3 3 17 7 11 B B
127/2 16 1717171717171717C2,CQ7427<2 an 2929474747 4°16° 16° 16’ 16 65/2®21
1 11 3 3

12’]73/2 16 17171’1717171717<217C21a<:217C21 0’0’7’777’7’7’771376’1776’1776’}é 65B/2X|2{3

125/2 16 1717171715171717<—21,C217C217<21 0507777775777777%7l Z 2 433&31/2

16° 16’ 16

8
12’]73/2 16 1717111717171717<217C211€217C21 07077’777’777717%’1%371776’196 43 ®31/2

IV
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TABLE XIX. The second 32 modular extensions of sRep(Za x ZQf) with N = 12.

NC\(—)| D2 dy,do, - S1,82, - comment
49 |4 11,1,1,1 0,0,1,1 sRep(Zs x Z1)
128,116 [1,1,1,1,1,1,1,1,(3,(3,¢3,¢3 | 0,0, 3,3,0,0, 3, 5, 75, 1%, 15> 15 |44 K37,
128,116 (1,1,1,1,1,1,1,1,$3,(3,(3,¢3 [ 0,0,3,3,0,0, 3, 5, 75, % 15> 15 |44 K37,
128,116 [1,1,1,1,1,1,1,1,(3,63,$3,¢3 | 0,0, 3, 3, 5> 5 2 55 150 16> 15 1o |47 K37,
1285116 (1,1,1,1,1,1,1,1,$3,(3,(3,63 [ 0,0, 3,3, 5, 5, 5+ 5+ 15> 16> 15 12 | 47 W30,
125‘7/2 16 1,1,1,1,1,1,1,1,(3,(3,¢(3,¢2 | 0,0, 3, 3,%,5,3,2, 2. 2 5 18 65/2®213
128,116 (1,1,1,1,1,1,1,1,$3,63,¢3,63 [ 0,0, 3,3, 15 1+ 5+ 3+ 15> 16> 150 1¢ | 6772 K27
128,116 [1,1,1,1,1,1,1,1,(3,(3,3,¢3 | 0,0, 3, 3, 5, £, £, £, %, 5%, 15, 16 |45 W35,
128,5116 |1,1,1,1,1,1,1,1,(3,(3,(3,¢3 | 0,0, 3,3, 3, 3, £, £, 1%, 15> 15> 15 | 45 W35,
125,116 [1,1,1,1,1,1,1,1,(3,(3,¢3,¢3 | 0,0, 3,3,0,0, 3, 3, 55, 16, 16> 16 |44 K35,
128,51 16 |1,1,1,1,1,1,1,1,(3,¢3,¢3,¢3 | 0,0, 3,3,0,0, 5, 5, 55, 16> 16> 16 |44 K35,
125,116 [1,1,1,1,1,1,1,1,(3,63,¢3,¢3 | 0,0, 3, 5, 5, 5 2 55 150 15 16> 16 | 423 W37,
125, ,116 |1,1,1,1,1,1,1,1,(3,¢3,¢2,¢3 | 0,0, 3, 3, 5, 5, 5. 3> 15> 150 160 16 | 423 300
125,116 [1,1,1,1,1,1,1,1,(3,03,¢3,¢3 [ 0,0, 3, 5, 5 1 5. 5 150 160 16> 10 | 677/ W27
12%,,116 11,1,1,1,1,1,1,1,(3,¢3,¢2,¢3 | 0,0, 3, 3, 5. 5 35 31 15> 16> 160 12 | 677/a W27
12%,,,116 |1,1,1,1,1,1,1,1,(3,(3,(3,¢5 | 0,0, 3,3, 5, 3, L. £, 5, 6. 16 12 | 48 W 3P,
128, ,,116 |11,1,1,1,1,1,1,1,(3,¢3,(3,¢3 | 0,0, 3,3, 3, 3, £, £, % 16> 16> 12 | 45 W 3L,
12855116 |1,1,1,1,1,1,1,1,(3,¢3,¢3,¢5 | 0,0, 3,3,0,0, 5, 5, 55, 10, 15, 1o |4 K3,
12855116 |1,1,1,1,1,1,1,1,(3,(3,¢3,¢3 | 0,0, 3,3,0,0, 5, 5, 55, 1o» 1o, 1o |44 W 3L,
12855116 |1,1,1,1,1,1,1,1,(3,¢3,¢3,¢5 | 0,0, 3, 3, 5. 5. 5. 5, 15 18- 100 12 | 453 K35,
12855116 |1,1,1,1,1,1,1,1,(3,¢3,¢2,¢3 | 0,0, 3, 3, 5, 5, 5, 5> 15> 16 10> 12 | 453 M35,
12855116 |1,1,1,1,1,1,1,1,(3,63,¢2,¢5 | 0,0, 3,3, 5. 55 5. 3, 15> 150 o0 12 | 675, W27
12855116 |1,1,1,1,1,1,1,1,(3,¢3,¢2,63 [ 0,0, 3, 3, 5 5 3 3> 15> 15> To» 12 | 6752 ¥ 27
12855116 |1,1,1,1,1,1,1,1,(3,(3,¢3,¢5 | 0,0, 3,3, 5, 3, £, £, 15, 1o, 1o, 12 | 45 W 3D,
12855116 11,1,1,1,1,1,1,1,(3,¢3,(3,¢3 | 0,0, 3,3, 3, 3, £, £, 15> 12> To» 12 | 48 W3,
125, 5116 |1,1,1,1,1,1,1,1,$3,(3,(3,¢3 [ 0,0,3,3,0,0, 3, 5, 15, 10, 12, 1o |44 K37,
128, 5116 |1,1,1,1,1,1,1,1,(3,¢3,(3,¢3 | 0,0, 3,3,0,0, 5, 5, 15, 10> 12> 1o |44 W37,
125, 5116 11,1,1,1,1,1,1,1,¢3,63,(3,¢3 [ 0,0, 3, 3, 5, 5, 2, 5, 15 12, 1o- 10 | 425 W3,
128, 5116 |1,1,1,1,1,1,1,1,(3,¢3,¢2,63 | 0,0, 3, 3, 5, 5 55 5> 15 100 00 12 | 453 M35,
125, 5116 |1,1,1,1,1,1,1,1,$3,¢3,¢3,63 [ 0,0, 3,3, 55 55 55 31 15> 16- 100 12 | 675/ W 27
1215‘1/2 16 (1,1,1,1,1,1,1,1,(3,(3,¢(3,¢3 | 0,0, 3, 5,%,%,3,2 2 1L 1B 15 6’?3/2&215
125, 5116 11,1,1,1,1,1,1,1,¢3,63,$3,¢3 [ 0,0, 5,5, 2, 2, 2, 5, 15, 15> 1o» 10 | 421 W37,
128,116 [1,1,1,1,1,1,1,1,(3,63,¢3,¢3 | 0,0, 3, 5, 5, &, L, £, 15, 1% 12 1o | 451 W37,
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TABLE XX. All the 32 modular extensions of sRep(Za x ZJ) with N = 16.

Ni@\ D2 dy,da, - 81,82, comment
49 14 11,1,1,1 0,0,1,1 sRep(Z2 x Z1)
165 | 16(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 (0,0, 4, 1,0,0,0,0,0,0,0,0, 3, 2, 3, 1 |45 W 4¥
16§ |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,%,%,0,0,0,0,%,%,2, 2 5 53 2 T 145 ®47
165 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,%,$,0,0,0,0, %, %, 2,2 5 5 2 T 145 ®47
16§ |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,%,%,0,0,0,0,4,4,1 2 3 /3 33 1B o
167 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,%,%,0,0, 4,2, L L 11 1 175 5 148 )4F
167 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,%,4,0,0, 4,2, 1 L 1 1 1 1 5 5 14P )47
167 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,4, 4, L L 1 1 2 1/3°3°3 3 7 17187 K2f
167 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 (0,0, 53,4, 4, £ L 1 2 1 8 833 3 7 7187 K2y
164 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,%,%,0,0,4, 2 1 1 11 113 3 138 Kof
168 | 16(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1(0,0,%,3,0,0, 4,4, 2 1 2 1 1 1 33 18P K27
164 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,4,4 L L 1 1 2 L 1 275 5 5 5147 K4P
167 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 (0,0, %, 5,3, 2 2 1 3 3 8 3 T 1 7 1145 ®4¥
164 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,%,%,0,0,2,2,23 2 33 1 1 T 7 148 K 4§
165 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,%,5,0,0, 2,2, 23 2 3 3 1 1 T 7 148 K47
16§ |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,4, 4, L L 1 /1 3 3 /3 375 5 3 3180 K2f
165 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 (0,0, 3, 5,4, £,3, 4,2 3 8 3 /5 5 3 3180 ®2f
16¢ |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,%,%,0,0,0,0,4,%, 1 2 1 1 1 1 147 ®4F
16 |16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1(0,0, 3,5, %, £, 23,2 2 L 1 1 5 53 T T14P )47
16¢ |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1|0,0,4,4, L L 8 8 1 L 1 175 8 T 1148 )47
167 |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 (0,0, 3,4, 3 2 2 1 1 1 1 18 3 3 3188 Kaf
16%; |16 {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0,%,1,0,0, %, 1, 1,2 /5 3 5 /5 55 |45, K 4§
162,116 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0, %, 5,0,0, 5, £, 2 1 2 2 55 5 5 145, ®4F
16%; |16 {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0,%, 1,2 1 2 355 575 3 3 T 7|8P X2y
162,116 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0, %, 3,3, %,2,2,2,5 5 5 3 3 T 7187 W27
16%,| 16 {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0, %, 1,0,0,1,%, 3,1 ,3 3 3 /3 33 8B 2P
16%,]16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0, %, 1,0,0,%,4 1 1 3 /3 3 /3 373 g5 xof
16%,|16 {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0, %, 2, L L 1 1575 575 /3 3 3 345, K47
162,16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0, 3, 5,3,2 8 8 3 33 8 T T 7 7147 47
162, |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0,%,1,0,0, 2,2 2 1 T T T T 7 7 |45 K45
167,16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0,%,1,0,0,2,23 2 1 T T T T 7 7 |45 K45
165, |16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0,%, 2, L L 1 155 33 T 7 T /85, K27
167,16 |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1{0,0,%, 1, 2 L 1 1 /5/5 378 T 7 T 7|85 2P
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[S]
N° [D?d
60 1’d27"-
0 6 |1,1,1 51,82, "~
365 ,1,1,1,1,1/0,%,0, 42
36 |1 ’2707 1
B ><36 )y 51U 5
360 3 0.1 0. 1 2
611 x »5,0,3,0 1
B 36 ’ 27 7*00
360 Ol 1 20 3000
36 |1x 36 ,$,0,3,0,% ,0,0,0,0,0,0,0
361 |36 0,3,0 7 ,$,0,0,0,0,0,0, & ,0,0,0,0, 5,555+ 33
’ 2 = 1 ’ D 1 1 2 6’57*711
363 1x 36 0. 1 72’07570’01000 ’%8’18757372 2 2 23,373737%71 122 2 sR
1 36 |1 . 3.0.%.0,3 it ,0, 111 9’9’97*ll5 272’57**22 2 ep(Zf
367 x 36 bododood g 0060992500 % 59’18’18’573 L3 535’373’57§=§ 5 :
1 36 |1 0,1 0,1 Sgg,—ll 797ﬁ,f744 7975,7,1 13 6’6
x 36 $:0.5.0. 3. 73 585 8 8 88 18797*7é4 9’97T—§8
363 1.5 545 1,1.3.4.4. % 9797979 4 11 1 82187979 8 8 8
2 36 |1 0,10, 1 A5 A A 15 1 1,484 8 979,1—477 9’9:§,—§
X 36 1,0,34,03%,3,% 72 T8 i85 8 5 B 33 50 3% 5 81 1879°'9 T 9’9
368 B 131111 ittt 4.4, 4.1. ] 9’97*7117
s BB 8 ,i, 112 24> 12 9’ 17 17
36?3 36 |1 x 36 015,07%&)1% oo 18 8 gv%,é,%1£ 17 178 8 s>§,%‘% 375 95 2r2 2»31%,%7% o 199’97187@
,0,0,1, 1.1 7,1 i 25,28, 288, % 393988
2 36 |1 0,101 e i it i s 25, L. 5.8 24'6° 6
X 36 10,103, 4 IR TR I T TP 5 ts 5 5 5 F 5 58 73 7
365 1k & P ii g 4,345,441, 4.4 313,988
3 36 11 0,1 0,1 36’36*% 11 4*4,171'1 101 72*72,74 11 11 72:72)§ 13 8
X 3 104,03 & L. 51514 111155 L4 4,7, 7,88 12,413,588
362 6 0.1 .55 15 55 35 AR IR TR i ih ] 150 12 120 12 3 5555858583 o
3 36 |1 101 36 367 36" 3¢ 1118 180 36 13388 £5.9%. 85, 1% 18
368 X 36 L0200 4, & £.5.2.2.4,4,1.4 51313 13 13 4 4 255 4 11 1 1 750 18° 18
3 36 |1 0,1,0,1 DB 3L o B B 1.4, 5,11 & i Iht T120 12
x 36 2’ vg,o,; 1 24’24'511 11 4418 717 9’18‘ﬁyﬁ 25
36B 2=187L 2 2 6‘3¢—,§ 3 3 8° 18’ 36 17 17 36*@,@ 25
4 0,1 18" L2 19 3'8 3.3 3 6’ 36 17 17 36~—,1 7
o 36 |1 % 36 2‘0’%10,%;119 9,72,%)%1%&33838 8,5,%%,%33136 175 5 13 13 29 26 AN L 4
R 2,8.8.3,8 . 3.8,3.4 18,22, 2
4 0,1 3.4 %11 §.8.8.8.8.8 8.3.3.2.2 29,23, 29, 29
362 36 | 1x 36 bodo oot bl Ry B RN B BB iR
x| 3611 0,404 FEEE 2388883 28884 606
x 36 5.0, 5,0, %, 55 e s 533 3,8.4. 4.3 5.33. 48 18, 13
368 1L 5 4 111113 5.85,35,35. 2 13.13.8.5. 5%
23 |3 0,1,0,1 5> 15 157 18 555553 2.8 8B 51 55 8.5 &
265 611 x36 10,401,515 518 lok.22 T 1,14,1,4,14,1,1,1 272 U U 7 7 59 59 7,87,8%, 81
5. 1361 01,01 1 EE S S5 S A S ¢ 14,225,525 59,59,59,59, 17 17
368 x 36 3.0, 3,00, %, L, T S 18 180 18° 8 65 % 15 18 183 353 3 88888 720187 18
B, 136[1x3 0,1,0,1,0,1, T T i 4,5,5,4,1,1, 1,11 1,1,1,1,5,8 13 1
363 6 2’ ’j'ﬁ:i 13 4 24’§,%1l 1 5 2’§’ﬁ,g 11 1 gyﬁ’ﬁ,ﬁ 13 12
2, 136 |1x3 0,1.0,%,0,1 L, 13,13, 13 13 2 2 1,183,553 5 U o4 uuurz 13 13 13 13 8 8
30152 3.2 2 .$.8.8,8,8,3 Sz it 1515
365 6 1 1,5, 5.5 5 3.5 5 13 15 35 5,5,5,5.8.8.2 §.5. 51515 1K1 oo
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TABLE XXII. Z-SET orders (or UMTC/, gep(z,)) for
bosonic systems labeled in terms of sets of topological excita-
tions. The list contains all topological orders with N = 3,4
and D? < 100. All the topologically orders in this list are
anomaly free (i.e. have modular extensions), and are real-
izable by 241D bosonic systems. We use N®! o label
UMTC ¢’s, where © = D' 3, *™'%id; = |©]e*™i¢/8 and
D*=%".d;.

Ncle‘ D? di,dz,--- | s1,82, -+ | comment
2% 2 1,1 0,0 £ = Rep(Z2)
2 | 6 |uiz o foo [sBE=(2 )
3%, | 6 |11,2 0,0,2 SB:K:(ZQ 52)
48 4 [1,1,1,1 {0,0,%,1 |2P K Rep(Z2)
42 | 4 11,11 (0,011 |28 R Rep(2»)
43’% 4 |1,1,1,1 |0,0,2,3 |25 KRep(Z2)
4%, 4 |L,1,1,1 ]0,0,2,2 |25 X' Rep(Z2)
43/5 7.2360|1,1,¢3,¢3 (0,03, 2 | 27,5 K Rep(Z2)
452114/5 7.2360|1,1,¢3,¢3 [0,0,2,2 |27, K Rep(Z2)
4 10 [1,1,2,2 0,0, 2 |SB:K =(2 ;3)
2100
4 | 10 |1L1,22 (0,022 |SBik =1 2 0
0112

_Appendix A: Tables for the solutions of
(N2 3,; N’ ,s;) — imperfect tables for UMTC ¢

In this appendix, we list UMTC /¢’s for various symme-
try &€, which can also be viewed as the list of 241D SET
orders (up to invertible ones) with symmetry £. Those
lists are created using a naive calculation, by checking the
necessary conditions on the data (N2, 5,;N,’,s;) (for
details, see Appendix C). So those lists should contain
all UMTC ¢’s (d.e. all SET orders). But since the condi-
tions are only known to be necessary, the lists may con-
tain fake entries that do not correspond to any UMTC /¢
(or any SET order). In other words, some entries in the
lists have no modular extensions and those entries do not
correspond any real 241D SET order.

The entries with known decomposition N2 K Rep(G)
or NB K sRep(GY), or with given K-matrix in the com-
ment column all correspond to existing 2+1D SET or-
ders. (The topological orders described by N2 are given
by the tables in Ref. 11.) Other entries may or may not
correspond to existing 241D SET orders, which need to
be determined by checking the existence of modular ex-
tensions.

Even for the entries that have modular extensions,
some times they may correspond to more than one
UMTC¢’s. This is because (N2, 5,; N7, s;) cannot dis-
tinguish all different UMTC /¢’s.
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TABLE XXIII. Z2-SET orders for bosonic systems labeled
in terms of sets of topological excitations. The list contains
all topological orders with N = 5 and D? < 100.

Nc‘@| D? |di,do,--- $1,82, -+ | comment
2% | 2 |11 0,0 £ = Rep(Z»)
5% 8 |1,1,1,1,2  [0,0,3,1,0|SB:4E F:Zs x Zo
52 | 8 |L1,1,1,2 [0,0,L,1,0|SB4f F:zy NR
59 | 8 [L,1,1,1,2 |0,0,1,1 1 SB:P Fizs x 2,
5? 8 |1,1,1,1,2 0,0, 3,1, 18B:4f F:Z4 NR
52 | 8 L1112 [0,0,L, 1 1|SBF FiZs x Z
59 | 8 [1,1,1,1,2 |0,0,1,1 1| SB:4F Fizy NR
5S 8 |1,1,1,1,2  [0,0,3,1,3|SB:4f F:Z x Zo
52 | s |1,1,1,1,2  [0,0,1,L ¢|SB:F Fizy NR
59 | 8 [1,1,1,1,2 0,05, 1, 1] SB:ap E % é é
oo 2

5S2 8 |1,1,1,1,2  [0,0,%,1 1|SB:4f F:Z, NR
5%, 8 [1,1,1,1,2  [0,0,1,1 3 |SB:4B, F:Zs x Zs
5‘,53 8 [1,1,1,1,2 0,0,%,%, 28B:45; F:Z, NR
5%, 8 |1,1,1,1,2  [0,0,3,1,2|SB:45, F:Zs x Z»
5%, 8 |1,1,1,1,2  [0,0,1,1,3|SB:4P, F:Zs NR
5%, 8 |1,1,1,1,2  [0,0,3,1,T|SB:45, F:Zs x Zo
59 | 8 |1,1,1,1,2  |0,0,1,1,Z|SBu4®, F:Zs NR
5 14 [1,1,2,2,2 |0,0,1,2, 4|SB:7F

59 | 14 [1,1,2,22 (0,022 8|SB7E,

5% 0 126180 1,1,¢2,¢3,¢4[ 0,0, 2,1, 2| $Buaf

5{512/5 26.180 [1,1,¢3,¢3,¢5 0,0, 4, 3, 2 | SB:4”,,

1. Z>5-SET orders

Tables XXII, XXIII, and XXIV list the Z5-SET orders
(up to invertible ones) for 241D bosonic systems. For
bosonic systems the central charge is determined up to 8

by the bulk excitations. The 3§5 states and the two 4%1
states in Table XXII are discussed in the main text.

All the Z5-SET orders in Table XXII are realizable.
Some of the them are realized as NP X Rep(Z2), as in-
dicated in the comment column. Here NP describes a
neutral bosonic topological order (which was denoted as
NZ in Ref. 11) with rank N and central charge ¢, which
does not transform under the Z, symmetry. For exam-
ple 28 is the v = 1/2 bosonic Laughlin state, and 2]194/5

is the bosonic Fibonacci state!'. Rep(Z;) describes a
product state with Zs symmetry of Z, charged bosons.
NJB X Rep(Z,) is simply the stacking of the neutral
bosonic topological order NP with the Z; symmetric
product state.

We also introduced N2 X! Rep(Z,) which describe a
state similar to N2 X Rep(Zz), except here the bosons
that form the topological order NP also carries a Z




charge. The Bg% state can be realized by double-layer

9 > , which is discussed

2
FQH state with K-matrix <

in the main text.

Since we did not use the condition of the existence of
modular extensions when we calculate the tables, some
the entries in the tables may not by realizable by any
2+1D bosonic systems. We use NR in the comment col-
umn to indicate such entries (see Table XXIII).

2. Z3-SET orders

Table XXV lists the Z3-SET orders (up to invertible
ones) for 241D bosonic systems.

1
The Z3-SET state 4514 in the table becomes the K =

4-layer FQH state after we break the Zs3-

2 1
1 0
1 0
1 2

o oW~
o N o =

symmetry. We can add the Zs-symmetry back to obtain
the Z3-SET state. The Zs-symmetry is the cyclic per-
mutation of the second, the third, and the fourth layers.

2 1 1 1

Without the symmetry, the K = state has

1 2 0 0
1 0 2 0
1 0 0 2
four types of particles, a trivial boson and three non-
trivial fermions. With the symmetry, the three fermions
become degenerate and is combined into the d = 3 parti-

1
cle (the fourth particle) for the 424 state. The first three

1
particles for the 434 state all come from the trivial boson.
They carry different Z3 charges: 0,1,2, in the presence
of the symmetry.

3. S3-SET orders

Tables XXVII and XXVIII list the S3-SET orders (up
to invertible ones) for 2+1D bosonic systems.

Table XXVII has three 5){6 entries that have identical
(d;, s;). But the three entries have different fusion rules
(see Table XXVI). If we break the symmetry, the three

2 1 1 1

entries all reduce to the K = ; °> 4-layer state. So

1 2

1 0 0

1 0 0 2

we expect the S3 symmetry is the permutation symmetry

of the second, the third, and the fourth layers.
The second 5)1/5 entry can be realized by the K =

4-layer state. The two d = 3 fermions are

ect-sum of the three degenerate fermions in the
2 1 1 1

K= |27 ] state. They carry the following S5 rep-
1 0 0 2
t

T—a®b.

c—1@0b, (A1)

28

It is strange that two different irreducible representations
are degenerate in energy. But this can happen for topo-
logical excitations in the presence of symmetry.

Such an assignment of the Ss-representations (or Ss
“charges”) is consistent with the fusion rule (see the sec-
ond table in Table XXVT). For example

R —=>1D200bRb=1020D (1Dad®b)
—1®bdodT (A2)

This is why we say that the second 541/6 entry can be

11
0o o
. o | state.
0 2

t

2 1

realized by the K = (i :
1 0

However, the S3-charge assignment eqn. (A1) does not

work for the first and the third 5;/6 entries (i.e. inconsis-
tent with fusion rules in the first and the third tables in
Table XXVI). In fact, none of the Ss-charge assignment
works. This mean that the d = 3 fermions in the first and
the third 5}1/6 entries must carry fractionalized S3-charges
or fractionalized Ss-representations. It is not clear if such
fractionalized Ss-charges are realizable or not, since we
cannot calculate the modular extensions for those entries
(due to the limitation of computer power).

4. Zo x Z>-SET orders

Tables XXIX, XXX, and XXXI list the Zy x Z5-SET
orders (up to invertible ones) for 2+1D bosonic systems.

Table XXXII list the fusion rules for some Z5 x Z5-SET
orders. We see that the 57 state is a ¥ = 1/2 bosonic
Laughlin state with Zs x Zs symmetry, where the only
topological excitation carries the projective representa-
tion of Zy x Zy. We also see that the 5f4/2 state is a
bosonic Fibonacci state with Z; x Z5 symmetry, where
the only non-abelian topological excitation carries the
projective representation of Zy X Zs.

5. Zy x ZJ-SET and ZJ-SET orders

Table XXXIII lists the Z5 x Zg—SET orders (up to in-
vertible ones) for 241D fermionic systems. Table XXXIV
lists the ZJ-SET orders (up to invertible ones) for 2+1D
fermionic systems. For fermionic systems the central
charge is determined up to cmin by the bulk excitations,
where cpin is the smallest positive central charge of the
modular extensions of sRep(GY), for example, cpin = 1/2
for Z1, 2y x 2§, Z | comin = 1 for 2{, Z{.

Appendix B: Fusion ring for the modular extensions
of Rep(G) or sRep(GY) when G or G’ is abelian group

When the symmetry group G is abelian, the different
irreducible representations, under the fusion, form the



TABLE XXIV. Z3-SET orders for bosonic systems labeled in terms of sets of topological excitations.

topological orders with N = 6 D? < 50.
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The list contains all

NC‘el D? di,da, - S1,82,- - comment

262 2 1,1 0,0 £ = Rep(Zy)
6 6 [1,1,1,1,1,1 0,0,4,1 11 135 KM Rep(Z2)
6‘_152 6 |1,1,1,1,1,1 0,0,2,2,2 2 |35, X Rep(Z2)
62, | 8 [LL1,1,¢.¢4 o, 0,2,;,%,% 38, K Rep(Z2)
6%2 8 |L,1,1,1,¢,¢ [0,0,4,1, & & |sB:3b,

6%2 8 |1,,1,1,(3,¢3 [0,0,3, 3, 15, 15 | 352 X Rep(Z2)
62, | 8 [LLLLG.E 0,018, 3 sBak,

65, | 8 |LLLLG.G [0.0,5 5 5,5 |35 B Rep(Z)
6?%2 8 [1,1,1,1,G,¢G [0,0,3,% &, 2 |SB:3P,

6%2 8 |LLLLG,G (0,0, 27%7%7% 37/, X Rep(Z2)
62, | 8 |[LLLLG.G [0,04,1, 5, % |sB3E,

6| 8 [Lnnnchad (00,508 % (87, B Rz
6%, 8 |LLLLG.d o, 0,2,2,%,% SB:37,

6%, | 8 [LLLLG.G [0,04,2, 5 135  ®Rep(Z)
6<—%5/2 8 1L,1,1,1,¢3,6 |0,0,3 % %,% SB:3]_35/2

6%, | 8 [LLLLG.G [0,03,1,2 1235  ®Rep(2)
6%, | 8 [LLLLG.E 0,011,113 8835, ,

65%1/2 8 |LLLLG.G |0, 0,2,%,%,% 38, , M Rep(Z2)
65%1{2 8 |1,1,1,1,¢3,¢4 [0,0,1,1,15 15 gpgB

6§j 12 |1,1,1,1,2,2  0,0,3,3, L 1 ISB:6P

6§12 12 (1,1,1,1,2,2 0,0, }1, 11 |SB:6§

6%3 12 [1,1,1,1,2,2 0,0,3,3, 5 2 |SB:67,

62, | 12 [1,1,1,1,2,2 0,0,1,1 2 11 |gB:65,

62 | 18 [1,1,2,222  {00,001,2 |SB:9F

635 18 [1,1,2,2,2,2 0,0,0,%,5,7 |SB:9§

65 18 [1,1,2,2,2,2 0,0,0,2,5, 8 |SB:9f

65115 18 [1,1,2,2,2,2 0,0,1 % 2,2 |SB:9¢

65, [18.591(1,1,¢4,¢3.¢2,¢2 0,0, : 6622 |35 ®Rep(Zs)
6%, [18.591|1,1,3,¢3, 3.2 |0,0,4,1,2,2 387 B Rep(Z2)
63, |21.708|1,1,¢3,¢h.2,¢4 [0,0,2,2,2, L 14/5®3<2
6%, |21.708|1,1,¢d,¢d,2,¢ 0,0,2,2,2, & |27 14/5®3 ]
6%, | 21708 1,1,¢4, ¢4, 2,¢ [0,0,2,2,1, 11 |28, m3g

65%4 . |21.708 [1,1,¢3,¢3,2,¢8 |0, 0,5,§,§,}§ 2?14/5x32

same group G. Thus different irreducible representations
can be labeled by the group elements: (¢), ¢ € G. The
different symmetry twists are also labeled by the group
elements: [g], g € G. More general symmetry twists
may carry some charge. We denote such charge carrying
symmetry twists by [g,¢] where ¢ € G. In fact we can
identify (q) as [1,q]. Those irreducible representations
and charged symmetry twists are particles in the modular
extensions of Rep(G) or sRep(G¥).

Since the group is abelian, the symmetry twists do not
break the symmetry. Thus, we have the following fusion
rule
(B1)

[1,d®1[9,4'] = lg,4d]

This means that [g,¢'] and [g, q¢'] differ by charge q. We
also have
(B2)

9,4 @ 1g',d'] = [99",44']



TABLE XXV. Z3-SET orders for bosonic systems labeled in terms of sets of topological excitations.
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The list contains all

topological orders with N =4,5,6 D* < 100, N =7 D? <60, N =8 D? <40, and N =9 D? < 28.

Nc‘e‘ D? di,da, -+ S1,82,° - comment
T
351 3 11,1,1 0,0,0 £ = Rep(Zs)
¢ ] 2 1 1 1
45 12 |1,1,1,3 0,0,0, 1 SB:K =|1 20 °
13 111 B P
6{1 6 [1,1,1,1,1,1 0,0,0,%,1 1 27 ) Rep(Zs3)
6% 6 |1,1,1,1,1,1 0,0,0,3,3 32 25, K Rep(Z3)
1
6545 [10.854|1,1,1,¢4,¢3,¢3 0,0,0,2,2,2 27, /5 X Rep(Zs)
1
65414 5 10854 15131a<§7<§a<§ 0 0 0, g, g,% 2}7314/5 IZREP(Z;),)
T T
8§4 24 [1,1,1,1,1,1,3,3 0,0,0,2,3 2 4 1 25, K45t
1 1
8% | 24 |1,1,1,1,1,1,3,3 0,0, o,i,i,i,%,g 2P )45
Ci Ci
8({;5 43.416 171a11<..317c31a<§a37 3+;/E 0 0 07 57 31 g7l7 % 2314/5 &4
8646 5 43.416 15LLC§:C§5C§537 3+§/E 0 0 Oa %a %7 %7%5 190 14/5 &424
1
9§4 9 [1,1,1,1,1,1,1,1,1 0,0,0,4,%,5,%, 5,4 SB:3% F:Z,
1
9% 9 |1,1,1,1,1,1,1,1,1 0,0,0,4,%,%,4, 2.1 3% K Rep(Z3) F:Z5 x Z3
9%, 9 |1,1,1,1,1,1,1,1,1 0,0,0,2,2,2, 2 2 2 SB:3%, F:Z
1
9%2 9 |1,1,1,1,1,1,1,1,1 0,0,0,2,2,2 2 2 2 |35 KRep(Z3) F:Zs x Zs
9%}2 12 171717171717<217<217C21 O 0 075757%’17167%’1716 31/2|XRGP(Z3)
1
95?2 12 171711171717C217<217<21 0 0 07575,5,%,%,% 33/2®Rep(23)
¢l
95?2 12 151717171517<215<215<21 0 0 05575757%5%7% 35B/2|ZRep(Z3)
954}2 12 171717171717<217<217C21 O 0 0757575717767%’1776 373/2|X|R6p( 3)
¢l
97?7/2 12 171713171717C217<217<21 0 0 07575557%7%7% 3§7/2&Rep(z3)
9545/2 12 171717171517<215<215<21 0 0 05575757%7%7 1(13 3]_35/2|ZR6p(Z5)
¢l
g_ig/g 12 171717171717<217<217<21 0 0 07575757%7%, }g 3§3/2|XR9P(ZS)
9641/2 12 17171a171713C217C217<21 0 0 07575357%7%7 12 3 1/2'ZRep(Z3)
1
95, [27.887|1,1,1,¢3,¢t, ¢33, ¢2.¢2(0,0,0,8,8,8,2, 2.2 35, R Rep(Zs)
1 5 5 5
9548 7 27887 171717C517<§7<§74527C527C5 0 O 07%7%7%,$727$ 358/7&1:{613(23)

However, the above fusion rule is too restrictive. Al-
though [g,¢’] and [g, ¢¢] differ by charge ¢, we do not
know the net charge of [g, ¢'] when g # 1. Thus the more
general fusion rule that still preserves charge conserva-
tion is

9,4 @1g',d'] = 99", w2(9,9")aq'], walg,9') € G. (B3)
From
([91#]1] [92,Q2D [937%}
[9192937 (91,92) (9192793)(]1(12Q3]
= [g91,01] ® ([92, ¢2] ® [g3, q3])
= [919293,w(91, 9293)w(92, 93)q14243] (B4)
we see that
w(g1, 92)w(9192, g3) = w(g1, g293)w(92, g3)- (B5)

i.e. w(g1,g2) is a group 2-cocycle in H?(G, G).

In the above, we have assumed that the modular ex-
tension is abelian (i.e. all the particles in the modular
extension have a quantum dimension 1). We see that the
fusion rules of abelian modular extensions are labeled by
2-cocycles in H2(G, G).

However, sometimes the modular extension can be
non-abelian, such as the modular extension of sRep(Z{ )
and Rep(Zs x Zy x Z3). To allow such a possibility, we
allow [g, ¢] to be a many-to-one label of the particle, and
define a subgroup H, C G:

= {hllg,q] = [g, hql, h € G}. (B6)

The mapping g — H, is an important data to describe
the fusion. H, represents the charge ambiguity of the
symmetry twist [g, ¢]. To get an one-to-one label, we can
use

9, ¢H,). (B7)

Note that, when g is an identity: g = 1, H, is trivial:
H, =1



TABLE XXVI. The fusion rules for the three 541/6 entries
in Table XXVII. The three entries have identical (d;, s;) but
different fusions rules. 1, a, b are the three irreducible repre-
sentations of S3 with dimension 1, 1, 2.

510 0 0 1 3
di |11 2 3 3
5‘1/6 1 a b o T
1 (1 a b o T
a |a 1 b T o
b |bb 1ldadb odT ochT
ocloT oc®&T 1®bD20 adPbD27
T T o o®BT aPbP2r 1PbP 20
5100 0 1 3
di |11 2 3 3
5)1/6 1 a b o T
1 (1 a b o T
a |a 1 b T o
bbb ldadb ohT ocdT
o |lorT o®T 1BbPoPBT aPbBoDT
TI|T o o®T a®bBPodT 1QbPoDT
510 0 0 1 3
di |11 2 3 3
5)1/6 1 a b o T
1 (1 a b o T
a |a 1 b T o
b |bb l1ldadb odT ocdT
cloT oc®T adDbDodDT 1PLDoDT
T |T o o®7 1ObPodT a®bDodBT

The fusion of [1,¢'] and [g, ¢H,] is still given by
[L.q'| ® [g,qH,) = [9,q'aH,]. (B8)

We also have H, = Hg—l and

[quHg] ® [g_lvq/Hq] = @thq’Hg[l’ h] (B9)

We see that the quantum dimension of [g,qH] is d =

V/[Hyl.

The fusion rule should satisfy

[13 q] ® ([glv qugl] & [927 qQng]) (B]'O)
= ([1,(]] & [glaQ1Hg1]) & [927‘]2Hg2]

= [91, a1 Hy,] @ ([1, 4] ® [92, 02 Hy, )
We find that the following ansatz satisfy the above con-
dition

mIr9z
|(H91 v ng) N H9192|
(B11)

(91,1 Hy,] @ [g2,q2Hy,] =

@qew(gl,gg)qlqugl VHg, (9192, qulg2]
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where m9192 € Z and Hy, V Hg, is the subgroup generated
by H,, and H,,. The above implies that

‘Hgl \ H92|
VI Ho |y 1Ho, | = moe:
ave [(Hg, V Hg,) N Hg, g, |

|H9192|
(B12)

We see that different fusion rules are labeled by w(g1, g2)
and Hy.

It is much easier to find all the H,’s that satisfy
eqn. (B12) and all the w(g1,g2) that satisfy eqn. (B5).
From those solutions, we can directly construct the fu-
sion rule from eqn. (B11).

Appendix C: Conditions to obtain UMTC ¢’s

In our simplified theory, a UMTC ¢ is described by

an integer tensor N,” and a mod-1 rational vector s,
where 4, 7, k run from 1 to N and N is called the rank of
the UMTC,s. We may simply denote a UMTC ¢ (the
collection of data (N}’,s;)) by C, a particle ¢ in C by
i € C. Sometimes it is more convenient to use abstract
labels rather than 1 to N; we may also abuse C as the
set of labels (particles).

Not all (N}?, s;) describe a valid UMTC ¢ C with mod-

ular extensions. In order to describe a valid C, (N, ,ij ) 8i)
must satisfy the following conditions:!3:43-46

1. Fusion ring:
N/ for the UMTC ¢ C are non-negative integers
that satisfy

N
Nj*=6i, > N{ENY =56, (C1)
k=1

NI = NN or 3NN = NA,

ij _ Arji
Nk 7Nk’

where the matrix N; is given by (V;)x; = N,Zj, and
the indices 7,7,k run from 1 to N. In fact N’
defines a charge conjugation i — i:

Ny =6 (C2)

N, ,ij satisfying the above conditions define a fusion
ring which is viewed as the set (of simple objects)

2. Charge conjugation condition:

= N* = NV = NI, (C4)
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S3-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all

topological orders with N = 4,5,6 D? < 100, N = 7 D? < 60, and N = 8 D? < 40. (In fact, we fail to find any bosonic S3-SET

orders with N =4,7,8.)

Ncle[ D? |di,da,- - 81,82, - comment
36 6 [1,1,2 0,0,0 £ = Rep(Ss)
576 | 24 [1,1,2,3,3 0,0,0,1,1 |SB:4f
2 1 1 1
54¢a 24 11,1,2,3,3 0,0,0,%,1 |SB4f rroe
1 0 0 2
54“5 24 11,1,2,3,3 0,0,0,%,1 |SB:4f
6Y° 12 (1,1,2,1,1,2  |0,0,0,%, 1 1125 K Rep(Ss)
66 12 (1,1,2,1,1,2 0,0,0,%, 1, 1|9B:27
6¥6 | 12 [1,1,2,1,1,2 |0,0,0, j, 33198 K Rep(Ss)
6v6 12 (1,1,2,1,1,2 0,0,0,32,3, 2 SB:25,
6 | 18 [1,1,2,2,2,2 [0,0,0,%, 1, 1|SB:38
6y 18 |1,1,2,2,2,2  ]0,0,0,3,1,1|SB:37
6YS | 18 [1,1,2,2,2,2 [0,0,0,2,2 2 |SB:35,
6YS | 18 [1,1,2,2,2,2 [0,0,0,2,2 2 |SB:35,
675 21.708]1,1,2,¢3, ¢4, ¢4 |0,0,0,2, 2,2 | 2, ¥ Rep(Ss)
6v%, 5 ]21.708 1,1,2,¢3,¢3, ¢4 0,0,0, 2, 2, 2 | 27, - BARep(Ss)
3. Rational condition: 6. Charge conjugation symmetry:
N, and s; for C satisfy>47 4
Z se = 0 mod 1 (C5) Sij =S5, si=s;, o §=8'C, T=TC, (Cl1)
where where the charge conjugation matrix C' is given by
ij £kl il \ik ik AT3l CLJ:N”_CS’
et = NN+ NINZS + NJPN . .
. 7. The centralizer describes the symmetry:
— (0ir + 85 + O + 01r) Z NNz (C6) Let the centralizer of C, C5*", be the subset of the
m particle labels:
4. Verlinde fusion characters: d;d
Let the topological S-matrix be [see equ. (223) in Cet ={i| Sij = —=%, VjeC}. (C12)
Ref. 9]
1 o : Then, C&" = £.
Sij = = N7 2milsitsi=si)q, C7
YD ; k (©7) 8. The second Frobenius-Schur indicator:
Let
where d; (called quantum dimension) is the largest -
eigenvalue of the matrix N; and D= /), d? Vg :D*QZN;jdidj cos(4m(s; — s5)), (C13)
(called the total quantum dimension). Then®?: ij
SuSii e _ 751
igu] Z N”Skz- (C8) then v, € Z if k = k°*.
9. Symmetry breaking:
5. Weak modularity: There is a symmetry breaking induced map C —
Let the topological T-matrix be Co, where Cp is a UMTC if & = Rep(G) or a
UMTC if £ = sRep(G¥). See Appendix
o § 2misy / sRep(Z2) P PP
Tij = dije ’ (C9) D for details.
Then [see eqn. (232) in Ref. 9
[ an- (232) ] 10. Modular extension:
SITS = eTTSiTT, The UMTC /¢ C has modular extensions.
1 omis; g2 2mic/s. o .
©=D" Z e d; = [Oe”" ¢f (C10) The above conditions are necessary and sufficient (due to

The parameter ¢ mod 8 is defined via ©, if |©] # 0.

the condition 10) for (Nk], i) to describe a UMTC ¢ C
with modular extensions.
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TABLE XXVIII. S3-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all

topological orders with N =9 D? < 30.

Nc‘e‘ D? di,da, - 81,82, " comment

35 | 6 |1,1,2 0,0,0 £ = Rep(Ss)
9y 18 [1,1,2,1,1,1,1,2,2 0,0,0,%, 1, 1 1 11 137 MRep(Ss)
9ve | 18 [1,1,2,1,1,1,1,2,2 0,0,0,2,2,2 /22 2 |35 [ Rep(S;)
9y 24 [1,1,2,1,1,2,2,2,2 0,0,0,%,1,0,0,0, 1 SB:4fZ

9y 24 [1,1,2,1,1,2,2,2,2 0,0,0,%,%,0,0,0,3 SB:4F

9y6 24 [1,1,2,1,1,2,2,2,2 0,0,0,3,%, 5,4, 5,2 SB:4P

9y | 24 |1,1,2,1,1,2,2,2,2 0,0,0,1,%,2,4, 11 |SB4?

9y 24 [1,1,2,1,1,2,2,2,2 0,0,0,3,%,5, 5,53 SB:4P

9y 24 [1,1,2,1,1,2,2,2,2 0,0,0,1,4, % 1 11 SB:48

9y® 24 [1,1,2,1,1,2,2,2,2 0,0,0,3,3,2,2,3 1 SB:4%

9y® 24 [1,1,2,1,1,2,2,2,2 0,0,0,%,4,2, 3 31 SB:42

9Y% | 24 |1,1,2,1,1,2,2,2,2 0,0,0,3,4, 2,4 1 1 |SB:4}

9y 24 [1,1,2,1,1,2,2,2,2 0,0,0,1,%,3,%,3. 3 SB:4?

9ve 24 [1,1,2,1,1,2,2,2,2 0,0,0,1,4,1,5, 35 SB:45,

9ve 24 [1,1,2,1,1,2,2,2,2 0,0,0,3,%,3,2,2,2 SB:47,

9ve 24 [1,1,2,1,1,2,2,2,2 0,0,0,1,4,3,3,3 3 SB:45,

9vs 24 |1,1,2,1,1,2,2,2,2 0,0,0,%,%,1,3,3 2 SB:45,

gvo 24 [1,1,2,1,1,2,2,2,2 0,0,0,1,%2,3,2,%,1 SB:4Z,

9gvo 24 [1,1,2,1,1,2,2,2,2 0,0,0,1,4, 2,2 11 SB:45,

95{/52 24 [1,1,2,1,1,¢3,¢,2,V8 0,0,0,2, 2,2, 2 1 5135, KRep(Ss)
95@ 24 [1,1,2,1,1,¢3,¢4,2,v8 0,0,0,3, 3,5, 2,4, 2 |sB:38,

ovh | 24 1,1,2,1,1,83,¢3,2,V8 0,0,0,%,2, L L 1 L1385 KRep(Ss)
91@ 24 |1,1,2,1,1,¢4,¢4,2,v/8 0,0,0, 3,3, &, &, %, & | SB:3P,

9?{/5‘2 24 1,1,2,1,1,¢3,¢3,2,V8 0,0,0,3, 3,15, 1% 3> 15 | 35/2 M Rep(Ss)
93{62 24 [1,1,2,1,1,¢3,¢4,2,V/8 0,0,0,3, %, 3,25, 3 SB35,

9{62 24 [1,1,2,1,1,¢3,¢4,2,v8 0,0,0,%, %, %, &, 1, & | 37, K Rep(Ss)
9{/62 24 [1,1,2,1,1,¢3,¢3,2,V8 0,0,0,%,4, &, = 1 LISB:32,

9f§/2 24 |1,1,2,1,1,¢4,¢4,2,v/8 0,0,0,%,%, 2, 2 1 2135, KRep(Ss)
Ove .l 24 |1,1,2,1,1,33,65,2,V8  [0,0,0,,4, %, 2 1 & 1SB35, ,
9S24 |1,1,2,1,1,83,¢3,2,V8 0,0,0,% 3, &2 1 1 1135  KRep(Ss)
Ove,l 24 |1,1,2,1,1,¢3,63,2,V8  {0,0,0,%, 4, 1, 1 1 1LISB35,

oS, 24 [1,1,2,1,1,¢3,¢3,2,V8 0,0,0,3,4,33, 18 1 18135, KRep(Ss)
oS, 24 |1,1,2,1,1,¢3,¢5,2,V8  {0,0,0,%,3, 13,82 1 181sB:35,

9ve .l 24 |1,1,2,1,1,33,¢3,2,V8  [0,0,0,4, 4,158,128 1 15135 ®Rep(Ss)
9ve | 24 |1,1,2,1,1,¢3,¢8,2,48 0,0,0,3,4,15, 18 1 15/9B:35, ,

oY% | 30 [1,1,2,2,2,2,2,2,2 0,0,0,%,1, 1 442 ISB:5f

9y 30 11,1,2,2,2,2,2,2,2 0,0,0,2,2,2,3 33 SB:5F

0¥ 55775 1,1,2,¢5, G5, 63, 63,265, 9> 0,0,0, 2,8, 2,2, 2,2 |37, K Rep(Ss)
9YS |55.775 | 1,1,2,¢3, ¢4, ¢2, ¢2,2¢E, ¢% 0,0,0,%,%,2,3,2,2 |35  KRep(Ss)

However, when we calculate the tables in Appeandix
A, we do not use the condition 10. So the used conditions
are only necessary. As a result, the tables may contain
fake entries that have no modular extensions.

To numerically solve the above conditions to obtain the
classification tables, we first search for N;”’s that satisfy

the condition 1 and 2. Then for each IV ,ij , we calculate
s;’s that satisfy the condition 3 via the Smith normal
form of integer matrix V%;,, where ijkl is viewed as a

single index. Last, from the obtained N,ij ,8;'s, we select
those that satisfy all the conditions.
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TABLE XXIX. Zs x Z2-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains
all topological orders with N = 5 D? < 100 and N = 6 D? < 200.

Ncle‘ D? di,da, - S1,82,- - comment
42 4 |1,1,1,1 0,0,0,0 E = Rep(Z2 x Z2)
52 8 [1,1,1,1,2 0,0,0,0, 1 SB:28
52, 8 [1,1,1,1,2 0,0,0,0, 3 SB:25,

5145 |14.472|1,1,1,1,(3 0,0,0,0,2 SB:27} /5

52,5 (14.472(1,1,1,1,(5 0,0,0,0, 2 SB:2",, 5
62 12 (1,1,1,1,2,2 0,0,0,0, ;,% SB:35
62 12 |1,1,1,1,2,2 0,0,0,0,%,1 |SB:37
62 12 (1,1,1,1,2,2 0,0,0,0,%,% |SB:3%
62 12 |1,1,1,1,2,2 0,0,0,0,%,1 |SB:37
62, | 12 [1,1,1,1,2,2 0,0,0,0,2,2 |SB:35,
62, | 12 |1,1,1,1,2,2 0,0,0,0,2,2 |SB:3%,
62, | 12 [1,1,1,1,2,2 0,0,0,0,2,2 |SB:352,
62, | 12 |1,1,1,1,2,2 0,0,0,0,2,2 |SB:3%,
63 /2 16 [1,1,1,1,2,v/8 ]0,0,0,0,3, % | SB:37,
635 | 16 [1,1,1,1,2,v/8 ]0,0,0,0,3, SB33/2
6, | 16 |1,1,1,1,2,v/8 ]0,0,0,0,3, 3% [SB:35,
65 16 [1,1,1,1,2,v/8 [0,0,0,0, 3, |SB:37,

67, | 16 |1,1,1,1,2,v/8 0,0,0,0, 3, % | SB:3%,

65,5 | 16 |1,1,1,1,2,v/8 0,0,0,0, ;,% SB:3% ),

6%5, | 16 [1,1,1,1,2,v/8 [0,0,0,0,%,12 |SB:3%, ,

6, | 16 |1,1,1,1,2,v/8 0,0,0,0, 3,22 |SB:3", ,
63 36 [1,1,1,1,4,4 0,0,0,0,%,2 |SB:9¢
63,7 |37.183]1,1,1,1,2¢5,¢% | 0,0,0,0, 2,2 |SB:3f,

6% /7 |37.183|1,1,1,1,2¢3,¢12 | 0,0,0,0, 2,2 | SB:3%

Appendix D: Symmetry breaking

A UMTC ¢ C describes a SET with symmetry & (up
to invertible GQLs). If we break the symmetry &£, then
the UMTC ¢ will become a UMTC Cy if £ = RepG or
become a UMTC/Z; Co if £ = sRep G¥. So there is a nat-
ural mapping from UMTC ¢’s to UMTCs or UMTC/Z2f:

C — Cp. Requiring the existance of such map can give us
some additional conditions on (N,”,s;) of C.

To understand such a map, we note that C can be
viewed as a subcategory of Cy, in the sense that the simple
objects in C can be viewed as the simple or composite
objects in Cy:

i oMY, iecC, IeC,. (D1)
Physical, if we just pretend the symmetry is not there,
then every particle in C can also be viewed as a particle
in Cy. However, a particle in C may be the direct sum of
several degenerate particles in Cy, where the degeneracy
is due to the symmetry, as described by eqn. (D1).

In the following, we will obtain some conditions on
M which will help us to calculate it. Let us label
the particles in C as {i} = {1,a,b,--- ,z,y,---}. Here
a,b,--- label the bosonic part of £, and x,y, -+ label

the fermionic part of £ (if any) and the rest of non-trival
topological excitations. We have also used I to label the
particles in Cy. Clearly, the bosonic part of £ are local
excitations and are direct sums of 1 € Cp:

a— dy1, M = d, 64, (D2)

or

(Here 1 is the trivial particle in Co.) By computing i ® j
in two different ways, we find that M* must also satisfy

S MUIMINE =Y NI MEE (D3)
1J k
Taking K = 1, we obtain
S MM =Y "N, (D4)
I a
Assuming the charge conjugation symmetry: M7 =
M| we can rewrite the above as
S MM =Y Nid,, (D5)
I a
which implies that
> (M =" Nid,. (D6)

I a
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TABLE XXX. Z3 x Z>-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all

topological orders with N =7 D? < 120.

NC‘el D? di,da, -+ 81,82, - comment
432 4 [1,1,1,1 0,0,0,0 &€ = Rep(Z2 x Z3)
72 16 [1,1,1,1,2,2,2 0,0,0,0,0,0,% |SB:4f
72 16 [1,1,1,1,2,2,2 0,0,0,0,0,7,2 |SB:4§
72 16 |1,1,1,1,2,2,2 0,0,0,0,%,1 1 |SB:4?
72 16 [1,1,1,1,2,2,2 0,0,0,0,%, 1,1 |SB:4?
73 16 |1,1,1,1,2,2,2 0,0,0,0,%, 1 1 1SB:4?
72 16 (1,1,1,1,2,2,2 0,0,0,0,%, 1,1 |SB:4?
2 1 1 1 1B
72 16 (1,1,1,1,2,2,2 0,0,0,0,%, 1 1 |SB:4]
72 16 [1,1,1,1,2,2,2 0,0,0,0,%, 1,1 |SB:4?
7 16 ]1,1,1,1,2,2,2 0,0,0,0,%, 5,5 |SB:4P
72 16 [1,1,1,1,2,2,2 0,0,0,0,%, %, 1 |SB:47
2 3 3 1 1B
72 16 (1,1,1,1,2,2,2 o,o,o,o,rg,g,5 SB:4%
72 16 [1,1,1,1,2,2,2 0,0,0,0,2,2, 1 |SB:4¥
72 16 [1,1,1,1,2,2,2 0,0,0,0,2,2 1 |SB:4¥
72 16 [1,1,1,1,2,2,2 0,0,0,0,2,%, 1 |SB:4f
72 16 [1,1,1,1,2,2,2 0,0,0,0,2,2 1 |SB:4¥
72 16 [1,1,1,1,2,2,2 0,0,0,0,2,%,1 |SB:4f
72 16 [1,1,1,1,2,2,2 0,0,0,0,2,2 1 |SB:4¥
72 16 (1,1,1,1,2,2,2 0,0,0,0, 3,1, 1 |SB:4f
2 1 5 5 1B
724 16 (1,1,1,1,2,2,2 0,0,0,0,%,2,2 [SB:4”;
72, 16 [1,1,1,1,2,2,2 0,0,0,0,%,2,2 |SB”Z,
2 1 5 5 1B
7% 16 (1,1,1,1,2,2,2 0,0,0,0,3,2,2 SB.4;3
) 1 5 5 .
72, 16 (1,1,1,1,2,2,2 0,0,0,0,%,2,2 |SB?,
2 1 5 5 1B
7%, 16 (1,1,1,1,2,2,2 0,0,0,0,%,2,2 [SB:4”,
72, 16 |1,1,1,1,2,2,2 0,0,0,0,%,2,2 |SB4?,
7% 16 [1,1,1,1,2,2,2 0,0,0,0,%,2,2 [SB:4”,
72, 16 |1,1,1,1,2,2,2 0,0,0,0,%,3,2 |SB:4”,
7 16 [1,1,1,1,2,2,2 0,0,0,0,%, L, I |SB:4”Z,
7 16 |1,1,1,1,2,2,2 0,0,0,0,%, I, 7 |SB:4”,
7, 16 |1,1,1,1,2,2,2 0,0,0,0,%, L, 7 |SB:4”,
7% 16 |1,1,1,1,2,2,2 0,0,0,0,%, 1,7 |SB:4”,
7 16 [1,1,1,1,2,2,2 0,0,0,0,%, L, 7 |SB:4”Z,
71 16 |1,1,1,1,2,2,2 0,0,0,0,%, I, 7 |SB:4”,
7 16 [1,1,1,1,2,2,2 0,0,0,0,%, L, 7 |SB:4”Z,
Toss [28.944(1,1,1,1,2,¢5,Cs 0,0,0,0,2, 2, 2 |SB:4f,
7%9/5 28.944 1717171’27C§7C§1 07070707i3§7% SB:4{39/5
7% 105 [28.944(1,1,1,1,2,¢8, G3 0,0,0,0,2, 5, 2 |SB:4”,,
T2gs5 [28.944(1,1,1,1,2, ¢4, & 0,0,0,0, %, %, 37 | SB:4” 5
75 52.360(1,1,1,1,(3,¢5,3++/5/0,0,0,0,2,2,0 |SB:45
7%2/5 52.360 17171711€§7C§73+\/5 070707072127% SB:4{32/5
7% 155 [52.360(1,1,1,1,¢5,¢3,34+v/5(0,0,0,0,2, 2,2 |SB:4”,,
7%0/3 76.937 1717171124’;724-'?,4186 070,07()’%7%7% S]3:4‘1130/3
7% 05 | 76.937(1,1,1,1,2¢7,2¢3,¢fs  |0,0,0,0,%, 7,5 |SB:4”,
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TABLE XXXI. Z2 x Z2-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains
all topological orders with N = 8 D? < 60.

NC‘(al D? di,da, - S1,82," " comment
42 4 |1,1,1,1 0,0,0,0 € = Rep(Z2 x Z5)
82 8 [1,1,1,1,1,1,1,1 0,0,0,0,%,%, 1,1 28 R Rep(Z2 x Z2)
82 8 |1,1,1,1,1,1,1,1 oooolii,i SB:2B
82 8 [1,1,1,1,1,1,1,1 0,0,0,0,%,%, 1,3 SB:2B
82 8 |1,1,1,1,1,1,1,1 0,0,0,0, 4,5;% SB:2B
8%, 8 |1,1,1,1,1,1,1,1 0,0,0,0,2,3 33 25, " Rep(Z2 x Z2)
8%, 8 |1,1,1,1,1,1,1,1 0,0,0,0,2,3 33 SB:25,
82, 8 [1,1,1,1,1,1,1,1 0,0,0,0,2,3 33 SB:2B,
8%, 8 |1,1,1,1,1,1,1,1 0,0,0,0, g,g,g,g SB:25,
8145 |14.472]1,1,1,1,(3,¢3,G3,¢3 0,0,0,0,2,2,2 2 275 W Rep(Za x Z2)
8% 14y [14472(1,1,1,1,63,G3, 83,3 0,0,0,0,2,2,2 3 25,5 @ Rep(Za X Zs)
82 20 [1,1,1,1,2,2,2,2 0,0,0,0, 17l,i,é SB:5F
82 20 (1,1,1,1,2,2,2,2 0,0,0,0, Eiéé SB:5E
82 20 (1,1,1,1,2,2,2,2 0,0,0,0,%,1,2 4 SB:55
82 20 [1,1,1,1,2,2,2,2 0,0,0,0,+, 1,24 SB:5F
82 20 (1,1,1,1,2,2,2,2 0,0,0,0,2,2,2 2 SB:58
82 20 [1,1,1,1,2,2,2,2 0,0,0,0,2,2,3 2 SB:5P
82 20 (1,1,1,1,2,2,2,2 070,0,0,2 2,33 SB:58
82 20 [1,1,1,1,2,2,2,2 0,0,0,0,2,2,3 2 SB:5P
82 48 [1,1,1,1,2,/12,4/12,4 00000 1,22 SB:5F
82 48 |1,1,1,1,2,V/12,1/12,4 0,0,0,0,0,2,Z 1 SB:5F
82, 48 [1,1,1,1,2,/12,4/12,4 0,0,0,0,0,%,2,2 SB:52,
82, 48 |1,1,1,1,2,v12,v/12,4  |0,0,0,0,0,2,Z 2 SB:5%,
87,11 | 138.58|1,1,1,1,2¢5,2¢5, 2G5, 26 | 0,0,0,0, 1%,%,%,% SB:51511
8% 16,11 | 138.58 | 1,1,1,1,2¢3,2¢35,2¢5,¢30 [0,0,0,0, 35, &, 1%, SB'5316/11
8%s/7 |141.36|1,1,1,1,(, (P2, 2(12, 2¢12 | 0,0,0,0, 8,8, 1,2 SB:51% /7
8% 15/7 | 141.36 | 1,1,1,1,(P2, (12, 2¢F2, 2(12 | 0,0,0,0, %, £, 2, 2 SB:5” 47

TABLE XXXII. The fusion rules for some Z> x Z>-SET orders.

5[0 000 3 si (0000 2
;{1111 2 di |1 111 203
5111 a b ¢ ¢ 5%4/5 1abdbec n
11 a b c ¢ 1 |[1abec n
ala 1l ¢ b 10} a |alcbd n
blb c1la ¢ b |bc1la n
clc bal 10} c |¢c bal n
P|d PP d1Dadbde n |mnmnnldadbdcd2y

To obtain more properties of M*' and to solve the of I's, up to an overall factor, such as

above conditions on M* | let us consider the fusion with
a partciles: 1= 1 ®2I, j— 31 ®61,. (D8)

a®w =&y Ny y. (D7) This is because a particles in C is mapped to the direct-

We define = to be equivalent to y if there exists a such sum of identity in Cy. Since ¢ and j is related by fusing

that Ng* # 0. Let [z] be the equivalent class of w. a or identity in Cp, then ¢ and j must be formed by the
Clearly [ | = [a]- same combination of I’s.

First, we like to pointed out that if 4 and j are equiv- Second, if ¢ and j are not equivalent, then the I’s that

alent, then 7 and j are formed by the same combination enter ¢ do not overlap with the I’s that enter j. This
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TABLE XXXIII. Z3 x Z{—SET orders (up to invertible ones) for fermionic systems. The list contains all topological orders

with N =6 D? <300, N =8 D? <60, and N = 10 D? < 20.

4
82 145(5%50) [ 14472 | 1,1,1,1,G3, G5, G3, 3
4

Nc‘e‘ D? di,da, -+ S1,82," " comment
43(3) 4 [1,1,1,1 0,0,%,% & = sRep(Zs x ZJ)
65 12 [1,1,1,1,2,2 0,0,%,3,%.2 SB:K =(7, )
60 12 1,1,1,1,2,2 0,0,1,1 15 SB:K :(; ?>
85(o) 8 |LLLLLLLL  [0,0,5,5 44,75 |2 KsRep(Z2 x Z])
80(0) 8 |1,1,1,1,1,1,1,1 0,0,%,3,4,1,33 SB:44 ()

0,0

»272710°10°5° 5
1122 9 9

25,,/s ®sRep(Z x Z3)

8?4/5(7343320) 14.472(1,1,1,1,¢3,G3, G, G 0,0, 3,4,2,2 5 8 |28 KsRep(Z2 x Z3)
80(2) 20 (1,1,1,1,2,2,2,2 0,0,4,1,L,22 5 SB:105(<§)
88(132) 20 [1,1,1,1,2,2,2,2 0,0,4,3.4, 3, 5,4 SB:105(1</52)
80,,(2%) (27.313|1,1,1,1,¢2,¢3,¢3.¢3 |0,0,4,4,1,1,8.8 SB:AL,(5,)
8),,(25) [27.313]1,1,1,1,¢3,¢3,¢3,¢2 0,0,4, 1, 1,1 83 SB:4L),(&4,)
109(2) 16 |1,1,1,1,1,1,1,1,2,2|0,0,%,1,0,0,%, 1,0, 3 | SB:85 (%)
108(5) 6 |1,1,1,1,1,1,1,1,2,2{0,0,%,%,0,0,%,1,0,1 SB:8§(‘(/)§)
108(1/@) 16 |1,1,1,1,1,1,1,1,2,2/0,0,%,%,0,0,%,1, %, 2 SBzgoF(ljg)
108(1“/58) 16 |1,1,1,1,1,1,1,1,2,2/0,0,%,2,0,0,%,1, %, 2 SB:85(138)
109(9) 16 |1,1,1,1,1,1,1,1,2,2/0,0,%,%,0,0,%, 1,1 3 1 SB:8F'({)
109(¢) 16 |1,1,1,1,1,1,1,1,2,2|0,0,%,1,0,0,%,1, 1,3 | SB:87 ()
108(7{?8) 16 |1,1,1,1,1,1,1,1,2,2|0,0,3,%,0,0,%,1,2 T SB:8§(712/8)
108(7{2) 16 |1,1,1,1,1,1,1,1,2,2|0,0,%,2,0,0,%, 1,2 TISB:8F(_7 )

is a consequence of eqn. (D5). The right hand side of
eqn. (D5) will vanish if ¢ and j are not equivalent.

Third, the I’s that appear in ¢ must have the same
quantum dimensions and spins. This is because those I’s
must be degenerate. This can only happen if they have
the same quantum dimensions and spins.

Fourth, the I’s that appears in 7 must each enter with
an equal weight, such as
Again, this is because those I’s must be degenerate. This
can only happen if they can be mapped into each other by
symmetry transformations. Since the symmetry trans-
formations only permute I’s, each I enters with an equal
weight.

Combine the above results, we see that M* has the
following block structure. We can divide the index I into
groups [I], such that there is one-to-one correspondence
between [i] and [I]: [i] <+ [I];], and

Mt =0 if ieli
MT=m; >0 if ieli], I€[I]y.

Therefore, we have

m?n[i] = Z Négda,

a

where ny;) is the size of the set [I];). Since

1= @Iemmmﬂ, (D12)

we have

mimng =Y Nda, i, € [i] (D13)

In other words, the matrix N with elements Nij =
D Niid, is block diagonal. Each block is formed by
particles in an equivalent class [i], and is given by the
above expression. We see that, for 4,5 € [i], >, N}jda
must be a symmetric matrix with a single non-zero eigen-
value 1y 3 ien m? and eigenvector (m;).

We also find that

or
d = <"y e, (D15)
L. Nid "

Using the fact s; = s; = s7, Vi,j € [i], I € [I]}, we
can obtain (dr,sy) of Cy from (N,’,s;) of C. The re-
sulting (dy, s;) must be the quantum dimensions and the

spins of a UMTC. This gives us some extra conditions on
(& lch ;i)
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TABLE XXXIV. ZZ—SET orders for fermionic systems. The list contains all topological orders with N = 6 D? < 100, N = 8

D? <60, and N = 10 D? < 20.

Ncle‘ D? di,da, -+ S1,82, " comment

49 4 [1,1,1,1 0,0,1,1 & =sRep(Z])

69 12 1,1,1,1,2,2 0,0,3,3,12 Kzf(; j)

69 12 [1,1,1,1,2,2 0,0,3,3,1.3 K:(; j)

89 8 |1,1,1,1,1,1,1,1 0,0,3,1,4 2,33 28, W sRep(Z])

89 8 |1,1,1,1,1,1,1,1 0,0,%,3,4,1,33 28 K sRep(Z])
8%, |14472(1,1,1,1,43,G3,G3,G3 | 0,0,%, 3, 5. &, 2,8 |28, ®sRep(Z])
89,5 |14.472]1,1,1,1,¢3,¢3,¢3,¢G3 0,0,4,4, 2,2 5 9 128 KsRep(Z])

89 20 [1,1,1,1,2,2,2,2 0,0,1,%,:,2,3 2 Sleog(Coé)

89 20 [1,1,1,1,2,2,2,2 0,0,1,3,1, 3, & 4 SB;105(1<%2)
109(2) 16 |1,1,1,1,1,1,1,1,2,2|0,0,%,1,0,0,%, 1,0, 3 | SB:85 (%))
108(;) 6 |1,1,1,1,1,1,1,1,2,2{0,0,%,%,0,0,%,1,0,1 SB:SOF(‘/Og)
108(1/@) 16 |1,1,1,1,1,1,1,1,2,2/0,0,%,2,0,0,%,1, 2, 2 SB:S{(Ijs)
108(1@) 16 |1,1,1,1,1,1,1,1,2,2(0,0,3,3,0,0, 3, 3, 1, 2 | SB:8§'(,7;)
109(9) 16 |1,1,1,1,1,1,1,1,2,2/0,0,%,4,0,0, %, 1,1 3 | SB:87'({)
105(¢) 16 |1,1,1,1,1,1,1,1,2,2|0,0,%,2,0,0,%, 1,1, 3 | SB:87 ()
108(7@) 16 |1,1,1,1,1,1,1,1,2,2/0,0,%,1,0,0,%4,1, 3 T SB:8§(7f/8)
108(7{2) 16 |1,1,1,1,1,1,1,1,2,2|0,0,%,2,0,0,%, 1, 2 T ISB:8F(_7 )

Appendix E: Physical and mathematical meaning of
UMTC,¢ and its modular extensions

In the main text of the paper, we have explained why
UMTC ¢ describes the bulk particle-like excitations. We
also explained the motivation of modular extension via
“gauging” the symmetry. In this section, we will discuss a
deeper meaning of UMTC ¢ and its modular extensions.

We know that UMTC ¢ is a very abstract way to de-
scribe the non-abelian statistics of the excitations. It is
not clear at all that why the excitations described by
UMTC /¢ can be realized by a local lattice model with
on-site symmetry. In physics, we mainly concern about
local lattice models and their properties. It appears that
there is a big gap between the UMTC ¢ studied in this
paper and local lattice models that physicists want to
study. In fact, the two are closely related. Here, we will
try to explain such a connection between lattice models
and UMTC ¢ (with their modular extensions).

We know that the fusion-braiding properties of parti-
cles within a 2-dimensional open disk can be described
by a unitary braided fusion category. From this point
of view, a unitary braided fusion category is a local
theory that only encode the local properties of the fu-
sion and braiding (i.e. on an open disk). We want
to promote fusion-braiding properties to be integrable
to any 2-dimensional manifolds because we want those
fusion-braiding properties to be realizable by some local
lattice models, which can always be defined on any 2-
dimensional manifolds. Therefore, the integrability of
fusion-braiding properties to any 2-dimensional mani-

folds is necessary for the fusion-braiding properties to
be realized by some local lattice models.

Now we assume that “all 2-dimensional manifolds” are
the most powerful probes. This means that the integra-
bility of the local fusion-braiding properties to global in-
variants (on all 2-dimensional manifolds), satisfying nat-
ural physically required properties, is also sufficient for
those properties to be realizable by some local lattice
models.

The process of integrating the local fusion-braiding
properties of particles (described by a UBFC C) to give
global invariants is defined by the so-called factorization
homology.??*3 In order to be free of framing anomaly,
we need a spherical structure, which is guaranteed by
the unitarity of a UBFC.? For general UBFCs, although
the global invariants are well-defined by factorization
homology,®® they do not have nice properties that allow
us to give them a natural physical meaning. A stronger
integrability condition needs to be imposed in order for
the global invariants to have natural physical meanings.

For example, if C is assumed to be non-degenerate
(i.e. UMTC), it was shown in Ref. 54 that factoriza-
tion homology of a UMTC C over a closed 2-dimensional
manifold is given by the category of finite dimensional
Hilbert spaces. If one inserts a finite number of particle-
like excitations x1,- - - , x, on the closed surface, one sim-
ply obtain the Hilbert space home (1,21 ®- - - ®x,.), which
is also the space of degenerate ground states. This re-
sult remains to be true for all closed 2-dimensional man-
ifolds with topological gapped defects and with 2-cells
decorated by different phases.”® This includes the cases
that the topological order is defined on any surfaces with



boundaries. Therefore, the non-degeneracy is certainly a
sufficient integrability condition, which is too strong for
the purpose of this work.

In this paper, we consider something more complicated
— the fusion-braiding properties of particles with symme-
try. By “with symmetry”, we mean to include local exci-
tations that carry representations of the symmetry group.
Mathematically, this means that the unitary braided fu-
sion category C contain a SFC & as its Miiger center,
ie. a UMTC/¢. We know that either £ = Rep(G) or
& = sRep(G7), where G or G7 is the symmetry group.
In this case, we must find a proper integrability condition
that is weaker than the non-degeneracy of UBFC.

In order for the factorization homology of C on a sur-
face, a unitary category denoted by Cyx;, to have a physical
meaning, we suspect that we should be able to interpret
its object as finite dimensional Hilbert spaces in a natural
way. This suggests that the category Cs; should equipped
with a natural functor to the category of finite dimen-
sional Hilbert spaces, which is a factorization homology
Ms of a UMTC M.%* So we expect that we should be
able to embed C into a UMTC M such that the embed-
ding naturally descends to a functor Cs; — My on fac-
torization homologies. An arbitrary UMTC such as the
Drinfeld center Z(C) of C can not do the job because there
is no canonical way to identify C in M (with a fixed sym-
metry &) so that it is unlikely that it can be compatible
with the integration process. So we expect that the con-
dition £} = C is a natural integrability condition that
replace the non-degeneracy condition in this case. This
flow of thinking leads us to the concept of the modular
extension of C. It also suggests that the non-existence
of the modular extension of a given C means that C is
somewhat inconsistent globally or not integrable to all
2-dimensional manifolds with natural physical meanings.

This can also be viewed from a different point of view.
If we require each particle to be non-trivial in some sense,
then we must only consider the non-degenerate unitary
braided fusion category over SFC £. In this case, for
particles not in £, we know they are non-trivial because
their non-trivial double braiding (or non-trivial mutual
statistics) with some particles. But we still have trouble
to know why the particles in £ are non-trivial? From
their fusion and braiding properties, they just behave
like the identity or a composite of identities.

To fix this problem, we put our particles on any 2-
dimensional manifolds. In this case, we can find a way
to understand the non-trivialness of the particle in &.
This require us to twist the symmetry G or G on the
2-dimensional manifold. In other words, we equip the
2-dimensional manifold with a flat G-connection. Since
the particles in £ all carry irreducible representations of
G, as we move the particles along a non-contractile loop,
the flat G-connection will induce a G transformation on
the particle (or more precisely, on the hom space of the
particles). This allows us to probe the particles in £ and
detect their non-trivialness.

Therefore, as we put particles on a 2-dimensional man-
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1

(a) (b) (c)

FIG. 4. (a) A torus with a flat G-connection (described by a
symmetry twist along the dashed loop). The thin solid loop
is a braiding path. (b) A handle is deformed into a very thin
one. (c) A very thin handle can be viewed as two defects, and
each defect corresponds to the added particle in the modular
extension.

ifold, it is important to allow any flat G-connection on the
manifold. Now we ask, in this case, can a non-degenerate
unitary braided fusion category C over a SFC £ describes
the fusion-braiding properties of particles that are con-
sistent on any 2-dimensional manifolds with any flat G-
connections?

In this paper, we propose that the answer is no. We
also propose that the answer is yes iff the C over £ has
modular extensions, which are the categorical ways of
gauging the symmetry £. So, non-degenerate unitary
braided fusion categories over SFC can describe the con-
sistent local fusion and braiding on an open disk. Only
the ones with modular extensions can describe the con-
sistent fusion and braiding on any manifolds (with any
flat G-connections).

The intuition for the above conjecture is explained in
the Fig. 4. Fig. 4(a) describes a braiding of particles on
a torus with flat G-connection. As we deform a handle
into a very thin one, we may view the above braiding
on torus as a braiding around the added particles in the
modular extension. So the consistent fusion and braiding
on any manifolds with any flat G-connection must be
closely related to the consistent fusion and braiding on a
sphere with the added particles in the modular extension.
So, the mathematical meaning of the modular extension
is to make the fusion and braiding to be consistent on
any manifolds with any flat G-connection.

For a given C over &, there can be several modular
extensions M. We believe that those different modular
extensions describe the different structures at the bound-
ary. This picture leads to the physical conjecture that the
triple (C, M, ¢) classify the 241D topological /SPT orders
with symmetry .
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