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The classification of topological phases of matter in the presence of interactions is an area of
intense interest. One possible means of classification is via studying the partition function under
modular transforms, as the presence of an anomalous phase arising in the edge theory of a D-
dimensional system under modular transformation, or modular anomaly, signals the presence of a
(D+ 1)-D non-trivial bulk. In this work, we discuss the modular transformations of conformal field
theories along a (2 + 1)-D and a (3 + 1)-D edge. Using both analytical and numerical methods, we
show that chiral complex free fermions in (2 + 1)-D and (3 + 1)-D are modular invariant. However,
we show in (3 + 1)-D that when the edge theory is coupled to a background U(1) gauge field this
results in the presence of a modular anomaly that is the manifestation of a quantum Hall effect in a
(4+1)-D bulk. Using the modular anomaly, we find that the edge theory of (4+1)-D insulator with
spacetime inversion symmetry(P ∗ T ) and fermion number parity symmetry for each spin becomes
modular invariant when 8 copies of the edges exist.

INTRODUCTION

The quantum Hall effect1 has been an intense area of
research in condensed matter physics for several decades.
The presence of a chiral metallic edge mode that is ro-
bust to disorder and interactions at the boundary of 2D
bulk Fermi liquid in strong magnetic field is a key fea-
ture of the quantum Hall effect. The existence of such
an edge and the corresponding nontrivial topology of the
bulk can be detected by computing a bulk topological
number2–16. Yet, in a more general sense, the robust
gapless edge states within the quantum Hall effect are
well-known to result in a U(1) chiral anomaly17–21. The
presence of anomalies in an edge theory and the resultant
charge pumping imply the edge lives on the boundary of
a higher dimensional manifold. In principle, the concept
of quantum anomalies may be extended to characterize
topological phases in the presence of interactions as the
coefficients of the anomalies, which are quantized, are
known to be stable against interactions22.

Recent studies23–27 have proposed that an analysis of
the anomalies in gapless (1 + 1)-D theories can also in-
dicate the presence of a topological phase in (2 + 1)-D
dimensions. This is based on the fact that if the edge the-
ory has non-trivial response to certain transformations,
which in (1 + 1)-D are chosen to be modular transfor-
mations, then the edge theory cannot be consistent on
the (1 + 1)-D manifold and manifests itself as the edge
of a (2 + 1)-D system. This method is known to give the
correct results for chiral edge states in (1 + 1)-D, as well
as for some more complex gapless edges involving spa-
tial mirror symmetries28. A necessary step is to extend
this method beyond (1+1)-D to higher space dimension.
In this letter, we extend concept of modular transforma-
tions of gapless free fermion theories beyond (1 + 1)-D to

examine higher dimensional edge theories. We show that
the complex free fermions in both (2 + 1)-D Dirac and
(3 + 1)-D chiral edge theories are modularly invariant.
However, when an external magnetic field is coupled to
the edge, the resultant Weyl modes show that a modu-
lar anomaly arises in the (3+1)-D edge theory indicating
the presence of (4+1)-D quantum Hall effect. We further
show using modular transformations that the edge the-
ory of (4 + 1)-D insulators with the spacetime inversion
symmetry(P ∗ T ) and the fermion number parity sym-
metry for each spin becomes modular invariant when 8
copies of the edges exist.

MODULAR TRANSFORMATION IN (1 + 1)-D

To begin, consider a relativistic conformal field theory
(CFT) defined in a (1 + 1)-D compact space manifold
T 1 × T 1 where T 1 is a torus (a circle in 1D). On such
a space, the theory can exhibit invariance at a classical
level under modular transformations29. However, inter-
esting cases arise when theories are not invariant under
modular transformations resulting in the accumulation of
an additional anomalous phase. The resultant anomaly
is referred to as a large gravitational anomaly in the sense
that it cannot be generated via continuous deformation
of the original action23,30. The modular group is defined
as the group of linear fractional transformations of the
upper half of the complex plane in which τ = L0/L1

where L0 and L1 are the periods of the space and time
coordinates respectively. τ transforms under the modu-
lar transformation:

τ ′ =
aτ + b

cτ + d
, (1)
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where a, b, c, d are integers satisfying ad − bc = 1. The
modular group is isomorphic to the projective special
linear group PSL(Z, 2)29. In (1 + 1)-D, the genera-
tors of the group are S : τ → −1/τ and T : τ →
τ + 1. S and T act on the periods of each coordi-
nate by S : (L0, L1) → (−L1, L0) and T : (L0, L1) →
(L0 + L1, L1). To generalize modular transformation
to higher dimensions, we consider the group generated
by two generators, which they act on the periods of
each coordinate as, S : (L0, L1, L2) → (L1, L2, L0),
T : (L0, L1, L2) → (L0 + L1, L1, L2) in (2 + 1)-D,
and S : (L0, L1, L2, L3) → (−L1, L2, L3, L0) and T :
(L0, L1, L2, L3) → (L0 + L1, L1, L2, L3) in (3 + 1)-D.
In this case, the generalized modular transformation is
then isomorphic to PSL(Z, d) (See Appendix A in sup-
plementary for the precise description of the modular
transformation31). Under the S and T transformation,
we can define the transformation matrices, A, for exam-
ple, in (3 + 1)-D as

AS =


0 −1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , AT =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2)

With these definitions, we consider the action of the mod-
ular group on the partition function in (1+1)-D32, which
is well-known to possess an anomaly. The most direct
method to see the anomaly under the modular transfor-
mation is to calculate the partition function explicitly
and apply the transformation. The partition function
of (1 + 1)-D edge can be obtained in a well-regularized
form as (For detailed calculation, see Appendix B in
supplementary31)

Zλ0λ1
= [e2πi(1/2−λ0)(1/2−λ1)q(λ

2
1−λ1+1/6)/2]

×[(1− ω)

∞∏
n1=1

(1− ωqn1)(1− ω−1qn1)] (3)

where ω = qλ1e2πiλ0 , q = e2πiτ . λ0, λ1 = 0(1/2) refers
to the periodic (anti-periodic) boundary condition of the
time and space coordinate directions respectively. By
explicitly applying the modular transform, one derives
the modular anomaly24,

T [Z(τ)λ0λ1 ] = eiπ(λ
2
1−λ1+1/6)Z(τ)λ′

0λ
′
1

(4)

S[Z(τ)λ0λ1 ] = ei2π(λ1−1/2)(λ0−1/2))Z(τ)λ′
0λ

′
1

λ′ is the transformed boundary conditions under the
modular transformation where λ′µ = Aµνλν . The sign
of anomalous phase flips if the chirality of the (1 + 1)-
D mode is reversed. Therefore, the combination of two
edges of opposite chirality achieves modular invariance26.
This result is consistent with the fact that two opposite
chiral edges can be gapped out by adding mass term.
However, it is also possible to achieve modular invari-
ance with finite copies of the same chirality23.

FIG. 1. Calculation of numerical regularization scheme for:
(a) T transformation of (2+1)-D chiral edge. (b)(3+1)-D
(c)(3+1)-D with magnetic field. Each lines represent different
values of boundary condition. In (a), blue circles, red triangles
and green squares represent (λ1, λ2) = (0, 0), (0.5, 0), (0.5, 0.5)
respectively. In (b), blue circles and red triangles represent
(λ1, λ2, λ3) = (0, 0, 0), (0.5, 0, 0). In (c), blue circles and red
triangles represent (λ1, λ2, λ3) = (0.5, 0, 0), (0, 0, 0). We in-
clude sufficient numbers of high energy states within each
calculation of the energy cutoff until the anomalous phase
value converges. In (a) and (b) all choices of boundary condi-
tions converge to zero indicating modular invariance. When
the magnetic field is inserted, the anomaly approaches to the
value(1/6,-1/12) in accordance with Eq. (42) with Nφ = 1.
Details of the numerical calculation method are provided in
Appendix D).

METHOD

Now we wish to elucidate higher dimensional gapless
edges, thus we examine (2 + 1)-D and (3 + 1)-D edge
theories where the action is given by

S =

∫
ddxψ̄(∂τ + σ · k)ψ (5)

In contrast to (1 + 1)-D, we cannot simply perform the
transformation of the partition function since an expres-
sion of the well-regularized partition function is not avail-
able. We can understand the failure of the regularization
more clearly by applying the zeta function regularization
method33,34 to higher dimensional edge theories. In given
edge theory, the expression of the unregularized partition
function contains a summation of the energy eigenvalues

over all states. In (2 + 1)-D, we have
∑
kx,ky

√
k2x + k2y

and in (3 + 1)-D,
∑
kx,ky,kz

√
k2x + k2y + k2z . When the

sum is divergent, a successful zeta function regulariza-
tion should utilize analytic continuation to assign a finite
value to the divergent sum. Unfortunately, this is difficult
since the Epstein-Hurwitz zeta (EZ) functions in (3 + 1)-
D, ζ(ε) =

∑
n1,n2,n3

(n1
2 + n2

2 + n3
2)−ε, and (2 + 1)-D,∑

n1,n2
(n1

2 + n2
2)−ε, are meromorphic at ε = −1/235,
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which forbids assigning a finite value to the summation of
energy eigenvalues. To circumvent this issue, we instead
focus on the change of path integral measure36,37. The
calculation of the change of the measure only requires EZ
function at ε = 0 and ε = −1, which have well defined
finite values (See Appendix C in supplementary31).

To calculate the change of measure, we work on the
Fourier transformed field basis:

ψλ(x, s) =
∑
n,s

an,sΦn+λ(x)χs (6)

n = (n0, n1, n2, n3) are integers, which ni refers the fre-
quency of i-th direction in the Fourier transformed ba-
sis. λ = (λ0, λ1, λ2, λ3) are the boundary conditions,
which λi = 0(1/2) refers to the periodic (anti-periodic)
boundary condition. We simplify the notations by defin-
ing ñ = n + λ. In other words,

Φ(ñ0,ñ1,ñ2,ñ3)(x) = e2πi(
∑4
i=0(ni+λi)xi) (7)

and χs(s = ±) is a two component spinor such that χ+ =
(1, 0)T ,χ− = (0, 1)T . By following the transformation
rule in appendix A, we represent the change of coefficient
a′ under modular transformation as,

a′n′,s′ =

∫
ddxΦ†n′+λ′χ

†
sψλ(ATx) (8)

=
∑
n,s

[

∫
ddxΦ†n′+λ′(x)Φn+λ(ATx)][χ†s′χs]an,s,

where A is the matrix representations of the generators.
The above equation leads us to define the transformation
matrix C between an,s and a′n,s.

Cn′,n,s′,s =

∫
ddxΦ†n′+λ′(x)Φn+λ(ATx)[χ†s′χs] (9)

In terms of Fourier transformed field basis, the change of
path integral measure is given by,

Dψ̄′Dψ′ = Dā′Da′ = DāDa det(C)−2 (10)

We treat ψ and ψ̄ independently, hence we obtain an ad-
ditional contribution of −2 sign from the Grassman al-
gebra. In (3 + 1)-D, each momentum mode Φ transforms
under modular transformation by (Appendix A),

T [Φñ0,ñ1,ñ2,ñ3
] = Φñ0+ñ1,ñ1,ñ2,ñ3

, (11)

S[Φñ0,ñ1,ñ2,ñ3
] = Φ−ñ1,ñ2,ñ3,ñ0

.

To calculate Det(C), we select a basis that diagonalizes
C. We define the basis as linear combinations of modes
under successive applications of T and S as,

|θ,−→n 〉ληs,−→ñ = Φλ

n1−1∑
n0=0

∞∑
j=−∞

e2πi(ñ0+n1j)θT j [Φn0,
−→n ]η

s,
−→
ñ

(12)

|φ,n〉λχs = Φλ−1/2

N−1∑
j=0

e2πijφ/NSj [Φn+1/2]χs,

where −→n is the vector of the frequencies in spatial di-
rections. N is the order of S such that Φn0,n1,n2,n3 re-
turns to the original mode under N application of S.
In (1 + 1), (2 + 1), (3 + 1)-D, N = 4, 3, 8 respectively,
except for modes Φn0,n0,n0

in (2 + 1)-D. θ ∈ [0, 1) and
φ ∈ {−(N2 −1),−N−22 , .., N2 }(In (2+1)-D,φ ∈ {−1, 0, 1}).
To avoid double counting of the basis for S, we re-
strict the momentum indices to n0, n1 ≥ 0 in (1 + 1)-D,
n0 ≥ n1 ≥ n2 in (2 + 1)-D, and n0, n1, n2 ≥ 0 in (3 + 1)-
D. η is the spinor which diagonalizes the Hamiltonian
simultaneously. Then the basis satisfies

T |θ,−→n 〉λ = e−2πiñ1θ|θ,−→n 〉T [λ] (13)

S|φ,n〉λ = e−2πiφ/N |φ,n〉S[λ]

In (2+1)-D, the C matrix, using the new basis for T and
S, is a diagonal matrix given by

C2D
T,{θ,n1,n2,θ′,n′

1,n
′
2}

= (e−2πiñ1θ)δ(θ − θ′)δ−→n ,−→n ′ (14)

C2D
S,{φ,n0,n1,n2,φ′,n′

0,n
′
1,n

′
2}

= (e−2πiφ/N )δφ,φ′δn,n′ .

To regulate the determinant of C, we use the Epstein-
Hurwitz type zeta function regulator that has the same
form as energy dispersion, |p|−ε, where ε, in this instance,
is a scale which cuts off the high energy states.

In a similar manner with (2 + 1)-D, the modular
transformations, S and T , of the transformation ma-
trix, C, in (3 + 1)-D are given by(See Appendix C in
supplementary31),

C3D
T,{θ,n1,n2,n3,θ′,n′

1,n
′
2,n

′
3}

= (e−2πiñ1θ)δ(θ − θ′)δ−→n ,−→n ′ .

(15)

C3D
S,{φ,n0,n1,n2,n3,φ′,n′

0,n
′
1,n

′
2,n

′
3}

= (e−2πiφ/N )δφ,φ′δn,n′ .

By regulating the determinants above matrices with
zeta function regularization method, we can derive the
expression of the anomaly.

T TRANSFORMATION

In this section, we show that the anomalous phases
under T transformation cancel out in both (2 + 1)-D and
(3+1)-D. We begin by reproducing the modular anomaly
of (1+1)-D chiral edge. The basis which diagonalizes the
transformation matrix, C, under the T transformation is
given according to Eq. (12).

|θ, n1〉λ0,λ1
= Φλ0,λ1

n1−1∑
n0=0

∞∑
j=−∞

e2πi(ñ0+n1j)θT j [Φn0,n1
],

(16)
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where θ ∈ [0, 1). Application of the T transformation to
|θ, n1〉λ0,λ1 is given as,

T |θ, n1〉λ0,λ1 (17)

= T [Φλ0,λ1

n1−1∑
n0=0

∞∑
j=−∞

e2πi(ñ0+n1j)θT j [Φn0,n1
]]

=

n1−1∑
n0=0

∞∑
j=−∞

e2πi(ñ0+n1j)θΦ(n0+n1)+jn1+(λ0+λ1),n1+λ1

= e−2πi(n1+λ1)θ|θ, n1〉λ0+λ1,λ1
.

As a result, the newly selected basis diagonalizes C1D
T

matrix resulting in Eq. (12), namely

C1D
T,{θ,n1,θ′,n′

1}
= (e−2πi(n1+λ)θ)δ(θ − θ′)δn1,n′

1
. (18)

After the diagonalization of C1D
T matrix, the determinant

is given as the product of the diagonal entries. We di-
vide the partition function of the path integral form into
the anomalous divergent contribution, ZA, and the reg-
ular contribution, ZR, with the total partition function,
Ztotal = ZAZR. In the calculation of the total parti-
tion function, we note that the anomalous contribution,
ZA, is the path integral of the negative dispersion modes
only. The regular contribution to the total partition
function, ZR is invariant under the T transformation,
ZR,λ(τ + 1) =

∏∞
n1=0(1 − e(2iπτ(n1+λ1)+2iπ(λ0+λ1))) =

ZR,λ′ indicating that the contribution to the modular
anomaly under the T transformation comes entirely from
ZA. In other words, the regularized form of the total par-
tition function transforms under the T transformation as

Ztotal,λ(τ + 1) = [ZA,λ(τ + 1)][ZR,λ(τ + 1)] (19)

= [C1D
T

−2
ZA,λ′(τ)][ZR,λ′(τ)].

Therefore, we regularize the change of the measure of ZA,
which restricts the C matrix to the negative momentums.
Then, the anomalous phase of C1D

T is given by

arg(det(C1D
T )) = −2π[

∫ 1

0

dθθ][

−1∑
n1=−∞

(n1 + λ)] (20)

= −π 1

2
(λ2 − λ+ 1/6).

The above anomalous phase reproduces the known mod-
ular anomaly in (1 + 1)-D under the T transformation.

To extend the calculation beyond (1 + 1)-D, we use
the matrices given by Eq. (14) and Eq. (15) to extend to
(2 + 1)-D and (3 + 1)-D respectively. With the addition
of the requisite extra dimensional momentum indices, we
can write the phases of det(C) in the same form as of Eq.

(20) for both (2 + 1)-D and (3 + 1)-D cases as,

arg(det(C2D
T )) = −2π

∑
n1,n2∈Z

∫ 1

0

dθθ(n1 + λ1) (21)

= −π
∑

n1,n2∈Z
(n1 + λ1) = −

∞∑
n1,n2=−∞

L2
x

8π

∂

∂λ1
(F2)2.

and

arg(det(C3D
T )) = −2π

∑
n1,n2,n3∈Z

∫ 1

0

dθθ(n1 + λ1) (22)

= −π
∑

n1,n2,n3∈Z
(n1 + λ1) = −

∞∑
n1,n2,n3=−∞

L2
x

8π

∂

∂λ1
(F3)2,

where F2 = 2π
√
ñ1

2
/L2

x + ñ2
2
/L2

y is the dispersion in

(2 + 1)-D and F3 = 2π
√
ñ1

2
/L2

x + ñ2
2
/L2

y + ñ3
2
/L2

z is

the dispersion in (3+1)-D. In order to evaluate the above
summations, we must define the following Epstein-Zeta
functions in which we use the variable ε to denote the
scale that cuts off the high energy states:

E2(ε, c1, c2, a1, a2) (23)

≡
∞∑

n1,n2=0

(a1(n1 + c1)2 + a2(n2 + c2)2)−ε,

G2(ε, c1, c2, a1, a2) (24)

≡
∞∑

n1,n2=−∞
(a1(n1 + c1)2 + a2(n2 + c2)2)−ε,

E3(ε, c1, c2, c3, a1, a2, a3) ≡ (25)
∞∑

n1,n2,n3=0

(a1(n1 + c1)2 + a2(n2 + c2)2 + a3(n3 + c3)2)−ε,

G3(ε, c1, c2, c3, a1, a2, a3) ≡ (26)
∞∑

n1,n2,n3=−∞
(a1(n1 + c1)2 + a2(n2 + c2)2 + a3(n3 + c3)2)−ε,

G3(ε, c1, c2, c3, a1, a2, a3) ≡ (27)
∞∑

n1,n2=0,n3=−∞
(a1(n1 + c1)2 + a2(n2 + c2)2 + a3(n3 + c3)2)−ε.

We substitute previous summations over the dispersion
relations, F , into the newly defined Zeta function expres-
sions to obtain the anomalous phase resulting from the
application of the T -transform in higher dimensions as

arg(det(C2D
T )) (28)

= −π
2
L2
x

∂

∂λ1
G2(−1, λ1, λ2, 1/L

2
x, 1/L

2
y)
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in (2 + 1)-D and

arg(det(C3D
T )) (29)

= −π
2
L2
x

∂

∂λ1
G3(−1, λ1, λ2, λ3, 1/L

2
x, 1/L

2
y, 1/L

2
z)

in (3 + 1)-D. The expression of the above zeta function,
G3, is well-defined and vanishes at ε = −1. We find
that the resulting anomalous phases are zero which indi-
cates the absence of the anomaly under the T transfor-
mation(For calculation of the value of the zeta function,
see Appendix C in supplementary31).

S TRANSFORMATION

After establishing the the absence of the anomaly un-
der the T transformation, we now prove the absence of
the modular anomaly in (2 + 1)-D and (3 + 1)-D under
the S transformation. We again start from the modular
anomaly of a (1 + 1)-D edge. According to Eq. (12), the
basis that diagonalizes the C matrix is given by

|φ, n0, n1〉λ0,λ1
(30)

= Φλ0−1/2,λ1−1/2(Φn0+1/2,n1+1/2 + e2πiφ/4Φ−n1+1/2,n0+1/2

+e2πi2φ/4Φ−n0+1/2,−n1+1/2 + e2πi3φ/4Φn1+1/2,−n0+1/2)

Where φ ∈ {−1, 0, 1, 2}. The application of the S trans-
formation to |φ, n0, n1〉 is given as,

S|φ, n0, n1〉λ0,λ1
(31)

= Φ−λ1,λ0(Φ−n1,n0 + e2πiφ/4Φ−n0,−n1

+e2πi2φ/4Φn1,−n0
+ e2πi3φ/4Φn0,n1

)

= e−2πiφ/4|φ, n0, n1〉−λ1,λ0

The C matrix is then a diagonal matrix given by the
expression,

C1D
S,{φ,n0,n1,φ′,n′

0,n
′
1}

= (e−2πiφ/N )δφ,φ′δn0,n′
0
δn1,n′

1
.(32)

As the determinant of diagonal matrix is the product of
the diagonal entries, we have the unregulated phase of
the C matrix under the S-transform

arg(det(C1D
S )) = (33)

−2π[
∑

φ=−1,0,1,2

φ/4][

∞∑
n0=0

1][

∞∑
n1=0

1]

We regularize the above sum by attaching the following
regulator.

−2π
∑

φ=−1,0,1,2

φ/4

∞∑
n0=0

(n0 + λ0)0
∞∑

n1=0

(n1 + λ1)0(34)

= −πζ(0, λ0)ζ(0, λ1) = −π(1/2− λ0)(1/2− λ1)

The above expression of the anomalous phase again re-
produces the modular anomaly of the S transformation.

To extend the calculation into higher dimensions, we
use the matrices given by Eq. (14) and (15). Using these,
we write the phase of det(CS) in (2 + 1)-D and (3 + 1)-D
as,

arg(det(C2D
S )) = −4π[

∑
φ=−1,0,1

φ/3][
∑

n0≥n1≥n2

1] (35)

arg(det(C3D
S )) (36)

= −4π[
∑

φ=−3,−2,..,4

φ/8][

∞∑
n0,n1,n2=0,n3=−∞

1]

Without requiring the complete summation of the
modes, we immediately see that arg(det(C2D

S )) = 0 from
the summation of φ. To calculate C3D

S , we again connect
the EZ zeta function to expression of the C matrix,

arg(det(C3D
S )) (37)

= −2π

∞∑
n0=0

∞∑
n1,n2=0,n3=−∞

(n0 + λ0)0(F3)0,

The connection between the determinant of the transfor-
mation matrix, det(C3D

S ), and the EZ zeta function is
given by

arg(det(C3D
S )) (38)

= −2π(1/2− λ0)g3(0, λ1, λ2, λ3, a1, a2, a3),

Again, the zeta function g3 vanishes at ε = 0. Therefore,
we find that the modular anomaly under the S transfor-
mation is absent. By showing that the free fermions in
both (2 + 1)-D and (3 + 1)-D have no anomaly under S
and T transformation, we conclude that the free fermions
are modular anomaly free.

Beyond analytical calculations to confirm our result
numerically, we calculate the Casmir energy of the (2+1)-
D and (3 + 1)-D edge theory. In the numerical calcu-
lation, we explicitly calculate the partition function by
summing up the Boltzmann weights of all the possible
states with a given high energy cutoff. By comparing the
numerical values of the partition functions before and af-
ter the modular transformation, we calculate the anoma-
lous phase(For detailed implementation of the algorithm,
see Appendix D in supplementary31). Fig. 1 (a) and (b)
show the numerically calculated anomalous phase as a
function of the high energy cut off scale. As we include
more high energy states, we find the anomalous phases in
Fig. 1 (a) and (b) converges to zero which indicates the
absence of the modular anomaly in (2+1)-D and (3+1)-D
edge theories. Unlike the zeta function regularization of
the entire partition function, the explicit numerical sum-
mation of Boltzmann weights does not distinguish higher
dimensional partition functions from slices of (1 + 1)-D
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partition functions where each (1 + 1)-D partition func-
tion has a specific transverse momentum. While each
slice of the partition function is regularizable using the
zeta function, our numerical calculation regularizes the
slices one by one individually.

The cancellation of the modular anomaly is not sur-
prising as one may represent a gapless theory in (2 + 1)-
D on a lattice indicating that a higher dimensional bulk
is not required to regularize a (2 + 1)-D theory. Fur-
ther, this indicates that (2 + 1)-D gapless theory can be
generically gapped out by breaking time-reversal sym-
metry. Nonetheless, by adding symmetry constraints, a
modular anomaly can be found27 in (2 + 1)-D. In con-
trast to (2 + 1)-D, the Nielsen-Ninomiya (NN) theorem
in (3 + 1)-D suggests that the chiral edge of even dimen-
sion cannot be written without the aid of bulk theory38.
Therefore, it is natural to expect an anomalous contribu-
tion in even dimensions even without symmetry projec-
tion. Thus, in the next section, we show that the chiral
fermion in (3 + 1)-D shows a modular anomaly(mixed
modular anomaly) when U(1) gauge field is coupled to
it.

MIXED MODULAR ANOMALY

While chiral free fermions in (3 + 1)-D are modular
anomaly free, attaching a background U(1) gauge field
changes the situation. Consider the chiral edge under
a uniform magnetic field pointing out-of-plane in the z-
direction thereby breaking the periodicity of the in-plane
x and y coordinates. Therefore, the full modular trans-
formation that is isomorphic to PSL(Z, 4) is no longer a
good symmetry of the action, Eq. (5). However, we can
still safely consider PSL(Z, 2) acting on both z and the
time component as a subgroup of the original PSL(Z, 4).
We write the Hamiltonian for this situation as,

H = (
−→
k −
−→
A ) · −→σ , (39)

with magnetic vector potential A written in the Landau
gauge, A = (0,−Bx, 0). This Hamiltonian has two types
of solutions. EW (D) is gapless(gapped) Landau level(LL).

EW (k3) = kz, ED(n, k3) = ±
√
Bn+ k23, (40)

where k3 = 2π(n3 + λ3)/Lz and n is an positive integer.
We can write the unregularized partition function to be

Zλ0,λ3
= [

∏
k3

(1− e2πiλ0−βEW (kz)) (41)

×
∏
n,kz

(1− e2πiλ0+βED(n,kz))(1− e2πiλ0−βED(n,kz))]Nφ ,

where Nφ is the level degeneracy and ω = qλ3e2πiλ0 .
After regularization, we find that the chiral modes con-
tribute to the anomaly while gapped landau levels do not

contribute as they are massive (For explicit calculations
of massive mode, see Appendix E in supplementary31).
This reflects the fact that the regularized Casimir energy
has no contribution from gapped states. Therefore, the
modular transforms of the partition function of a (3+1)-
D edge theory coupled to a U(1) gauge field are

T [Zλ] = eiNφπ(λ
2
3−λ3+1/6)Zλ′ (42)

S[Zλ] = eiNφ2π(λ3−1/2)(λ0−1/2))Zλ′

and clearly contain a modular anomaly that is propor-
tional to Nφ, which counts the number of (1 + 1)-D chi-
ral modes. To confirm, we again look at the numerical
calculation of the Casmir energy in Fig. 1(c) where we
find that the anomalous phase value under T transfor-
mation reproduces the transformation rules given in Eq.
(42). Thus, the (3 + 1)-D chiral edge, when coupled to
a background gauge field, contains a modular anomaly.
In contrast to (1 + 1)-D, (3 + 1)-D chiral edge has charge
pumping but only in conjunction with the magnetic field,
in analogy to the chiral anomaly39. Therefore, we con-
clude the presence of modular anomaly when Nφ 6= 0, is
a direct manifestation of quantum Hall effect of (4+1)-D.

PT SYMMETRIC EDGE STATE

After establishing the presence of the mixed modular
anomaly, we apply our result to an edge theory of (4+1)-
D insulator. Using the (3+1)-D chiral edge result enables
us to extend our analysis to (4 + 1)-D insulators with
the following two symmetries: the fermion parity of each
spin component is preserved and the system is invariant
under (x, y, z, w, t) → (−x,−y,−z, w,−t). Consider an
open (3 + 1)-D surface with w = const, the second sym-
metry is equivalent to P ∗ T , where P is parity in 3D.
The first symmetry, in the non-interacting case, ensures
the decoupling between spin-up and spin-down sectors,
so each sector is itself a (4 + 1)-D quantum Hall state
with N↑ (N↓) Weyl nodes on the surface. P ∗ T on the
surface ensures that N↑ = N↓ ≡ Nedge, as it maps (i)
spin-up to spin-down and (ii) a positive monopole to a
negative monopole. The topological classification with-
out interaction is hence Z.

To calculate the modular anomaly of the edge the-
ory, we consider Nedge copies of the Weyl fermions with
positive monopole and negative monopole with the mag-
netic field. When the Weyl fermions with each monopole
conserve the fermion number parity. We can consider
the partition function of a sector labeled with a definite
fermion number parity. This is accomplished by pro-
jecting the Hilbert space with the symmetry projection
operator, P . the symmetry projection operator is given
as

P =
(1 + (−1)N↑)(1 + (−1)N↓)

4
(43)
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where N↑(↓) refers the fermion number operator of posi-
tive(negative) monopole. P returns 1 only if N↑ and N↓
are even integers, thus P projects the Hilbert space into
one of the sectors with a definite fermion number par-
ity. Now the partition function with a definite fermion
number parity can be expressed as

Ztotal,λ3
= Tr(PeiτH↑eiτH↓) (44)

=
1

4
Tr[(1 + eπiN↑)eiτH↑ ]Tr[(1 + eπiN↓)eiτH↓ ] =

Z↑λ3Z↓λ3

4
.

where Z↑λ3
is given as

Z↑,λ3
= [Zλ0=0,λ3

]Nedge + [Zλ0=1/2,λ3
]Nedge , (45)

where H↑ refers the Hamiltonian of the edge with
spin-up and we have used the fact that Zλ0,λ3 =
Tr(e−2πiNλ0eiτHλ3 )23. We consider the general case of
the partition function, which is a linear combination of
the periodic, Zλ3=0, and anti-periodic, Zλ3=1/2, bound-
ary conditions, namely

Z↑ =
∑

λ0=0,1/2,λ3=0

Z
Nedge
λ0,λ3

+ s
∑

λ0=0,1/2,λ3=1/2

Z
Nedge
λ0,λ3

,

(46)

where s is the relative phase between the periodic and
antiperiodic sector. From Eq. (42), we find that
the partition function under the application of the T -
transformation to be,

T [Z↑] = eiNφNedgeπ/6[
∑

λ0=0,1/2,λ3=0

[ZT [λ]]]
Nedge (47)

+se−iπNφNedge/4
∑

λ0=0,1/2,λ3=1/2

[ZT [λ]]
Nedge ].

Similarly, under the S transformation, we find

S[Z↑] =
∑

(λ0,λ3)=(0,1/2),(1/2,1/2)

[sZS[λ]]
Nedge (48)

+eiπNφNedge/2[ZS[λ=(0,0)]]
Nedge + [ZS[λ=(1/2,0)]]

Nedge .

This allows us to conclude that to achieve modular
covariance(T [Z↑] = eiNφNedgeπ/6Z↑ and S[Z↑] = Z↑)
NφNedge must be multiples of 8. Therefore, the mod-
ular covariance is achieved when Nedge = 8/gcd(Nφ, 8).
When Z↑ has modular covariance, Ztotal = Z↑Z↓ has
modular invariance. As Nφ can be any integer, the com-
plete cancellation of the modular anomaly occurs when
Nedge = 8.

CONCLUSION

In conclusion, we have generalized modular transfor-
mation in (1+1)-D CFT to higher dimensional edge the-
ory with use of PSL(Z, d) group supported by numerical

calculations of the Casmir energies. We have shown the
gapless free fermion theories in (2 + 1)-D and (3 + 1)-
D are modular invariant. We find a modular anomaly
in (3 + 1)-D when the edge theory is coupled to a U(1)
gauge field resulting in a (4 + 1)-D quantum Hall effect.
Moreover, we find that the edge theory of (4 + 1)-D in-
sulator with spacetime inversion symmetry(P ∗ T ) and
fermion number parity symmetry for each spin achieves
modular invariant when Nedge = 8. The cancellation of
the modular anomaly when Nedge = 8 implies that the
surface partition function does not have adiabatic pump-
ing of stress-energy tensor. In other words, this implies
that the corresponding surface theory has a trivial grav-
itational response when 8 copies of the edge theory are
present.
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