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We study the conditions for spontaneously generating an excitonic mass gap due to Coulomb
interactions between anisotropic Dirac fermions in uniaxially strained graphene. The mass gap
equation is realized as a self-consistent solution for the self-energy within the Hartree-Fock mean-
field and static random phase approximations. It depends not only on momentum, due to the
long-range nature of the interaction, but also on the velocity anisotropy caused by the presence of
uniaxial strain. We solve the nonlinear integral equation self-consistently by performing large scale
numerical calculations on variable grid sizes. We evaluate the mass gap at the charge neutrality
(Dirac) point as a function of the dimensionless coupling constant and anisotropy parameter. We also
obtain the phase diagram of the critical coupling, at which the gap becomes finite, against velocity
anisotropy. Our numerical study indicates that with an increase in uniaxial strain in graphene the
strength of critical coupling decreases, which suggests anisotropy supports formation of excitonic
mass gap in graphene.

I. INTRODUCTION

During the last decade the remarkable physical phe-
nomena demonstrated by graphene1, a two-dimensional
sheet of carbon atoms arranged in a honeycomb pat-
tern, not only inspired a great deal of fundamental
research in other novel two-dimensional materials2 but
also lead to significant advances in many promising
graphene-based modern technological applications like
transistors3, optoelectronics4, sensors5,6, membranes7,
nanocomposites8, supercapacitors9, and many more10.
However, due to lack of finite spectral gap at the charge
neutrality (Dirac) point, this zero-overlap semi-metallic
material cannot be directly used for nano-electronics
applications11.
The striking physical properties, in particular the

electronic properties due to gapless linear low-energy
dispersion relation, of this extraordinary material are
governed by the chiral (related to the sub-lattice and
time-reversal) symmetry which emerges as a result of
the two-dimensional bipartite honeycomb lattice. This
chiral symmetry, or handedness, is not only ubiquitous
to graphene but also observed in other condensed
matter systems12, high-energy physics13, chemistry14

and biology15. The spontaneous breakdown of this chiral
symmetry in graphene corresponds to the generation
of spectral or mass gap with the realization of massive
Dirac fermions at the Dirac point and paving the way to
potential large-scale applications in nano-science.
There have been considerable number of exciting

proposals to generate the mass gap or to observe

spontaneous chiral symmetry breaking (CSB), which is
also termed as semi-metal to insulator or excitonic tran-
sition, in graphene. One can realize such broken chiral
symmetry phases in the presence of an external magnetic
field16 which is similar to magnetic catalysis in quantum
electrodynamics (QED2+1)

17, graphene on dielectrics
which breaks the sub-lattice symmetry18–20, confining
the motion of the charge carriers in graphene quantum
dots21 or nano-ribbons22, interaction-induced localiza-
tion of charge carriers in the presence of adatoms23

or vacancies24, applying structural changes (axial
strain)25–27 or due to electron-electron interactions28–41.
While each of these approaches have their own merits, it
is very intriguing to understand the consequence of their
interplay on the broken symmetry phases.
Theoretical studies42–44 have shown that strain can

significantly alter the electronic band structure of
graphene i.e., change its non-interacting single particle
properties and create anisotropic Dirac fermions which
are also found in other solid state systems45–51. Due to
such directional dependent nature of charge carriers, the
anisotropic Dirac fermions can find possible applications
in low-dimensional devices utilizing anisotropic charge
transport and therefore it is of utmost importance to
understand their basic properties. Experimentally the
strain-induced anisotropic Dirac fermions in graphene
have also been examined52–55. But a systematic study
of applying, controlling and measuring an axial strain in
a mono-layer freely-suspended graphene have met with
serious challenges due to the lack of proper suspension
of large micrometer-sized graphene flakes over a trench
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or due to absence of an efficient method in clamping
the graphene samples. Despite these difficulties, very
recently, there have been a great deal of progress in
achieving tensile strain of up to 14% using MEMS
technology56 or marginal yet well controlled uniform
uniaxial strain57 of nearly 0.8%. It is well understood
that strain in graphene is of considerable importance58,59

to systematically study the mechanical strength of this
atomic thick single layer of carbon atoms in order to be
able to use in developing stretchable, transparent and
carbon based nano-electronics devices.
In the present work, we shall consider the combined

effect of uniaxial strain (the simplest possible axial
strain that can be applied) and long-range instantaneous
Coulomb interaction (without any retardation effects)
in breaking the chiral symmetry in graphene. More
specifically our goal is to simplify the self-consistent
mass gap equation as much as possible but use large
scale numerical simulations to elucidate, under certain
physical approximation, whether uniaxial strain en-
hances or suppresses the interaction-induced excitonic
mass gap in freely suspended graphene60,61.
The rest of the paper is organized as follows. In Sec-

tion II we present the mass gap equation, which signifies
the spontaneous generation of finite mass or opening
of a gap at the Dirac point in graphene. Such a gap
equation is realized in the presence of an uniaxial strain,
which makes the electronic dispersion anisotropic, and
within Hartree-Fock mean-field as well as static random
phase approximation for the effective interaction. Due
to exceptional difficulty of finding an exact analytic
solution of the gap equation, in Section III we present
results of our large scale numerical calculations for
solving the anisotropic gap equation on a finite sized
grid. Using standard numerical methods we obtain the
value of the gap at the charge neutrality point as a
function of dimensionless effective interaction strength
and applied strain. We plot the phase diagram of the
critical strength, which is responsible for opening the
mass gap, as a function of anisotropy. In the concluding
section IV we summarize our work.

II. FORMALISM

A. Theoretical Model

With an aim to understand the interplay between
anisotropic non-interacting dispersion, due to an exter-
nally applied uniaxial strain, and electron-electron in-
teraction in graphene we consider a model consisting of
Dirac fermions interacting via long-range Coulomb inter-
action on a uniaxially strained two-dimensional bipartite
honeycomb lattice. The essential details of the micro-
scopic model are provided in one of our earlier work, see
Ref. [62], but in the following we shall briefly mention a
few relevant highlights for the sake of brevity and com-

pleteness.
We suppose a low-energy effective non-interacting

Hamiltonian,

Ĥ0 = vxpxσ̂x + vypyσ̂y , (1)

where vx and vy are velocities along spatial x− and y−
directions respectively. Here, the two-dimensional quasi-
momentum or wave vector is given by p = (px, py) while
σ̂x, σ̂y are the well-known (2 × 2) Pauli matrices along
the x− and y− components respectively of the three di-
mensional Pauli vector, σ̂ = (σ̂x, σ̂y, σ̂z). The hat over
the Latin and Greek symbols signifies two-dimensional
matrices written in the basis of sub-lattices, A and B,
of the two-dimensional honeycomb structure. Following
Ref. [62], we shall consider tensile strain applied along
the y− direction and define an anisotropy parameter, δ,
proportional to the uniaxial strain25 which is given in
terms of anisotropic velocities such that

vy

vx
= v⊥. (2)

In the unstrained or isotropic limit, δ = 0, the Fermi
velocity is given by vF = vx = vy ≃ 106ms−1 while in
the extreme anisotropic limit, δ = −1, the two dimen-
sional graphene is reduced to decoupled chains of carbon
atoms. We would like to remark that though the com-
plete anisotropic extremity is a compelling limit63 but
due to numerical constraints we shall not be discussing
it in this work and refrain our analysis in the proxim-
ity of such an extreme limit. However, in the light of
recent experimental advancement in applying uniaxial
strain in graphene55–57, it would be intriguing to exam-
ine an interaction-driven phase transition or a continuous
dimensional crossover in the limit of strong applied uni-
axial strain in freely-suspended large scale graphene.
On diagonalizing the Hamiltonian in Eq. (1) we obtain

the anistropic non-interacting energy dispersion,

E(p) = ±
√

(vxpx)2 + (vypy)2. (3)

In the case of unstrained graphene the low-energy disper-
sion is described by an isotropic circular cone while the
uniaxial strain makes the cone anisotropic and ellipti-
cal in the energy plane. Apart from the non-interacting
term, we also consider interaction modeled by a long-
range Coulomb potential given by

V (p) =
2πe2

κ|p|
, (4)

where κ = 1 is the dielectric constant for the case of
free-standing graphene and κ > 1 for graphene on a di-
electric substrate. The strength of interaction is varied
by defining the dimensionless parameter,

α =
e2

~κvF
, (5)
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FIG. 1. The low-energy linear dispersion at the Dirac point in
graphene (left) acquires a finite excitonic mass gap, M(0), as
an interplay between externally applied uniaxial strain, v⊥,
and electron-electron interaction, αx.

which is the ratio of the interaction or potential energy
to that of the non-interacting or kinetic energy. Its value
for freely suspended (κ = 1) graphene is, α = 2.2. Since
the uniaxial strain is applied along the y− direction it
is obvious that vy will decrease due to increasing bond
length while vx shall increase because of decreasing bond
length along x− direction. Therefore in the presence of
any finite strain on freely suspended graphene it is ap-
propriate, in our model, to consider

αx =
e2

~vx
, (6)

as the strength of interaction. We shall suppose v⊥ and
αx, Eqs. (2) and (6) respectively, as model parameters in
our calculations and study their interplay in generating
an excitonic mass gap in graphene as shown schemati-
cally in Fig. 1.

B. Methodology

With the minimal description of our theoretical model,
we begin our analysis within self-consistent scheme where
the CSB order parameter, related to the generation of fi-
nite mass gap, appears in the interacting Green’s function
which is defined as follows,

Ĝ−1(p, ω) = ωÎ − (vxpxσ̂x + vypyσ̂y)− Σ̂(p), (7)

where ω is the external frequency, I is a (2 × 2) identity
matrix and the self-energy is given by

Σ̂(p) = M(p)σ̂z , (8)

with σ̂z being the z− component of the three dimensional
Pauli vector and M(p) is the mass gap. Since σ̂z anti-
commutes with the Hamiltonian given in Eq. (1), any

non-zero value of M(p) will result in opening a spectral
gap in the dispersion relation indicating sub-lattice sym-
metry breaking i.e., spontaneous CSB due to electron-
electron interaction. It is well known that any finite
mass gap can also be realized in the non-interacting limit
due to spin-orbit coupling which breaks the sub-lattice
symmetry but for graphene its value is negligibly small.
Experimentally64 the upper limit for the band gap at low
temperatures, set by charge inhomogeneities, is around
1 meV. The anisotropic gapped energy spectrum at any
finite quasi-momentum now becomes

E(p) = ±
√

(vxpx)2 + (vypy)2 +M(p)2. (9)

Now the subsequent task is to obtain a self-consistent
equation for the mass gap, M(p). The many-body self-
energy in the static (zero external frequency) limit is de-
fined as,

Σ̂(p) = i

∫

dωd2q

(2π)3
V eff(p− q)Ĝ(q, ω), (10)

where the effective interaction is given by

V eff(p) =
V (p)

1−Π(p)V (p)
. (11)

Here, the bare interaction is as defined in Eq. (4) with
κ = 1 for free-standing graphene. Eq. (10) represents
the perturbative zeroth order (without any vertex cor-
rections) self-energy in GW theory65 with random phase
approximation (RPA) for the screened potential. In the
absence of screening due to electron-electron correlation
the self-energy becomes the simplified Hartree-Fock ex-
change. This theory can be extended in a straight for-
ward manner by taking into account the wavefunction
renormalization along with vertex corrections and by
considering the dynamic particle-hole polarization bub-
ble, Π(p, ω), defined in terms of interacting Green’s func-
tion, Eq. (7), thereby formulating the fermionic and
bosonic self-energies in terms of full self-consistent non-
perturbative Dyson-Schwinger equations66. But it be-
comes a formidable task to perform large scale numeri-
cal calculations for those self-consistent self-energy equa-
tions. Therefore, in order to simplify the self-consistent
mass gap equation and to be able to implement very large
grid sizes, we restrict the effective interaction, Eq. (11),
to static RPA where the particle-hole bubble is given as,

Π(p) = −
Nf

16vxvy

√

(vxpx)2 + (vypy)2, (12)

with Nf = 4 being the number of fermionic flavors in
graphene corresponding to the two sub-lattice and two
valley degrees of freedom. After inserting Eq. (7) in
Eq. (10) and performing frequency integration, the self-
consistent anisotropic mass gap equation becomes,

M(p) =

∫

d2q

(2π)2
V eff(p− q)

M(q)

2|E(q)|
. (13)
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On using Eqs. (4), (9), (11) and (12) we can write
Eq. (13) in its final form as,

M̃(p) =παx

∫

d2q

(2π)2
M̃(q)

√

q2x + v2⊥q
2
y + M̃(q)2

1

|p− q|+
παxNf

8v⊥

√

(px − qx)2 + v2⊥(py − qy)2
,

(14)

where M̃(p) = M(p)
Ec,x

is the scaled mass gap with Ec,x =

vxΛx being the cut-off energy scale. As seen in Eq. (14)

the scaled mass gap, M̃(p), not only depends on the
quasi-momentum because of the long-range nature of
interaction but also on the anisotropy due to uniaxial
strain. We solve Eq. (14) self-consistently on a two-
dimensional finite size grid with varying number of grid
points and for different values of dimensionless interac-
tion strength, αx, and anisotropic velocity, v⊥. Also,
apart from presenting results for Nf = 4 we shall also
consider the unscreened case, Nf = 0, which is equivalent
to calculating the effective interaction within Hartree-
Fock or mean field approximation neglecting the electron-
electron correlation effects. Using standard numerical
methods, we shall find the extrapolated value for the

mass gap, M̃(0) = M(0)
Ec,x

, whose finite value will indi-

cate spontaneous CSB due to electron-electron interac-
tion in an uniaxially strained freely-suspended graphene.
As mentioned earlier, we shall restrict our analysis in the
proximity of extreme limit of applied strain, δ > −1 or
v⊥ > 0.

III. NUMERICAL RESULTS

In order to have sufficiently large quasi-momentum res-
olution, we use a scaled polar grid in a way that there
are large number of points distributed near the origin
of the co-ordinate system compared to the rest of the
grid. There are four sets of total number of grid points,
N = 18360, 36360, 72360 and 108360, which we consider
in our simulations with each converged result requiring
from a few minutes to several hours of CPU time on a
1.7GHz AMD Opteron. Since the behavior of the mass
gap as a function of quasi-momentum is known in case of
unstrained graphene32, we consider it as an initial func-
tion for the mass gap with specific values on each grid
point and calculate the new values after performing the
numerical integration for each Nf and given αx and v⊥.
We then compare the newly obtained mass gap with that
of initially assumed values. Our criterion of convergence
is determined when either the required number of iter-
ations have reached a certain maximum value, which in
our calculation is as large as 10000, or the relative error,
E , in each iteration is sufficiently small and which is given

FIG. 2. Convergence history of the relative error, E , as a func-
tion of number of iterations for number of fermionic flavors,
Nf = 0 and Nf = 4 for the largest number of grid points.

by

E =

∣

∣

∣

∣

∣

M̃i(p)− M̃i−1(p)

M̃i−1(p)

∣

∣

∣

∣

∣

< 10−4, (15)

where M̃i(p) represents values of the mass gap on each
of the grid points at the ith iteration. It is well known
that near the fixed converged point the iterative solutions
can sometimes get trapped into a limit cycle where the
solutions move around the fixed point very slowly. In or-
der to avoid and eliminate such issues related to the limit
cycle we use the damping method or the weighted aver-
age scheme for convergence67 which can be understood
as follows. At given ith iteration, if the results are not
converged i.e., the required tolerance limit for the relative
error is not reached, the calculations proceed to the next
iteration by replacing M̃i(p) with a linear combination

of (1−w)M̃i(p) and wM̃i−1(p) where w is the damping
or weight factor which lies between 0 and 1.

The computational cost (in terms of iteration number
and CPU time) increases rapidly as one approaches the
critical value of the coupling constant for each Nf and
given v⊥. In Fig. 2, we show convergence history of the
relative error, E , as a function of number of iterations for
the number of fermionic flavors, Nf = 0 and Nf = 4 for
the largest number of grid points. In case of Nf = 0,
the computational time for αx = 0.60 (αx = 0.25) and
v⊥ = 1.0 (v⊥ = 0.1) was 40 (32) CPU hours while for
Nf = 4, the computational time for αx = 2.5 (αx = 1.6)
and v⊥ = 1.0 (v⊥ = 0.1) was 76 (68) CPU hours. Because
of the simplified form of the self-consistent equations for
the unscreened case Nf = 0 it is evident that for the
given largest number of grid points the number of itera-
tions required to reach the tolerance limit are much lower
and the CPU hours are as much as half compared to the
screened case Nf = 4. Moreover, for Nf = 0 and Nf = 4,
the tolerance limit is reached earlier in the strained case
as compared to the unstrained due to the nature of di-
mensional reduction.
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FIG. 3. The mass gap close to charge neutrality point in
strained graphene for number of fermionic flavors, Nf = 0, as
a function of dimensionless effective interaction strength and
for four different values of anisotropy. In the inset, we show
the region of the appearance of finite mass gap where the data
points are fit to Eq. (16) and shown in broken orange line.

For each particular value of Nf , αx and v⊥, we now
consider the mass gap corresponding to the extrapolated

smallest quasi-momentum, M̃(0) = M(0)
Ec,x

, in each of the

given set of grid size. We further extrapolate these values
against inverse system size in order to obtain the mass
gap value in the continuum limit thereby eliminating fi-
nite size effects whose importance has been emphasized
in a recent study40.

In Fig. 3 we present the mass gap close to charge neu-
trality point in strained graphene for the unscreened case,
Nf = 0, as a function of dimensionless effective interac-
tion strength and for four different values of anisotropy.
For this case, it is apparent from Eq. (14) that for large
values of coupling strength the mass gap increases lin-
early with dimensionless effective coupling constant while
for coupling strength near critical values it increases ex-
ponentially in accordance to the scaling law68 given by,

M(0)

Ec,x

= A0e
− A1√

αx−αc
x , (16)

where A0, A1 and αc
x are fit to the data points and the

fitting curve is shown in the inset of Fig. 3 as broken
orange line. Our result for the critical value within
mean-field (unscreened) interaction for the unstrained
case, αc = 0.49 is comparable to the one reported
in Ref. [34] using variational method, which in their
notation is gc = 0.5.

In Fig. 4, we again present the mass gap close to
the charge neutrality point in strained graphene but for
the screened case Nf = 4 within static RPA. We find
that for large values of coupling strength the mass gap
shows almost sub-linear increase or even saturation-like
behavior with increasing dimensionless effective coupling
constant as oppose to linear increase in unscreened case.
Moreover, it is important to note the values of mass
gap for both Nf = 0 and Nf = 4 where the scaled

1.5 2 2.5 3
0

5e-05

0.0001

0.00015

0.0002

0.00025

FIG. 4. The mass gap close to charge neutrality point in
strained graphene for number of fermionic flavors, Nf = 4, as
a function of dimensionless effective interaction strength and
for four different values of anisotropy. In the inset, we show
the region of the appearance of finite mass gap where the data
points are fit to Eq. (16) and shown in broken orange line.

FIG. 5. Phase diagram showing the dependence of the critical
coupling constant on the applied uniaxial strain in graphene.

mass gap values are very small in the latter case. These
behaviors certainly emphases the role of static screening
compared to the mean-field approximation. But even for
Nf = 4 the coupling strength near critical values shows
exponential increase similar to the case for Nf = 0. We
again use Eq. (16) to fit the data and the result is shown
in the inset of Fig. 4 as broken orange line.

We now plot the values of the critical coupling con-
stant αc

x, where the mass gap vanishes for both Nf = 0
and Nf = 4 against the anisotropy parameter as shown
in Fig.5. We observe that with an increase in anisotropy
the value of the critical coupling strength needed to
break the chiral symmetry decreases in both the cases
with the decrease being larger in the Nf = 4 case. This is
in stark contrast to the results obtained by Wang et al60

who used six different (static) approximations for the
screened interaction including velocity renormalization
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and obtained non-monotonic dependence of the mass
gap on the anisotropy. Moreover their conclusion is mass
gap always get suppressed as the velocity anisotropy
increases, thus the critical coupling increases with
increase in anisotropy and therefore anisotropy is not in
favor of generating a dynamical mass gap in graphene.
On the other hand, our results are in line with the
very recent ones reported by Braguta et al69 where the
authors studied similar interplay of fermion velocity
anisotropy and long-range Coulomb interaction albeit in
three-dimensional Dirac semi-metals using Monte Carlo
simulations. We also find that within our crude physical
approximation for the effective interaction but large
scale numerical calculations the value for the critical
coupling constant for unstrained graphene, αc = 2.28 is
larger but very close to its bare value, α = 2.2 implying
that graphene is in the semi-metallic phase. We would
like to remark that among other neglected physical
aspects in graphene, the velocity renormalization is
not only shown to be very important for the correct
low-energy description of Dirac fermions70 but is also
shown to push the critical coupling to higher values41.
Moreover, it is instructive to comment that in the
literature the reported values for the critical coupling
constant for the unstrained graphene within various
approximations range from 1.1 (Ref. 31 using Monte
Carlo) to 3.7 (Ref. 41 using functional renormalization
group approach).

IV. CONCLUSIONS AND OUTLOOK

In summary, we have studied the spontaneous mass
gap generation due to long-range Coulomb interactions
in uniaxially strained undoped graphene. We obtain
the mass gap equation as a self-consistent solution for
the self-energy within Hartree-Fock mean-field and static
RPA. The nonlinear integral equation for the mass
gap, which depends on the quasi-momentum due to
the long-range nature of Coulomb interactions and on
the anisotropy owing to uniaxial strain, is solved self-
consistently by performing large scale numerical simu-

lation on a two-dimensional finite size grid with vary-
ing number of grid points. We numerically obtain the
mass gap, close to the Dirac point, as a function of the
dimensionless coupling constant and anisotropy parame-
ter. The critical coupling, at which the gap becomes fi-
nite, is plotted against anisotropy and indicates that with
an increase in anisotropy (uniaxial strain) in graphene,
the strength of critical coupling decreases which suggests
anisotropy supports formation of excitonic mass gap in
graphene.
Our numerically exhaustive attempt on a simplified

version of the model aims towards finding an accurate
value of the critical coupling which is responsible for
interaction-driven CSB thereby generating an excitonic
mass gap in unstrained and strained graphene. Our
future approach is to combine nonperturbative meth-
ods like the Dyson-Schwinger or functional renormal-
ization group along with large scale numerical calcula-
tions. These nonperturbative methods will systemati-
cally include dynamic screening32 with self-consistent ad-
dition of mass gap in the polarization bubble35, velocity
renormalization36, vertex corrections41 and possibly re-
tardation effects71.
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Phys. Rev. B 83, 115449 (2011).

55 P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P. E. Loya, Z.
Liu, Y. Gong, J. Zhang, X. Zhang, et al., Nat. Commun.
5, 3782 (2014).

56 H. H. P. Garza, E. W. Kievit, G. F. Schneider, and U.
Staufer, Nano Lett. 14, 4107 (2014).

57 I. Polyzos, M. Bianchi, L. Rizzi, E. N. Koukaras, J. Parthe-
nios, K. Papagelis, R. Sordan, and C. Galiotis, Nanoscale
7, 13033 (2015).

58 C. Si, Z. Suna and F. Liu, Nanoscale 8, 3207 (2016).
59 B. Amorim, A. Cortijo, F. de Juan, A. Grushin, F. Guinea,

A. Gutiérrez-Rubio, H. Ochoa, V. Parente, R. Roldán, P.
San-Jose, et al., Phys. Rep. 617, 1 (2016).

60 J.-R. Wang and G.-Z. Liu, Phys. Rev. B 89, 195404 (2014).
61 H.-K. Tang, E. Laksono, J.N.B. Rodrigues, P. Sengupta,

F.F. Assaad, and S. Adam, Phys. Rev. Lett. 115, 186602
(2015).

62 A. Sharma, V. N. Kotov, and A. H. Castro Neto,
arXiv:1206.5427 (2012).

63 C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, Phys.
Rev. Lett. 102, 205501 (2009).

64 A. S. Mayorov, D. C. Elias, I. S. Mukhin, S. V. Morozov,
L. A. Ponomarenko. K. S. Novoselov, A. K. Geim, and R.
V. Gorbachev, Nano Lett. 12, 4629 (2012).



8

65 L. Hedin, J. Phys. Cond. Mat. 11, R489 (1999).
66 F. J. Dyson, Phys. Rev. 75, 1736 (1949); J. Schwinger,

Proc. Nat. Acad. Sci. U.S.A. 37, 452 (1951).
67 D. R. Hartree, The calculation of atomic structures (Wiley,

New York, 1957).
68 V. A. Miransky and K. Yamawaki, Phys. Rev. D 55, 5051

(1997); ibid. 56, 3768 (1997).

69 V. V. Braguta, M. I. Katsnelson, A. Yu. Kotov, and A. A.
Nikolaev, Phys. Rev. B 94, 205147 (2016).

70 C. Bauer, A. Rückriegel, A. Sharma, and P. Kopietz, Phys.
Rev. B 92, 121409(R) (2015); A. Sharma and P. Kopietz,
Phys. Rev. B 93, 235425 (2016).

71 M. E. Carrington, C. S. Fischer, L. von Smekal, and M. H.
Thoma, Phys. Rev. B 94, 125102 (2016).


