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Recent ARPES measurements of single-layer 1H-TaS2 grown on Au(111) suggest strong electron
doping from the substrate. In addition, STM/STS measurements on this system show suppression
of the charge-density-wave (CDW) instability that occurs in bulk 2H-TaS2. We present results from
ab initio DFT calculations of free-standing single-layer 1H-TaS2 to explore the effects of doping
on the CDW. In the harmonic approximation, we find that a lattice instability along the ΓM line
occurs in the undoped monolayer, consistent with the bulk 3 × 3 CDW ordering vector. Electron
doping removes the CDW instability, in agreement with the experimental findings. The doping
and momentum dependence of both the electron-phonon coupling and of the bare phonon energy
(unscreened by metallic electrons) determine the stability of lattice vibrations. Electron doping also
causes an expansion of the lattice, so strain is a secondary but also relevant effect.

I. INTRODUCTION

A charge-density wave (CDW) is a common collective
phenomenon in solids consisting of a periodic modulation
of the electron density accompanied by a distortion of
the crystal lattice. For a one-dimensional system of non-
interacting electrons, the phenomenon is described by the
Peierls instability, where a divergence in the real part of
the electronic susceptibility at twice the Fermi wave vec-
tor drives a metal-to-insulator transition. In extensions
of this idea to real materials with anisotropic band struc-
tures and quasi-1D Fermi surfaces, Fermi-surface nesting
is often cited to explain charge-ordering tendencies. How-
ever, geometric Fermi-surface nesting (i.e., existence of
parallel regions of the Fermi surface separated by a sin-
gle wave vector q) is related to the imaginary part of the
noninteracting susceptibility rather than the real part, so
it is not directly connected to the Peierls mechanism.1

Indeed, calculations for a number of CDW materials,
including NbSe2, TaSe2, TaS2, and CeTe3, have found
little or no correlation between the CDW ordering vec-
tor qCDW, and peaks in the geometric nesting function
(imaginary part of χ0).

1–5 Nor does qCDW coincide with
sharp features in the real part of χ0 in most of these cases.
Instead, these studies pointed to the importance of the
momentum-dependent electron-phonon coupling, which
softens selected phonon modes to the point of instability.

Advances in the synthesis of low-dimensional materials
provide new opportunities to test these ideas. In going
from quasi-2D bulk NbSe2 to the 2D monolayer, for ex-
ample, the number of bands crossing the Fermi level de-
creases from three to one, which could reveal information
about the role played by different bands in driving the
CDW instability. The stability and structure of the CDW
phase in monolayer NbSe2, however, remains under de-
bate. Density functional calculations predict that both
the monolayer and bilayer have CDW instabilities, but
with a shifted qCDW and a larger energy gain compared
to the bulk.3 A recent experimental study of bulk and 2D
NbSe2 on SiO2 used the Raman signature of the CDW

amplitude mode to estimate the CDW transition tem-
perature and reported an increase of TCDW from about
33 K in the bulk to 145 K in the monolayer.6 This result,
attributed in Ref. 6 to an enhanced electron-phonon cou-
pling due to reduced screening in two dimensions, is qual-
itatively consistent with the DFT predictions, but does
not address the question of the CDW superstructure.
On the other hand, another study of single-layer NbSe2,
this time on bilayer graphene, reported scanning tunnel-
ing microscopy/spectroscopy (STM/STS) measurements
showing a CDW transition at a lower temperature than
the bulk but with the same qCDW ordering vector.7 Dis-
crepancies between the two experimental studies and be-
tween experiment and theory could be due in part to
substrate effects, as 2D materials tend to be highly sen-
sitive to the environment and to the substrate. Initial
studies of 1T -TaS2, for example, suggested that it com-
pletely loses the low-temperature commensurate CDW
phase upon thinning to about 10-15 layers,8 but later
it was shown that oxidation can suppress the formation
of the commensurate phase.9 Raman signatures of the
commensurate CDW were later found in single-layer 1T -
TaS2 samples with limited exposure to air.10 In using 2D
materials to probe the CDW transition and the effect of
dimensionality, it is therefore crucial to differentiate be-
havior intrinsic to each material from effects due to the
environment.

In bulk form, TaS2 is a layered transition-metal
dichalcogenide for which the 1T and 2H polymorphs
are competitive in energy, and both can be synthesized.
Both the 1T and 2H polymorphs undergo CDW tran-
sitions as the temperature is lowered. Recently, it was
reported that single-layer TaS2 grown epitaxially on a
Au (111) substrate adopts the 1H structure rather than
1T .11 Low-energy electron diffraction (LEED) and STM
data indicate that on Au (111), single-layer 1H-TaS2
does not undergo a CDW transition, at least down to
T = 4.7 K. This is in contrast to bulk 2H-TaS2, which
develops a 3 × 3 CDW periodicity below about 75 K. In
addition, a comparison of angle-resolved photoemission
spectroscopy (ARPES) data to the band structure cal-
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culated for a free-standing monolayer suggests that the
substrate causes the material to become n-doped with a
carrier concentration of approximately 0.3 electrons per
unit cell.11

In this paper, we use DFT calculations to investigate
whether the observed suppression of the CDW in mono-
layer 1H-TaS2 is intrinsic or a consequence of its inter-
action with the metallic substrate. In the harmonic ap-
proximation, we find that a free-standing single layer of
1H-TaS2 has lattice instabilities that are very similar to
its bulk counterpart. When the monolayer is electron-
doped, however, the 1H structure becomes dynamically
stable, implying that substrate-induced doping is the
likely reason for the suppression of the CDW observed
in Ref. 11. The strong effect of doping and a secondary
effect of lattice strain on the CDW transition in this ma-
terial give insight on what drives the transition. We ex-
amine the role of electron-phonon coupling by calculating
the phonon self-energy. We find that the contribution to
the real part of the phonon self-energy from the single
band that crosses the Fermi level is largely responsible
for the momentum dependence of the soft mode, but the
bare phonon frequency (unscreened from electrons at the
Fermi level) also plays a role.

II. METHODS

We performed density-functional theory calculations
using the QUANTUM-ESPRESSO12 package. The
exchange-correlation interaction was treated with the
Perdew-Burke-Ernzerhof (PBE) generalized gradient
approximation.13 To describe the interaction between
electrons and ionic cores, we used ultrasoft14 Ta pseu-
dopotentials and norm-conserving15 S pseudopotentials.
Electronic wave functions were expanded in a plane-wave
basis with kinetic energy cutoffs of 47 (53) Ry for scalar
(fully) relativistic pseudopotentials. Integrations over
the Brillouin zone (BZ) were performed using a uniform
grid of 36×36×1 k points, with an occupational smearing
width of σ = 0.005 Ry.
To simulate electronic doping, electrons were added to

the unit cell along with a compensating uniform posi-
tive background. A single layer of 1H-TaS2 was modeled
using a supercell with the out-of-plane lattice parame-
ter fixed at c = 12 Å, corresponding to about 9 Å of
vacuum between layers. This ensured that for the range
of electron doping explored, spurious vacuum states that
originate from the periodic boundary conditions stay well
above the Fermi level. The in-plane lattice constant and
the atomic positions were fully relaxed at each doping
level.
Phonon spectra and electron-phonon matrix elements

were calculated with density functional perturbation
theory16 on a q-point grid of 12 × 12 × 1 phonon wave
vectors and Fourier interpolated to denser grids. To test
the effect of spin-orbit coupling on the phonon frequen-
cies, we used a less dense grid of 8 × 8 × 1 q-points.

While this does not capture all the fine structure in the
phonon dispersions, it is sufficient to test the effect of
spin-orbit coupling. In fact, even Fourier interpolation
on the 12 × 12 × 1 q-grid does not fully capture the
sharp features along certain directions in the Brillouin
zone where direct calculations of the phonon frequency
are needed. The real and imaginary parts of electronic
susceptibilities and phonon self energies were calculated
using dense k-point grids of at least 72× 72× 1 points.

III. RESULTS & DISCUSSION

The 1H-TaS2 lattice has point group D3h, reduced
from D6h in the bulk. Sulfur atoms adopt a trigonal pris-
matic coordination about each Ta site, and the crystal
lacks inversion symmetry. Our calculations for the un-
doped (x = 0) monolayer give a relaxed in-plane lattice
parameter of ax=0 = 3.33 Å and a separation between
Ta and S planes of Sz = 1.56 Å. These values are similar
to what we calculate for the bulk. For comparison, the
experimental in-plane lattice parameter for single-layer
1H-TaS2 on Au11 and bulk 2H-TaS2

17 are a = 3.3(1)
Å and 3.316 Å, respectively. With the addition of 0.3
electrons per cell (x = −0.3), the lattice expands roughly
2.5% to ax=−0.3 = 3.41 Å, while the separation between
Ta and S planes decreases slightly to Sz = 1.53 Å. In
analyzing the impact of doping on the CDW instability,
we examine the effect of adding charge carriers as well as
the effect of the lattice expansion.
In single-layer 1H-TaS2, in the absence of spin-orbit

coupling (SOC), a single isolated band (two-fold spin de-
generate) crosses the Fermi level, as shown in Fig. 1(a).
This half-filled band, which is about 1.4 eV wide, has
strong Ta d character and is separated by about 0.6 eV
from the manifold of S p bands below. As a consequence,
metallic screening is due to a single band isolated from
all the others. The Fermi surface consists of a roughly
hexagonal hole sheet of primarily Ta dz2 character around
Γ and a roughly triangular sheet of primarily in-plane Ta
d character (dx2+y2 and dxy) around K. The spin-orbit
interaction splits the half-filled d band by as much as
∼ 0.3 eV, except along the ΓM line where symmetry
dictates that the band remains degenerate. The number
of Fermi sheets around the Γ and K points doubles with
SOC.
Electron doping of x = −0.3 causes a nearly rigid

downward shift of the partially occupied Ta d band by
about 0.1 eV, and a somewhat larger downward shift of
the occupied S p bands. This is shown in Fig. 1(c) for the
scalar relativistic bands. The fully relativistic bands be-
have similarly with doping, as can be seen in Figs. 1(a,b).
The hole pocket around Γ thus gets slightly smaller while
the one aroundK shrinks more significantly. The doping-
induced lattice expansion, on the other hand, has a neg-
ligible effect on the Fermi surface, as shown in Fig. 1(d).
Despite the non-negligible effect that SOC has on the

electronic structure, we find little difference between the



3

-1

0

1

2

-1

0

1

2

-1

0

1

2

-1

0

1

2

x = 0

x = 0

x = −0.3

x = −0.3

x = −0.3

relaxed

unrelaxed

ΓΓ KM

(a)

(b)

(c)

(d)

no SOC

no SOC

no SOC

no SOC

with SOC

with SOC

en
er
g
y
(e
V
)

FIG. 1. (Color online) Electronic bands of single-layer 1H-
TaS2. Effect of: (a) SOC for the undoped case, (b) SOC for
the n-doped (x = −0.3) case, (c) n-doping (x = −0.3 vs.
x = 0), (d) lattice constant relaxation (ax=0 vs. ax=−0.3) on
the doped (x = −0.3) system. Internal atomic coordinates
were optimized in all cases.

phonon spectra calculated with and without SOC. This
is shown in Fig. 2 where the phonon dispersion curves
were obtained from a Fourier interpolation on a 8× 8× 1
phonon q-grid. Hence, for the remainder of this paper,
we focus on the phonon properties calculated in the ab-
sence of SOC.
Figure 3(a) shows the phonon dispersion curves calcu-

lated for the undoped monolayer (x = 0) from a Fourier
interpolation on a 12×12×1 phonon q-grid. An acoustic
phonon branch is found to be unstable over a large area
of the BZ surrounding the M point and even has a dip at
K. (Imaginary frequencies are plotted as negative.) This
branch involves in-plane Ta vibrations. This region of
instability arises primarily from softening of the phonon
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FIG. 2. (Color online) Phonon dispersions of single-layer
1H-TaS2. Effect of SOC for: (a) the undoped case, (b) the
n-doped (x = −0.3) case. In (b), the curves with and with-
out SOC lie almost directly on top of each other. Dispersion
curves were obtained from Fourier interpolation from a q-grid
of 8× 8× 1 points. Imaginary frequencies are shown as neg-
ative.

branch near the bulk CDW wavevector (2/3 along the Γ
to M line), but there is also a secondary point of insta-
bility along the M to K line (close to M).18 We will refer
to these points as qCDW and qMK , respectively.

When electrons are added while keeping the lattice
constant fixed at ax=0 but allowing Sz to relax, the insta-
bilities at qCDW and qMK are progressively suppressed.
With doping of x = −0.3, a weak instability at the M
point remains, as shown in Fig. 3(b). Once the lat-
tice constant is allowed to expand to its optimal value at
x = −0.3, the lattice becomes dynamically stable, as seen
in Fig. 3(c), though an anomalous dip in the phonon dis-
persion remains near qMK . For both doped cases, there
is no longer a dip at K.

At intermediate values of electron doping, we find that
in going from x = 0 to x = −0.3, with the lattice constant
optimized at each level of doping, the point of strongest
instability shifts from qCDW (2/3 ΓM) to the M point as
the mode gradually hardens. In these harmonic calcula-
tions, the mode becomes stable between x = −0.25 and
x = −0.3. With positive (hole) doping, the instability at
qCDW shifts in the other direction (close to 1/2 ΓM for
x = 0.3), and various other strong instabilities appear
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FIG. 3. Phonon dispersions of single-layer 1H-TaS2: (a) un-
doped (x = 0), (b) n-doped with unrelaxed lattice constant
(x = −0.3, ax=0), (c) n-doped with relaxed lattice constant
(x = −0.3, ax=−0.3). Dispersion curves were obtained from
Fourier interpolation from a q-grid of 12×12×1 points. Imag-
inary frequencies are shown as negative.

throughout the BZ. See Supplemental Material for more
information on intermediate and positive doping values.

Since the unstable branch involves in-plane displace-
ments of Ta ions, it is likely that these phonons couple
strongly to in-plane Ta d states near the Fermi level.
To investigate the role of the electron-phonon interac-
tion in the CDW transition in this material, we consider
the phonon self-energy due to electron-phonon coupling.
In the static limit, the real part of the phonon self-energy

for phonon wave vector q and branch ν is given by

Πqν =
2

Nk

∑

kjj′

|gνkj,k+qj′ |
2 f(ǫk+qj′)− f(ǫkj)

ǫk+qj′ − ǫkj
, (1)

while the phonon linewidth, which is twice the imaginary
part of the phonon self-energy, can be expressed as

γqν =
4πωqν

Nk

∑

kjj′

|gνkj,k+qj′ |
2δ(ǫkj − ǫF )δ(ǫk+qj′ − ǫF ).

(2)
Here Nk is the number of k points in the Brillouin zone,
j and j′ are electronic band indices, f(ǫ) is the Fermi-
Dirac function, ǫF is the Fermi energy, and ωqν is the
phonon frequency. The electron-phonon matrix element
is

gνkj,k+qj′ =

√

~

2ωqν

〈kj| δVSCF/δuqν |k+ qj′〉 , (3)

where uqν is the amplitude of the phonon displace-
ment and VSCF is the Kohn-Sham potential. Both the
linewidth and the product ωqνΠqν are independent of
ωqν, so they remain well defined even when the frequency
is imaginary.
In Fig. 4, we show Brillouin zone maps of the phonon

linewidth (summed over the two acoustic modes with in-
plane Ta displacements). In the undoped material [Fig.
4(a)], the linewidth is sharply peaked at qCDW. For com-
parison, the geometric nesting function, which is defined
as the Fermi surface sum in Eq. 2 with constant matrix
elements, does not have sharp structure near qCDW [Fig.
4(d)], and instead has three sharp peaks surrounding the
K point. This means that the sharp peak in the linewidth
at qCDW must be due to large electron-phonon matrix el-
ements between states on the Fermi surface, rather than
to the geometry of the Fermi surface itself. With electron
doping (x = −0.3), the maximum values of the linewidth
are much smaller and occur elsewhere in the Brillouin
zone, whether the lattice constant is allowed to relax
[Fig. 4(c)] or not [Fig. 4(b)]. This suggests that the
momentum dependence of the electron-phonon coupling
of states at the Fermi level plays an important role in
picking out the primary instability at qCDW. However,
focusing on states at the Fermi level is not sufficient to
understand the broader region of instability.
The real part of the phonon self-energy Πqν is directly

related to the renormalization of phonon frequencies due
to electron screening. From perturbation theory,

ω2
qν = Ω2

qν + 2ωqνΠqν , (4)

where Ωqν is the bare phonon frequency. While it is con-
ceptually appealing to define the bare frequencies as the
completely unscreened ionic frequencies, such a starting
point leads to results that lie outside the range of va-
lidity of the perturbative expression in Eq. 4. Instead,
we define the bare frequencies to be the frequencies ob-
tained neglecting the metallic screening due to electrons
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FIG. 4. Brillouin-zone maps of the phonon linewidth [(a-
c)] and the geometric Fermi-surface nesting function [(d-f)]:
(a,d) undoped (x = 0), (b,e) n-doped with unrelaxed lattice
constant (x = −0.3, ax=0), (c,f) n-doped with relaxed lattice
constant (x = −0.3, ax=−0.3). White (black) represents high
(low) values, with one scale used for all the linewidth plots
(a-c) and another used for all the nesting function plots (d-f).
Dotted lines show high-symmetry lines from Γ to K and from
K to M . The plots in (a-c) represent the sum of the phonon
linewidths for the two acoustic phonon branches with in-plane
Ta displacements.

in the isolated Ta d band crossing the Fermi level. It has
been shown that this non self-consistent definition of the
self-energy is equivalent to a fully self-consistent solution
of the linear response equations including both the real
and imaginary parts of the self-energy.19 In this case, we
limit the sum in the phonon self-energy (Eq. 1) to intra-

band transitions within that band and denote it as Π̃qν .
The corresponding bare (in the sense of unscreened by

metallic electrons) frequencies are denoted Ω̃qν. While
the bare frequencies are not directly accessible, we can
estimate them from the fully screened frequencies ωqν

(as obtained from density functional perturbation the-

ory) and the perturbative correction 2ωqνΠ̃qν by invert-
ing Eq. 4.

For the branch with instabilities, Fig. 5 shows the
square of the phonon frequencies and the self-energy cor-
rection, 2ωqνΠ̃qν , along high-symmetry directions in the
Brillouin zone. For comparison, χ′

0(q), the real part of
the bare electronic susceptibility, given by Eq. 1 with
constant matrix elements and limited to the band at the
Fermi level, is also plotted. For the undoped material,
χ′

0 has a minimum at qCDW, but the momentum depen-
dence between qCDW and M does not match that of the

calculated frequencies. Similarly, the momentum depen-
dence of χ′

0 does not correlate with the phonon softening
when the material is doped to x = −0.3, with or without
relaxation of the lattice constant. From Fig. 5, we see,
however, that the momentum dependence of the phonon
self-energy roughly follows that of the phonon softening,
indicating the importance of the electron-phonon matrix
elements in Π̃qν . The self-energy includes contributions
from states throughout the band crossing the Fermi level,
in contrast to the linewidth, which provides information
about the electron-phonon coupling at the Fermi level.

The square of the bare frequencies (Ω̃2
qν) estimated

using Eq. 4 are plotted with dashed lines in the top
panels of Fig. 5. Note that in the regions of instabili-
ties, the self-energy correction is comparable to or larger
than the square of the bare frequency, possibly raising
into question the degree to which the perturbative ex-
pression is valid. Nevertheless, if we use the expression
to estimate the bare frequencies, we find some surpris-
ing results. For the undoped material, the dispersion of
the bare frequency has sharp dips at both qCDW and
qMK . Thus, while phonon softening due to screening of
the band at the Fermi level accounts for most of the mo-
mentum dependence of the unstable modes, structure in
the bare frequencies contributes as well. Upon doping
to x = −0.3, but holding the lattice constant fixed at
ax=0, the local minima at qCDW and qMK disappear in
both the self-energy and the bare frequency, stabilizing
those modes. At M , however, neither the self-energy nor
the bare frequency change significantly with doping, so
a residual instability remains at M . When the lattice
constant of the doped system is relaxed, the self-energy
undergoes relatively minor changes, while the bare fre-
quency at M hardens significantly. Thus it is the lattice-
constant dependence of the bare frequency that stabilizes
the M point phonon at a doping of x = −0.3. The dra-
matic hardening of this mode upon a 2.5% lattice expan-
sion is surprising, as phonons usually soften with lattice
expansion. Indeed most of the other phonon modes in the
doped material soften slightly with the lattice expansion.

To summarize, we find that the primary CDW ordering
vector coincides with very strong electron-phonon cou-
pling at the Fermi surface, but the full momentum de-
pendence of the phonons in the wide region of instability
is described more completely by the momentum depen-
dence of ωΠ̃, the phonon self-energy due to screening
from the band crossing the Fermi level. The momentum
dependence of the corresponding bare phonon frequen-
cies, Ω̃, however, also plays a role. Regarding the be-
havior of the instabilities with doping and lattice strain,
the bare frequencies provide the primary contributions,
but the changes in the phonon self-energy, especially with
doping, are essential. While recent studies of CDW ma-
terials have focused on the role of electron-phonon cou-
pling as the driving mechanism, we find that, for mono-
layer 1H-TaS2, taking into account screening arising from
electron-phonon coupling in the band crossing the Fermi
level by itself is not enough, and one must consider how
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(x = −0.3, ax=−0.3). The red, dashed lines in the top panels represent the square of the bare phonon energies (Ω̃2
q), calculated

using Eq. 4. Only the response of the band crossing the Fermi level is included in 2ωqΠ̃q and χ′

0(q).

the bare frequencies depend on momentum and doping
as well. Unfortunately it is not possible to determine
if the momentum, doping, and strain dependencies de-
duced for the bare frequencies come from the response
of other bands away from the Fermi level or appear as
features in the completely unscreened ionic frequencies.
Nevertheless, our finding that screening by states near
the Fermi surface alone are not responsible for the CDW
instability means that the instability is generated by not
only the long-range part of the force constants but also
the short-range part, which is included in Ω̃.

IV. CONCLUSIONS

Our calculations show that in the harmonic approxi-
mation the free-standing monolayer of 1H-TaS2 is unsta-
ble to CDW distortions with the same ordering vector as
the bulk. We also find that electron doping stabilizes the
lattice. These results indicate that the CDW suppression
found in experiments of 1H-TaS2 on Au is not intrinsic
but rather induced by the substrate.11 According to our
harmonic calculations, in addition to increasing the num-
ber of charge carriers, electron doping induces a lattice
expansion. While the addition of charge carriers itself
stabilizes most of the soft phonon modes, at the harmonic

level a residual instability remains if the lattice constant
is not allowed to relax. In the experiments on the Au
(111) substrate, the uncertainty in the measured lattice
constant was about 3%,11 which is slightly larger than
the lattice expansion we predict for electron doping of
x = −0.3. Hence in the experimental system, it remains
an open question as to how much the substrate affects
the lattice constant, and how that in turn influences the
lattice instabilities.

We believe that the suppression of CDW by electron
doping is robust also against anharmonic effects. Indeed
in metals, anharmonic effects tend to enhance phonon
frequencies and suppress CDW instabilities.20,21 These
effects, not considered in this work, could reduce the
tendency towards CDW at x = 0, but will not change
the qualitative result that electron doping removes the
CDW in this system. It would be interesting to explore
the interplay between anharmonicity and doping in fu-
ture studies.

Recently, it was pointed out that for metallic 2D ma-
terials on substrates, the shift in the bands measured in
ARPES experiments may not provide a reliable estimate
of charge transfer across the interface.22 In particular, if
there is significant hybridization between the substrate
and 2D material, the actual charge transfer will be re-
duced. The impact of substrate hybridization on the
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CDW instability in monolayer 1H-TaS2 warrants future
investigation.
This system, like other transition-metal dichalco-

genides, offers an opportunity to better understand the
intrinsic origins of CDWs. Going beyond previous stud-
ies that emphasized the importance of the momentum
dependence of the electron-phonon interaction in driv-
ing the CDW, we find that the momentum, doping, and
strain dependencies of the bare phonon frequencies also
play a role. This system also underscores the importance
of disentangling environmental and intrinsic effects in 2D
materials, and provides an example of using the substrate
to tune the properties of the material.
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