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Abstract

Solid solution MAX phases offer the opportunity for further tuning of the thermo-mechanical and functional
properties of MAX phases, increasing their envelope of performance. Previous experimental results show that
the lattice parameters of Ti3(SixAl1−x)C2 decrease, while the Young’s modulus increases with increased Si
content in the lattice. In this work, we present a computational investigation of the structural, electronic, and
mechanical properties of Ti3(SixAl1−x)C2 (x= 0, 0.25, 0.5, 0.75, and 1). The solid solutions were modeled
using special quasirandom structures (SQS) and calculated using Density Functional Theory (DFT), which
is implemented in the Vienna Ab initio Simulation Package (VASP). The SQS structures represent random
mixing of Al and Si in the A sublattice of 312 MAX phase and their structural, electronic, and mechanical
properties were calculated and compared with experiments. We study the cleavage and slip behavior of
Ti3(SixAl1−x)C2 to investigate the deformation behavior in terms of cleavage and shear. It has been shown
that the cleavage between M and A layers results in increasing cleavage stress in Ti3(SixAl1−x)C2 as a function
of Si content in the lattice. In addition, the shear deformation of hexagonal close packed Ti3(SixAl1−x)C2

under 〈21̄1̄0〉 {0001} and 〈01̄10〉 {0001} results in increasing unstable stacking fault energy (USFE) and ideal
shear strength (ISS) in Ti3(SixAl1−x)C2 as the system becomes richer in Si.
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1. INTRODUCTION

Mn+1AXn, or in short MAX, phases are nano-
layered, hexagonal compounds, wherein Mn+1Xn lay-
ers are interleaved with A layers. In these crystal sys-
tems, M is typically an early transition metal, A is an
A-group element and X is carbon or nitrogen. MAX
phases share some chemical similarities to their MX
binaries, as both are elastically very stiff with high
thermal and electrical conductivities and high ther-
mal and thermodynamic stability at elevated tem-
peratures. However, unlike binary MX carbides and
nitrides, MAX phases are relatively soft and read-
ily machinable with good thermal shock resistance
and tolerance to damage. The unique combination of
strong M-X bonds with relatively weaker M-A bonds
is responsible for this unique combination of prop-
erties that places MAX phases somewhat between

typical metals and typical ceramic/refractory mate-
rials. The suite of properties that MAX phases offer
make them attractive for applications in the automo-
tive and aerospace industries, among others [1–3].

Among the close to 70 pure MAX phases syn-
thesized and characterized to date, the Al-containing
MAX phases such as Ti2AlC and Ti3AlC2 are some
of the most important and technologically interest-
ing members of the family as they are considered to
be promising materials for high-temperature appli-
cations. Al-containing MAX phases are known to
have excellent oxidation properties due to the forma-
tion of a highly passivating, continuous, alumina layer
when exposed to high temperature oxidizing environ-
ments [4–6]. Moreover, these MAX phases exhibit
self-healing behavior as cracks exposed to oxidizing
environments can heal due to the formation of sta-
ble alumina inter-crack films as Al migrates from the
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Al layer in order to react with atmospheric oxygen
in high temperature environments [7]. While many
Al-containing MAX phases have excellent oxidation
resistance, their overall strength is low compared to
other MAX phases. In contrast, Ti3SiC2—one of the
most well characterized MAX phases to date—has
excellent mechanical properties compared to other
MAX phases [8, 9]. Recently, the scientific commu-
nity has started to explore the composition space in
the MAX phases beyond the pure form, with the ulti-
mate goal of tuning their properties through alloying.
In the context of the present research, the combina-
tion of Si and Al in the A lattice in Ti-C 312 MAX
phases can result in MAX phases that not only have
good oxidation resistance and self-healing character-
istics, but that also have high mechanical strength
[10].

Previous experimental work has shown that
Ti3(SixAl1−x)C2 solid solutions are not only simi-
lar to Ti3SiC2 in terms of their (good) mechanical
properties, but are also similar to Ti3AlC2 due to
the formation of a continuous alumina layer. Zhou
et al. [11] synthesized a series of solid solutions of
Ti3(SixAl1−x)C2, with x up to 0.25. In their work,
they found that while the c lattice parameter de-
creased, the a lattice parameter remained almost in-
variant as a function of composition. Incorporation
of Si into the A layer resulted in a marked increase in
the Vickers hardness (26%), flexural strength (12%)
and compressive strength (29%). More importantly,
Zhou et al. found that additions to Si had no delete-
rious effects on the oxidation resistance of the com-
pounds since a continuous Al2O3 layer still formed
when exposed to oxidizing environments at 1100oC.
While these results are remarkable, they are limited
to a relatively narrow compositional range. More
recently, Gao et al. [10] fabricated Ti3(Al1−xSix)C2

solid solutions over the entire composition range and
found a significant hardening effect at x=0.5, while
the structural and physical properties (a/c lattice pa-
rameters, Young’s, bulk and shear moduli) followed
Vegard’s Law.

In the computational arena, Wang et al pro-
vided lattice parameters and bulk modulus of
Ti3(SixAl1−x)C2 based on first principles calcula-
tion [12]. The calculations were limited to the x=0.75
composition, with the study focusing mostly on the
mechanical and electronic properties of the com-
pounds. Detailed analysis of the electronic struc-
ture led the authors to conclude that the bonding
character of Ti3(Si0.75Al0.25)C2 changes significantly,

with the Ti-Si and Ti-Al bonds becoming less cova-
lent than the corresponding bonds in the end mem-
bers.

The available experimental and computational
work on the Ti3(SixAl1−x)C2 provides evidence to
support the stability of solid solutions in this sys-
tem over the entire solubility range. To expand
upon prior work, we present a investigation of the
structural, electronic, and mechanical properties of
Ti3(SixAl1−x)C2 within a Density Functional Theory
(DFT) formalism [13], and covering the entire com-
position range.

In this work, we focus on the cleavage and slip
behaviors of Ti3(SixAl1−x)C2 MAX solid solutions.
These types of studies have not been carried ex-
tensively in the literature and it is hoped that in-
sights derived from these theoretical calculations can
be used to shed light into experimental observa-
tions showing a higher intrinsic hardness in Ti3SiC2

than in Ti3AlC2. To study cleavage behavior, we
investigate cleavage energy and cleavage stress of
Ti3(SixAl1−x)C2 (x = 0, 0.25, 0.5, 0.75, 1). The sys-
tem does not contain any defect or grain boundary
effects so that the predicted cleavage behavior cor-
responds to the intrinsic behavior of these systems
that result from changes in the chemical bonding be-
tween the M and A layers as a result of changes in
composition of the A-sublattice.

In order to study the slip behavior in these sys-
tems we investigate the generalized stacking fault en-
ergy (GSFE) surface of the pure MAX phases and
an alloy corresponding to 50-50 mixing in the A-
sublattice. The motivation for this portion of the
work presented here is to further elucidate the in-
fluence of chemical mixing in the A-sublattice on
the mechanical properties of MAX solid solutions.
Specifically, we are interested in understanding the
barriers for dislocation slip along the basal plane of
MAX phases. MAX phases, which are layered hexag-
onal structures, have a limited number of slip systems
[14] and therefore the formation of stacking faults and
the energy required to nucleate dislocations are im-
portant to study their behavior. The calculation of
the GSFE surface involves the quantification of the
response to shearing of specific crystal planes along
specific slip directions. One of the first instances in
which the GSFE surface for MAX phases was calcu-
lated was the work by Gouriet et al [15]. In that case,
the GSFE was calculated by sliding (0001) planes
at different cutting levels (i.e. probing the shear
strength of M-A and M-X layers, respectively). The
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work by Gouriet suggests that in their system un-
der investigation—Ti2AlN—plastic deformation was
effectively governed by dislocation slip within the M-
A layer rather than the M-X layer as expected by the
much weaker chemical bonding between M-A species.
Their calculations, however, were somewhat limited
as they only considered relaxation along the z direc-
tion, keeping the x and y coordinates fixed. In this
work, by contrast, we employ the method suggested
by Jahnátek et al [16], in which the GSFE surface is
calculated through uniform shearing deformation of a
structure. As will be described below, we considered
different constraints to the relaxation of ions subject
to this shear deformation, and accounted for affine
(alias) deformation modes in which all the atoms
move (or not) along the deformed lattice vectors.

2. COMPUTATIONAL DETAILS

2.1. Density Functional Theory (DFT)

In this study, the calculations were carried out
through Density Functional Theory (DFT) [17],
with projected augmented wave (PAW) pseudopo-
tentials [18, 19] as implemented in the Vienna Ab-
initio Simulation Package (VASP) [20, 21]. Exchange
correlation was accounted for within the Perdew-
Burke-Ernzerhof (PBE) approximation [22] and the
electronic configurations for titanium, aluminum, sil-
icon and carbon where chosen to be [Ar]3d34s1,
[Ne]3s23p1, [Ne]3s23p2 and [He]2s22p2, respectively.
Relaxations were done with the Methfessel-Paxton
smearing method [23], relaxing first the volume, the
shape and then all the atoms.

2.2. Special Quasirandom Structures (SQS)

The fully disordered crystalline alloys have to be
obtained to investigate the solid solution of MAX
phases. For a given number of atoms per super-
cell, SQS is known as the best periodic supercell
approximation to the fully disordered crystalline al-
loys, within a given coordination shell. In the cur-
rent work, the SQS structures are generated using the
ATAT [24] package. The SQS generation algorithm
is based on Monte Carlo simulated annealing relax-
ation of candidate configurations, with the objective
of matching the largest number of random correlation
functions derived from occupancies of different sites
within a given symmetrically unique cluster/figure:

ρα(σ) = 〈Γα′(σ)〉α (1)

where, the σ, σi = 0,. . . , Mi−1, denotes chemical
species that occupy site i, the α, αi = αi = 0,. . . ,
Mi−1, considers particular correlation called cluster,
and 〈Γα′(σ)〉 is a cluster function, defined as

〈Γα′(σ)〉 = Πγαi,Mi
(σi). (2)

Details of the approach can be found in Walle et al
[24]. In this work, the SQS were generated to study
Ti3(SixAl1−x)C2 solid solutions where x corresponds
to 0.25, 0.5 and 0.75.

2.3. Elastic properties

The stress-strain approach was used to estimate
the elastic constants of the MAX alloys[25–27]. For a
set of strains (ε = ε1, ε2, ε3, ε4, ε5 and ε6) imposed on
a crystal structure, the deformed lattice vectors are
expressed by the following matrix:

Ā = A

∣∣∣∣∣∣
1 + ε1

ε6
2

ε5
2

ε6
2 1 + ε2

ε4
2

ε5
2

ε4
2 1 + ε3

∣∣∣∣∣∣ .
For the deformed crystals, a set of stresses (σ =
σ1, σ2, σ3, σ4, σ5 and σ6) is calculated using the DFT
methods. The elastic constants were calculated using
Hooke’s law from n set of strains and the resulting
stresses, according to:∣∣∣∣∣∣∣

C11 · · · C16

...
...

C61 · · · C66

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
ε1,1 · · · ε1,n

...
...

ε6,1 · · · ε6,n

∣∣∣∣∣∣∣
−1 ∣∣∣∣∣∣∣

σ1,1 · · · σ1,n
...

...
σ6,1 · · · σ6,n

∣∣∣∣∣∣∣
The mechanical stability of the structures can be elu-
cidated from the dependence of the strain energy on
lattice distortions:

E = E0 +
1

2
V0

6∑
i,j=1

Cijεiεj +O(ε3) (3)

Specifically, mechanical stability is ensured when the
elastic constant tensor is positive definite. For an
hexagonal lattice, the static, mechanical stability cri-
terion is satisfied by the following conditions:

C44 > 0, C11 > |C12|,
(C11 + 2C12)C33 > 2C2

13. (4)
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(a) z=0 (b) z=1 (c) z=2 (d) z=3

Figure 1: Cleavage between M and A layer under loading mode I. The cleavage distance z (Å) for (a), (b), (c) and (d) is 0, 1,
2 and 3, respectively.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 2: Cleavage between M and A layer under loading mode I. The number of unit cells in the system before the cleavage
of (a), (c), (e), (g), and (i) are 1, 2, 3, 4, and 5, respectively. The number of unit cell in the system after the cleavage of (b),
(d), (f), (h), and (j) is 1, 2, 3, 4, and 5, respectively.
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2.4. Cleavage energy

We implement a model for understanding cleavage
behavior under loading mode I [28], which is shown
in Fig. 1. In this mode, the tensile stress is loaded
normal to the plane of the crack. In particular, we
initiate a crack between the M and A layers since the
M-A bond is relatively weak in MAX phases. The
cleavage energy was then calculated using DFT, ac-
counting for relaxation in which the position of the
atoms are fixed in the x-y plane, while the z position
of all the atoms are relaxed, except for the atoms on
the cleavage surface, which were fixed in order to pre-
serve the cleavage distance during relaxation. Note
that this constrained relaxation scheme is required for
the cleavage energy calculation but not for the GSFE
calculations. The cleavage energy over a surface area,
∆E/A, and stress, σ, were obtained as follows:

∆E/A = E(z)/A− E(0)/A (5)

,where z is the cleavage distance between M and A
layers. The stress σ(z) is defined by the first deriva-
tive,

σ(z) =

(
dE

dz

)
(6)

The critical stress, σc, is the maximum value of the
cleavage stress, σc=max[σ(z)]. The critical stress is
the tensile stress needed to cut the bonds between
the given cleavage planes and is dependent on the
direction since MAX phases are anisotropic materi-
als [29]. The critical stress along the c direction is
the minimum since the M-A bond is weakest bond
in MAX phases. Zhou et al. [29] have reported
that the M-X slabs are structurally stable, while the
weak M-A bonds accommodate deformation at large
strains. To clarify the influence of cleavage direc-
tion, we calculated the critical cleavage stress for
Ti3AlC2 along the a and c directions. The calcu-
lated critical stress along the c direction is 22.63 GPa
while the critical stress along the a direction is 249.28
GPa, which basically implies that no cleavage along a-
direction is possible at all. To study cleavage behav-
ior, we calculated cleavage energy and critical stress
of Ti3(SixAl1−x)C2.

Under the cleavage process, we studied the elastic
response of neighboring regions in the unit cell. In
addition to the relaxation scheme described above,
we also consider a so-called ideal brittle cleavage [28]
scenario was considered in which the M-A layer is
cleaved along the c direction, without allowing for any
relaxation along the c direction. The cleavage energy
and stress of the ideal brittle model are compared to

those of the model considering relaxation to study the
effect of elastic relaxation on cleavage energy, as the
latter consists of two parts: the atomic de-cohesion
energy and the strain energy released in the crystal
on either side of the cleavage surface. For the relax-
ation model, two relaxation models are considered.
First, the cleavage energy and stress are calculated
under atomic relaxation along c direction. Second,
the cleavage energy and stress are calculated under
atomic relaxation along all directions. The atomic
relation is considered on atoms not on the cleavage
surfaces. In addition, the cleavage energy and stress
of systems with 1,2,3,4, and 5 unit cells, as shown in
Fig. 2, are calculated with all the systems containing
one single cleavage surface. Each of the systems with
different numbers of unit cells was cleaved along the
c direction, with atoms not belonging to the cleavage
surfaces relaxed along the c direction. The cleavage
energy and stress are calculated by equation 5 , and
6 to study the effect of system size.

2.5. Stacking Fault Energy (SFE)

The most active slip system of hexagonal close
packed structure is 〈21̄1̄0〉 {0001} slip system. The
dislocation generated by 〈21̄1̄0〉 {0001} is described
by the Burgers vector, b = 1/3 〈21̄1̄0〉 {0001}. This
dislocation can be separated into two partial dislo-
cations, which are 〈11̄00〉 {0001} and 〈101̄0〉 {0001},
identical to 〈01̄10〉 {0001}. We present resultant en-
ergy curves under both of the 〈21̄1̄0〉 {0001} and
〈01̄10〉 {0001} shear deformations.

The orthorhombic super cell, shown in Fig.
3, has been used to study shear deformation of
hexagonal close packed (HCP) system for Ti3AlC2,
Ti3(Al0.5Si0.5)C2, and Ti3SiC2. The basal plane of
the orthorhombic supercell is parallel to the basal
plan of HCP system, which is {0001} plane. The a, b,
and c lattice vectors are parallel to the 〈21̄1̄0〉, 〈01̄10〉,
and 〈0001〉. Two different shear deformations, alias
and affine, are applied to the orthorhombic super cell
[16]. While affine shear deformation proportionally
displaces all atoms along the shear direction, alias
shear deformation, in contrast, displaces only the top
layer along the shear direction. For both shear defor-
mations, we considered two types of shearing, simple
and pure shear. Simple shear does not relax shape,
volume, and atomic coordinates of sheared system.
On the other hand, pure shear fully relaxes shape,
volume, and atomic coordinates while fixing the an-
gle of shear, essentially relaxing all internal stresses
except for the component(s) corresponding to the de-
formation process.
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Figure 3: The orthorhombic super cell (dashed line) is used to investigate 〈21̄1̄0〉 {0001} and 〈01̄10〉 {0001} shear deformation
of hexagonal close packed (solid line) Ti3(AlxSi1−x)C2 (x= 0, 0.5, and 1).

Currently, VASP does not allow one to carry on
relaxations under arbitrary constraints and we thus
used the external optimizer GADGET developed by
Bucko et al to carry out full relaxation calculations
by fixing the shear angle [30] and allowing all the
other degrees of freedom to relax. The result of this
constrained relaxation is the vanishing of all stress
components of the stress tensor that do not explicitly
correspond to the shear deformation applied on the
structure and thus can be considered to be a more re-
alistic deformation mechanism corresponding to dis-
location slip along the basal plane [16].

3. RESULTS & DISCUSSION

3.1. Structural and Electronic Properties

The optimized structures of the Ti3(SixAl1−x)C2

are shown in Fig. 4, visualized using VESTA
[31], in the form of hexagonal, nano-layered struc-
tures. The stability of Ti3(SixAl1−x)C2 is consid-
ered through the calculation of formation enthalpy
∆H(Ti3(SixAl1−x)C2) as given by

∆H(Ti3(SixAl1−x)C2) = E(Ti3(SixAl1−x)C2)

−nE(Ti)− nE(xSi)− nE((1− x)Al)− nE(C), (7)

where E is the total energy per atom, n is a fraction of
element in Ti3(SixAl1−x)C2 system, and x is a frac-
tion of silicon in Ti3(SixAl1−x)C2 system. The cal-
culated formation enthalpy of Ti3(SixAl1−x)C2 with
x = 0, 0.25, 0.5, 0.75, 1 are -0.812, -0.826, -0.838,
-0.849, -0.861, respectively in the unit of eV/atom.

The resultant lattice parameters of the
Ti3(SixAl1−x)C2 are shown in Fig. 5(a), and com-
pared to experimental results [10]. As it can be seen

in Fig. 5(a), both of the calculated and experimental
results show that the c lattice parameter decreases
more than the a lattice parameter with increasing
amount of Si. Fig. 5(b) shows that bond lengths
of both M1-X and M2-X are constant, while that
of M-A is decreasing with increasing amount of Si.
The decreasing c lattice parameter be explained by
stronger M-A bond with increasing amount of Si. To
demonstrate this, analysis of ELF, charge density,
and charge transfer were carried out and described
in the following sections.

Fig. 6 corresponds to a 2-dimensional represen-
tation of the ELF for Ti3(SixAl1−x)C2 on the (100)
plane [32]. The ELF represents the sum of squares of
the wave function, which corresponds to the number
of electrons. ELF is suitable for the observation of
electrons in real space, which corresponds to chem-
ical bonding of each atom, and it is scaled between
zero and one. As can be seen from the figure, distri-
butions of electrons between M-A and A-X bonds are
getting higher and higher with increasing Si-content.

The strength of the bond is related to the charge
density, and the (100) plane view of the charge den-
sity of Ti3(SixAl1−x)C2 is shown in Fig. 7. The
charge density in Fig. 7 represents the absolute value
of the charge, for instance, both of the positively
charged and negatively charged elements show the
positive value of charge density. High charge density
of M and Si elements compare to the Al element in-
dicates that both M-A and A-X bonds are stronger
in the case of Si-contained MAX phases.

The charge transfer of each atom is calculated by
the Bader code, and the number of valence electrons
is shown in Table 1. In the Ti3(SixAl1−x)C2, the to-
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Figure 4: Crystal structure of the Ti3SixAl1−xC2 with (a) x=0, (b) x=0.25, (c) x=0.5, (d) x=0.75, and (e) x=1.
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Figure 5: (a) The a- and c-lattice parameter as a function of Si composition, the solid lines represent the calculated data using
DFT while the dash lines are the experimental data retrieved from XRD [10]. (b) Bond length of M-A, M1-X, and M2-X, where
M1 is a M element near the A element, and M2 is a M element far from the A element.
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Figure 6: (010) Plane view of Electron Localization Function (ELF) of the Ti3SixAl1−xC2 with (a) x=0, (b) x=0.25, (c) x=0.5,
(d) x=0.75, and (e) x=1.
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(a) x=0 (b) x=0.25 (c) x=0.5 (d) x=0.75 (e) x=1

Figure 7: (100) Plane view of charge density of the Ti3SixAl1−xC2 with (a) x=0, (b) x=0.25, (c) x=0.5, (d) x=0.75, and (e)
x=1.

Phase Ti3AlC2 Ti3Si0.25Al0.75C2 Ti3Si0.5Al0.5C2 Ti3Si0.75Al0.25C2 Ti3SiC2

Ti (d3s1) 1.905 (-2.095) 1.896 (-2.104) 1.890 (-2.11) 1.885 (-2.115) 1.883 (-2.117)

Al (s2p1) 4.156 (+1.156) 4.093 (+1.093) 4.008 (+1.008) 3.826 (+0.826)

Si (s2p2) 5.573 (+1.573) 5.539 (+1.539) 5.499 (+1.499) 5.378 (+1.378)

C (s2p2) 6.564 (+2.564) 6.550 (+2.550) 6.530 (+2.530) 6.507 (+2.507) 6.486 (+2.486)

Ti (total) 45.72 45.504 45.36 45.24 45.192

Al & Si (total) 33.248 35.704 38.188 40.646 43.024

C (total) 105.024 104.8 104.48 104.112 103.776

Table 1: The number of valence electrons is obtained by Bader analysis.

8



0.00

0.01

0.02

0.03 Al
s
p
d

0.00

0.15

0.30

0.45
C
s
p
d

0.00

0.31

0.62

0.93

ED
OS

 (s
ta

te
s/

eV
/a

to
m

)

Ti
s
p
d

14 12 10 8 6 4 2 0 2 4 6 8 10
E-Ef  (eV)

0.0

0.4

0.8

1.2
Al
C
Ti
Total

(a) Ti3AlC2

0.00

0.02

0.04
Al
s
p
d

0.00

0.16

0.32

0.48
C
s
p
d

0.00

0.02

0.04

0.06

ED
OS

 (s
ta

te
s/

eV
/a

to
m

)

Si
s
p
d

0.00

0.38

0.76

1.14
Ti
s
p
d

14 12 10 8 6 4 2 0 2 4 6 8 10
E-Ef  (eV)

0.0

0.4

0.8

1.2
Al
C
Si
Ti
Total

(b) Ti3(Si0.25Al0.75)C2

0.00

0.01

0.02
Al
s
p
d

0.00

0.17

0.34

0.51
C
s
p
d

0.00
0.01
0.02
0.03
0.04

ED
OS

 (s
ta

te
s/

eV
/a

to
m

)

Si
s
p
d

0.00

0.38

0.76

1.14
Ti
s
p
d

14 12 10 8 6 4 2 0 2 4 6 8 10
E-Ef  (eV)

0.0

0.4

0.8

1.2
Al
C
Si
Ti
Total

(c) Ti3(Si0.5Al0.5)C2

0.00

0.01

0.02
Al
s
p
d

0.00

0.16

0.32

0.48
C
s
p
d

0.00

0.02

0.04

0.06

ED
OS

 (s
ta

te
s/

eV
/a

to
m

)

Si
s
p
d

0.00

0.42

0.84

1.26
Ti
s
p
d

14 12 10 8 6 4 2 0 2 4 6 8 10
E-Ef  (eV)

0.0

0.4

0.8

1.2
Al
C
Si
Ti
Total

(d) Ti3(Si0.75Al0.25)C2

0.00

0.13

0.26

0.39
C
s
p
d

0.00

0.02

0.04

0.06

0.08
Si
s
p
d

0.00

0.32

0.64

0.96

ED
OS

 (s
ta

te
s/

eV
/a

to
m

)

Ti
s
p
d

14 12 10 8 6 4 2 0 2 4 6 8 10
E-Ef  (eV)

0.0

0.4

0.8

1.2
C
Si
Ti
Total

(e) Ti3SiC2

Figure 8: Calculated electronic density of states (EDOS) for (a) Ti3AlC2, (b) Ti3(Si0.25Al0.75)C2, (c) Ti3(Si0.5Al0.5)C2, (d)
Ti3(Si0.75Al0.25)C2, and (e) Ti3SiC2. The bottom panel indicates total and atom-projected DOS. The upper panels indicate
site-projected DOS. The dashed line indicates the Fermi level.9



tal charge density of Ti and C change from 45.72 to
45.192, and 105.024 to 103.776, respectively. Both Ti
and C total charge density are almost constant. How-
ever, the total charge density of Al and Si changes
from 33.248 to 43.024. The increasing charge density
of Al and Si essentially affects the lattice parameter.

The total and atom-projected DOS for the
Ti3(SixAl1−x)C2 are shown in Fig. 8. The total
DOS of Ti3(SixAl1−x)C2 shows that titanium mostly
contributes to the DOS at Fermi level, specifically
d-electrons. The conductivity of Ti3(SixAl1−x)C2

comes from the electronic density of states of tita-
nium’s d-electrons. The atom-projected DOS shows
that the peaks around -2.5 eV correspond to hy-
bridized p-C and d-Ti states, the peaks around -1.0
eV correspond to hybridized p-Al and d-Ti states,
and the peaks around -2.0 eV correspond to p-Si and
d-Ti states. The energy range of the hybridization
shows that the Ti-X bond is stronger than the Ti-
A bond. Within Ti-A bondings, the Ti-Si bond is
stronger than the Ti-Al bond. This essentially im-
plies stronger elastic properties of Si-contained MAX
phases compared to those of Ti3AlC2. The detailed
investigation of such has been conducted and is pre-
sented below.

3.2. Elastic properties

Under the ground state condition, the elastic con-
stants were calculated by the stress-strain approach
based on DFT, then related to mechanical properties
using Voigt’s approximation. In particular, B, G, and
E of hexagonal structure are expressed as follows [33]:

BV =
2(C11 + C12) + 4C13 + C33

9
, (8)

GV =
M + 12C44 + 12C66

30
, (9)

M = C11 + C12 + 2C33 − 4C13, (10)

E =
9BG

3B +G
, (11)

where B, G, and E are bulk, shear, and Young’s mod-
ulus, respectively. The resultant elastic constants,
bulk, shear, and Young’s modulus are summarized in
Table 2. Here, it can be seen that the B, G, and E
are increasing with increasing amount of Si on the A
site. This could be attributed to the charge density
shown in Table 1. In particular, the substitution of Al
with Si increases the total charge density of the A ele-
ment atoms from 33.248 to 43.024. However, the total
charge density of M and X element atoms does not

change significantly, i.e. only from 45.72 to 45.192,
and 105.024 to 103.776, respectively. The increased
charge density makes the M-A bonds stronger, and
thus harder to stretch. The Young’s modulus, shown
in Fig. 9, agrees well with the available experimen-
tal data, which also linearly increase with increas-
ing amount of Si on the A site. Moreover, in the
Ti3(SixAl1−x)C2, C11 changes from 355.45 GPa to
370.47 GPa, and C33 changes from 292.89 GPa to
349.71 GPa. The large change of C33 could be related
to the large change of c lattice parameter shown in
Fig. 5.

3.3. Cleavage energy

As aforementioned, the focus of the current work
is on the cleavage and slip behavior of Ti3(Si,Al)C2

alloys. This is to shed some light onto the experi-
mental observations regarding the increase in hard-
ness in the case of Si-contained MAX phases. The
knowledge about cleavage and slip is also found to be
of interest developing constitutive models aimed at
predicting the mechanical properties of MAX phases
in the continuum limit as cleavage/slip energy as a
function of displacement and separation can be used
to build cohesive zone models that account for the
highly anisotropic behavior in these materials.

Here, we present the results of our investigation of
the cleavage energy in these MAX alloys. The results
of the calculated cleavage energies are shown in Fig.
10(a). As can be seen from this figure, the cleavage
energy sharply increases up to 1 Å of cleavage dis-
tance, and it is almost constant around the cleavage
distance of 3 Å. The cleavage stress, shown in Fig.
10(b), is derived from the cleavage energy, and the
maximum cleavage stress appears around the cleav-
age distance of 0.9 Å. The critical stress (maximum
cleavage stress) of Ti3(SixAl1−x)C2 increases with in-
creasing amount of Si, and it is shown in Fig. 10(c).
In Table 3, we compared the calculated critical stress
values of Ti3AlC2 and Ti3SiC2 with nano-indentation
experimental data (intrinsic hardness) and not the
Vickers hardness. When a large force is applied,
Vickers hardness measurement (macroscopic hard-
ness) captures the effect of defect and grain boundary
effects on the deformation, and it is thus not surpris-
ing that the Vickers hardness is underestimated when
compared to the intrinsic hardness and calculated
cleavage stress [34]. One must consider, however, that
there might be a few defect and grain boundary ef-
fects on the intrinsic hardness measurement so that it
is underestimated when compared to the calculated
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Figure 9: Comparison of Young’s modulus obtained by DFT calculations (cal.) and RUS measurements (exp.) [10].

Phase C11 C33 C44 C12 C13 B G E

Ti3AlC2 355.45 292.89 119.03 84.63 76.03 163.02 125.17 298.98

Ti3Si0.25Al0.75C2 362.45 304.47 128.30 85.75 82.73 170.20 130.87 312.51

Ti3Si0.5Al0.5C2 365.02 317.32 136.93 90.32 90.99 176.88 133.91 320.79

Ti3Si0.75Al0.25C2 368.92 334.66 145.89 93.85 99.62 184.30 137.82 330.97

Ti3SiC2 370.47 349.71 155.43 97.22 112.11 192.61 140.78 339.60

Table 2: Elastic constants, bulk modulus (B), shear modulus (G), and Young’s modulus (E).

x=0 x=0.25 x=0.5 x=0.75 x=1

Critical stress (GPa) calc 22.63 24.59 26.14 27.86 29.71

Intrinsic hardness (GPa) exp 11.4 [34] 26 [35]

Table 3: Calculated maximum cleavage stress (critical stress) values of Ti3(SixAl1−x)C2, and experimentally reported intrinsic
hardness of Ti3AlC2 and Ti3SiC2.
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12



cleavage stress. Also tension-shear coupling would
lower the upper limit of the cleavage stress in an in-
dentation experiment [36]. Our calculations do not
include the effects of defects and grain boundaries,
so the calculated cleavage energy and cleavage stress
show purely the chemical effect, which is related to
the bond strengths in the Ti3(SixAl1−x)C2 system.

To account for the effect of elastic relaxation upon
cleavage, we studied the elastic response of neigh-
boring regions in unit cell of Ti3AlC2 system. In
Fig. 11(a) and 11(b), ideal brittle model shows the
higher cleavage energy and stress than relaxation
model along c direction as a function of separation.
The critical stress of ideal brittle model and relax-
ation model along c direction are 23.02 GPa and 22.63
GPa, respectively. In Fig. 11(c) and 11(d), ideal brit-
tle model shows the higher cleavage energy and stress
than relaxation model along all directions as a func-
tion of separation. The critical stress of ideal brittle
model and relaxation model along all directions are
23.02 GPa and 22.63 GPa, respectively. The cleav-
age energy of ideal brittle model is composed of the
decohesion energy and strain energy in the system,
while relaxation model minimizes the strain energy
and the decohesion energy is dominant during the
cleavage process. In addition, the two different relax-
ation models show equal cleavage energy and stress.
This analysis shows that the strain energy contribu-
tions to the cleavage energy in these systems arises
from atomic relaxations along the c direction. The
differences in energy and stress, however, are rather
small, and it can be safely assumed that relaxation
effects upon cleavage are not significant.

To further elucidate the effect of system size on
our cleavage calculations, we studied the cleavage be-
havior of Ti3AlC2 systems with 1, 2, 3, 4, and 5 unit
cells, along the c direction. The calculated cleavage
energy and stress of each system is shown in Fig.
12(a), and Fig. 12(b). Our results suggest that the
cleavage energy of all systems is increasing sharply
around 1 Å, and converging at 3 Å of cleavage dis-
tance. The cleavage stress of systems is derived from
the cleavage energy and shows the maximum value
around 0.9 Å of cleavage distance. The critical stress
of 1, 2, 3, 4, and 5 systems are 22.66, 22.60, 22.57,
22.54, and 22.52 GPa, respectively. These calcula-
tions suggest that the size of the system do not affect
the results of the cleavage energy/stress calculations
and thus one can use a single unit cell and obtain
results that correspond to the intrinsic cleavage be-
havior in the large N limit.

3.4. Stacking Fault Energy (SFE)

Energy and shear stress curves under
〈21̄1̄0〉 {0001} and 〈01̄10〉 {0001} shear deformations
for Ti3AlC2, Ti3(Al0.5Si0.5)C2, and Ti3SiC2 are pre-
sented in Fig. 13 and Fig. 14, respectively. The
energy variation is presented as a function of frac-
tion of the Burgers vector, fb. The maximum energy
corresponds to the unstable stacking fault energy
(USFE), which can be related to the energy needed
for the dislocation nucleation [37]. The minimum
energy is the intrinsic stacking fault energy (ISFE).
The maximum shear stress corresponds to the ideal
shear stress (ISS), which is related to the stress nec-
essary for the formation of stacking faults. The pure
alias shear deformation is a more reliable description
of dislocation generation mechanism, since displace-
ment is generated at top layer, and relaxation leads
to displacement from top to lower layers. The USFE
under pure alias shear deformation for Ti3AlC2,
Ti3(Al0.5Si0.5)C2, and Ti3SiC2 are presented in Fig.
15 and Table 4. The USFE increases with increasing
Si so that the Ti3AlC2 is more ductile than Ti3SiC2.
This could be related to the anisotropy ratio shown
in Table 4. The anisotropy ratio, 2C44/(C11-C12),
quantifies how easy or difficult the shear deformation
is. The low anisotropy ratio values in Table 4 suggest
that Ti3AlC2 is more ductile than the Ti3SiC2.

Under 〈01̄10〉 {0001} shear deformation, the
USFE increases with increasing Si. Up to 30 % of
shear deformation, all the deformation modes are
identical except for simple alias shear. Beyond 30 %
of shear deformation, the energy of simple affine shear
is higher than that of pure affine and alias shear. In-
vestigation of pure shear deformation is important
since it allows all the atoms to be fully relaxed so
that the system is more stable than that of simple
shear deformation. The unit cell angles and atomic
positions and lattice orientations at various stages of
shear are presented in Fig. 16. It can be seen in Fig.
16 that α is changing with constant β and γ unit cell
angels, and that the stacking fault has generated at
1.0 and 2.3 of fb under pure alias shear deformation.
The dashed line, presented in Fig. 16(b), represents
the cell containing M and A elements, and the cell
angle α′ is plotted in Fig. 16(a) to compare to α.
Under pure alias shear deformation α′ is decreasing
like α. However, α′ sharply increases at 1.0 and 2.3 of
fb, and it represents the generation of stacking fault.
The USFE essentially results from the generation of
stacking fault and not due to a change in Ti3AlC2

cell shape.
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Figure 11: a) and b) show the cleavage energy of ideal brittle model with relaxation model along c direction and all directions,
respectively. c) and d) show the cleavage stress of ideal brittle model with relaxation model along c direction and all directions,
respectively.

Ti3AlC2 Ti3(Al0.5Si0.5)C2 Ti3SiC2

USFE under 〈01̄10〉 {0001} pure alias shear deformation 1.34 1.45 1.71

USFE under 〈21̄1̄0〉 {0001} pure alias shear deformation 0.56 0.79 1.02

2C44/(C11-C12) 0.879 0.997 1.138

Table 4: USFE in the unit of J/m2 under 〈01̄10〉 {0001} and 〈21̄1̄0〉 {0001} pure alias shear deformation, and the anisotropy
ratio for Ti3AlC2, Ti3(Al0.5Si0.5)C2, and Ti3SiC2.
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Figure 12: a) Cleavage energy, b) cleavage stress of 1, 2, 3, 4, and 5 unit cells in the Ti3AlC2 system with one cleavage surface.

Under 〈21̄1̄0〉 {0001} shear deformation, the
USFE increases with increasing Si. Up to 20 % of
shear deformation, all the deformation modes are
identical except for simple alias shear. Beyond 20
% of shear deformation, the energy of simple affine
shear is higher than that of pure affine and alias shear.
As mentioned above, pure shear leads to more stable
system than simple shear. The unit cell angles at var-
ious stages of shear are presented in Fig. 16. Unlike
〈01̄10〉 {0001} shear deformation, α changes around
0.5 of fb under 〈21̄1̄0〉 {0001} shear deformation, re-
sulting in the USFE.

Both USFE under 〈21̄1̄0〉 {0001} and
〈01̄10〉 {0001} shear deformation increase with in-
creasing amount of Si. In addition, USFE un-
der 〈21̄1̄0〉 {0001} shear deformation is lower than
USFE under 〈01̄10〉 {0001} shear deformation, thus
〈01̄10〉 {0001} shear deformation will be preferable
under the deformation behavior. To demonstrate
this, analysis of ELF, charge density, and charge
transfer were carried out. As shown in Fig. 17, dis-
tributions of electrons between M-A and A-X bonds
are getting higher with increasing Si-content under
both 〈21̄1̄0〉 {0001} and 〈01̄10〉 {0001} shear defor-
mations. This causes A elements to be charged more
negatively with increasing Si-content. Fig. 18 shows
the increased charge density of A element under
both 〈21̄1̄0〉 {0001} and 〈01̄10〉 {0001} shear defor-
mations, which makes atomic bond between M-A
layer stronger. The number of valence electrons per
atom are shown in Table 5. The number of valence
electrons of M and X elements are almost constant,

while that of A element is increasing with increas-
ing Si-content. This results in increasing USFE with
increasing Si-content. In addition, the number of
valence electrons of A element under 〈21̄1̄0〉 shear
deformation is higher compared to that of A element
under 〈01̄10〉 shear deformation. Under 〈21̄1̄0〉 shear
deformation, the strong atomic bond between M-A
layer makes the system more stable than 〈01̄10〉 shear
deformation, thus 〈21̄1̄0〉 shear deformation will be
preferable than 〈01̄10〉 shear deformation.

4. CONCLUSION

In this work, we investigated the ground state
structural, electronic, and mechanical properties of
the Ti3(SixAl1−x)C2 using DFT. The lattice param-
eter decreases with increasing Si, and the Young’s
modulus increases with increasing amount of Si. This
is due to the increasing charge density near the A
element atom with increasing amount of Si. The
cleavage stress is calculated from cleavage energy un-
der the loading mode I. The cleavage stress is max-
imum around the 0.9 Å of the cleavage distance,
and the maximum cleavage stress increases with in-
creasing Si. The energy under affine and alias shear
deformation with (pure) and without (simple) re-
laxation has been calculated. USFE increases with
increasing Si, and dislocation is preferably gener-
ated under 〈21̄1̄0〉 shear deformation. We have in-
vestigated cleavage stress and shear stress to study
how the system will be under the deformation. The
critical stress (the maximum cleavage stress) of the
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(a) Ti3AlC2 (b) Ti3AlC2

(c) Ti3(Al0.5Si0.5)C2 (d) Ti3(Al0.5Si0.5)C2

(e) Ti3SiC2 (f) Ti3SiC2

Figure 13: Energy as a function of fraction of Burgers vector, fb. (a), (c), and (e) are under 〈01̄10〉 {0001} shear deformation for
Ti3AlC2, Ti3Al0.5Si0.5C2, and Ti3SiC2, respectively. (b), (d), and (f) are under 〈21̄1̄0〉 {0001} shear deformation for Ti3AlC2,
Ti3Al0.5Si0.5C2, and Ti3SiC2, respectively.
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(a) Ti3AlC2 (b) Ti3AlC2

(c) Ti3(Al0.5Si0.5)C2 (d) Ti3(Al0.5Si0.5)C2

(e) Ti3SiC2 (f) Ti3SiC2

Figure 14: Shear stress as a function of fraction of Burgers vector, fb. (a), (c), and (e) are under 〈01̄10〉 {0001} shear deforma-
tion for Ti3AlC2, Ti3Al0.5Si0.5C2, and Ti3SiC2, respectively. (b), (d), and (f) are under 〈21̄1̄0〉 {0001} shear deformation for
Ti3AlC2, Ti3Al0.5Si0.5C2, and Ti3SiC2, respectively.
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Figure 15: Variation of (a) USFE and (b) ISS under〈01̄10〉 and 〈21̄1̄0〉 pure alias shear deformation as a function of Si content.
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Figure 16: (a) is unit cell angles of Ti3AlC2 system under 〈01̄10〉 {0001} pure alias shear deformation. (b), (c), and (d) are
Ti3AlC2 system under 〈01̄10〉 {0001} pure alias shear deformation of fb = 0, 1.0, 2.0, respectively. (e) is unit cell angles of
Ti3AlC2 system under 〈21̄1̄0〉 {0001} pure alias shear deformation. (f), (g), and (h) are Ti3AlC2 system under 〈21̄1̄0〉 {0001}
pure alias shear deformation of fb = 0, 0.44, 1.0, respectively. Red, Blue and black atoms are Ti, Al, and C, respectively
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Phase Ti3AlC2 Ti3(Si0.5Al0.5)C2 Ti3SiC2

〈21̄1̄0〉 pure alias shear deformation

Ti 1.91 1.90 1.89

Al & Si 4.11 4.72 5.33

C 6.58 6.55 6.51

〈01̄10〉 pure alias shear deformation

Ti 1.92 1.90 1.89

Al & Si 4.07 4.68 5.27

C 6.59 6.56 6.53

Table 5: The number of valence electrons per atom at the level of USFE under 〈21̄1̄0〉 {0001} and 〈01̄10〉 {0001} pure alias shear
deformations.

(a) x=0 (b) x=0.5 (c) x=1 (d) x=0 (e) x=0.5 (f) x=1

Figure 17: (010) Plane view of Electron Localization Function (ELF) under 〈21̄1̄0〉 {0001} pure alias shear deformation of
Ti3(SixAl1x)C2 with (a) x=0, (b) x=0.5, (c) x=1, and 〈01̄10〉 {0001} pure alias shear deformation with (d) x=0, (e) x=0.5, (f)
x=1 at the level of USFE.

(a) x=0 (b) x=0.5 (c) x=1 (d) x=0 (e) x=0.5 (f) x=1

Figure 18: (010) Plane view of Charge density under 〈21̄1̄0〉 {0001} pure alias shear deformation of Ti3(SixAl1x)C2 with (a)
x=0, (b) x=0.5, (c) x=1, and 〈01̄10〉 {0001} pure alias shear deformation with (d) x=0, (e) x=0.5, (f) x=1 at the level of USFE.
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Ti3(SixAl1−x)C2 is between 22.63 GPa and 29.71
GPa. The ideal shear stress (the maximum shear
stress) of the Ti3(SixAl1−x)C2 under 〈21̄1̄0〉 shear de-
formation is between 7.16 GPa and 10.43 GPa, and
under 〈01̄10〉 is between 8.10 GPa and 12.03 GPa.
The cleavage and shear analysis show that 〈21̄1̄0〉
shear deformation will be preferable under deforma-
tion.
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