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We theoretically study the single particle Green function of a three dimensional disordered Weyl
semimetal using a combination of techniques. These include analytic T -matrix and renormalization
group methods with complementary regimes of validity, and an exact numerical approach based on
the kernel polynomial technique. We show that at any nonzero disorder, Weyl excitations are not
ballistic: they instead have a nonzero linewidth that for weak short-range disorder arises from non-
perturbative resonant impurity scattering. Perturbative approaches find a quantum critical point
between a semimetal and a metal at a finite disorder strength, but this transition is avoided due
to nonperturbative effects. At moderate disorder strength and intermediate energies the avoided
quantum critical point renormalizes the scaling of single particle properties. In this regime we
compute numerically the anomalous dimension of the fermion field and find η = 0.13± 0.04, which
agrees well with a renormalization group analysis (η = 0.125). Our predictions can be directly tested
by ARPES and STM measurements in samples dominated by neutral impurities.

I. INTRODUCTION

The exploration of Dirac and Weyl semimetals is a
major activity in current condensed matter physics, a
subject further enriched intellectually by its deep con-
nections to quantum field theories and topological phe-
nomena. While the journey began with nodal supercon-
ductors1,2, graphene3, and topological insulator surface
states4, in recent years the focus has shifted to three di-
mensional systems such as Weyl semimetals5–9. These
weakly correlated semimetallic materials (such as TaAs
Refs. 10 and 11, NbAs Ref. 12, Cd3As2 Refs. 13–15, and
Na3Bi Refs. 16 and 17) have bands that touch linearly at
isolated points in the Brillouin zone. This gives rise to a
host of predicted exotic phenomena, including protected
Fermi arc states6, nonlocal quantum oscillations18,19, and
a solid state realization of the chiral anomaly20–24. This
plethora of unconventional phenomena in Weyl semimet-
als has been established theoretically for ideal systems,
and it is not a priori obvious how fragile the semimetal
phase may be when effects of disorder, which must in-
variably be present in all real materials, are taken into
account. In particular, the question of whether the Weyl
semimetal is stable to weak disorder is important in this
context.

Disordered Weyl semimetals present a rich and exper-
imentally relevant challenge for condensed matter the-
ory. Early work25–43 (for a review, see Ref. 44) suggested
that weak short-range disorder averages out (i.e. is ‘ir-
relevant’ in the renormalization group sense), and that
the semimetallic phase (characterized by a vanishing low
energy density of states (DOS)) has a non-zero regime of
stability, with a quantum phase transition to a metallic
phase (characterized by non-zero low energy DOS) occur-

ring only at finite disorder. Physically, this suggests that
in the presence of weak short-range disorder, Weyl exci-
tations remain ballistic to asymptotically low energy, and
become diffusive only above a critical disorder strength.
The quantum critical point itself presents an example of
a ‘non-Anderson’ disorder driven transition and has a
rich phenomenology35,41,44. Separately, however, it has
also been suggested45,46 that non-perturbative effects as-
sociated with rare regions give rise to a non-zero DOS
for arbitrarily weak disorder, calling into question the
existence of a stable semimetallic phase and the disor-
der driven quantum phase transition. This picture has
recently been confirmed numerically47, with the find-
ing that rare, low-energy, quasi-localized eigenstates con-
tribute an exponentially small DOS at weak disorder such
that the DOS remains finite to arbitrarily low disorder.

The possibility has also been raised that the DOS is
a sum of two parts, a smooth background coming from
rare regions and a non-analytic part due to the pertur-
bative quantum critical point35. This scenario has been
ruled out by numerical calculations of derivatives of the
DOS, which show that the DOS remains analytic near the
Weyl node energy47,48. As a result, the semimetal-metal
quantum phase transition is rounded out below a small
energy scale coming from non-perturbative effects, con-
verting it into a crossover. Nonetheless, there is a large
region of the phase diagram at nonzero energy that is
well described by the perturbative renormalization group
(RG) theory [see Fig. 1 (a)]; thus this crossover regime
has been dubbed quantum critical. However, since the
non-analyticity in the DOS has been rounded out on the
largest length scales, the non-Anderson disorder driven
transition has been converted to an avoided quantum
critical point (AQCP). The strength of avoidance can be
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tuned by suppressing non-perturbative effects48, but the
DOS always remains analytic near the Weyl node energy.

Notwithstanding the above progress, a direct probe
into the nature of low energy single particle excitations
is still lacking. This information is completely contained
in the single particle Green function, which can be di-
rectly measured in angle resolved photo-emmission spec-
troscopy (ARPES) and scanning tunneling microscopy
(STM) experiments. In this work, we develop the theory
of disordered Weyl excitations by computing the average
single particle Green function G(k, ω) using a combina-
tion of analytical and numerical techniques. Note that we
consider only short range disorder. We introduce an ana-
lytic T -matrix formalism that is controlled in the limit of
dilute impurities49–54, and which systematically captures
the perturbative and non-perturbative effects of disorder
in the weak disorder and low energy regime. In the inter-
mediate energy quantum critical crossover regime (where
the T matrix approach is invalid) we employ a pertur-
bative RG approach to describe the scaling of G(k, ω).
We also use the kernel polynomial method55 (KPM) to
compute G(k, ω) in a numerically exact fashion for suffi-
ciently large system sizes throughout the phase diagram.
Earlier use of the KPM method in this context47,48 was
limited to the calculation only of the DOS, which is not
typically accessible to experiments directly.

Our numerical results are in excellent agreement with
the analytic predictions (in each appropriate regime),
and establish that the Weyl quasiparticle peaks are al-
ways broadened for nonzero disorder strength and the
quasiparticle residue remains non-zero at the Weyl node.
Thus, we find that the disorder averaged single particle
Green function is analytic near the avoided transition.
We compute the renormalization of the single particle
excitation spectrum within a T -matrix formalism and
within the KPM. In addition, we study the single pa-
rameter scaling of the Green function near the AQCP
and compute the anomalous dimension using exact nu-
merics and perturbative renormalization group meth-
ods. We make concrete predictions about the disorder
induced redistribution of spectral weight, which mani-
fests as non-trivial line shapes in ImG(k, ω) that can be
directly compared to spectroscopic experiments. Away
from very low momentum (set by the non-perturbative
length scale), the quasiparticle lines are sharp (defined
below) but weakly broadened in the semimetallic regime,
while they are marginally broadened in the avoided quan-
tum critical regime, as shown in Fig. 1.

The remainder of the paper is organized as follows: In
Sec. II we introduce the models we study and the def-
inition of the Green function. In Sec. III we introduce
the analytic T -matrix formalism, the numerical Kernel
Polynomial Method, and the types of perturbative renor-
malization group calculations we will compare with. In
Sec. IV we present our analytic and numerical results and
in Sec. V we conclude.

II. MODEL AND SINGLE PARTICLE GREEN

FUNCTION

We are interested in describing the low energy excita-
tions of a weakly disordered Weyl fluid characterized by
a single-particle Hamiltonian

HW = ψ†(x) (∓ivσ · ∇+ V (x))ψ(x), (1)

where ψ†(x) is a two component spinor that creates a
Weyl fermion at position x, v is the velocity, σ is a vec-
tor of Pauli operators, ∓ denotes two independent Weyl
nodes, and V (x) is a random short-range disorder poten-
tial drawn from the distribution P [V ]. For the analytic
calculations that follow we will work with the continuum
low energy Hamiltonian in Eq. (1), with a Gaussian dis-
tribution for P [V ].
For our numerical work we consider the three-

dimensional tight binding model from Ref. 36:

HL =
∑

r,µ=x,y,z

1

2
(itψ†

r
σµψr+µ̂+h.c.)+

∑

r

V (r)ψ†
r
ψr. (2)

The hopping strength is denoted by t, and ψr is a
two component spinor at site r. We consider a cubic
lattice (with a unit lattice constant) of linear size L
with periodic boundary conditions on each sample. In
the clean limit this two band model has a dispersion

E0(k) = ±t
√

∑

µ sin(kµ)
2 with 8 Weyl points located

at the time reversal symmetric points of the Brillouin
zone. This clean lattice Weyl model preserves time re-
versal symmetry but breaks inversion (k → −k). As a
result, there is no anomalous Hall effect but instead the
model exhibits an optical gyrotopy effect22.
KPM calculations are performed with two differ-

ent disorder distributions V (r). To amplify the non-
perturbative effects of rare regions47 we sample a Gaus-
sian distribution with zero mean and variance W 2. We
are able to get rid of the leading finite size effect (see
Sec. IVA) by shifting each disorder sample to satisfy
∑

r
V (r) = 0. The unbounded tails of the Gaussian dis-

tribution greatly increase the probability of generating
rare events due to large local fluctuations of the poten-
tial. To suppress the effects of rare regions and unveil the
avoided quantum critical properties48 we sample a binary
distribution that takes values ±W with equal probabil-
ity. The binary distribution reduces the probability to
generate rare events, which makes the avoidance length
scale much longer than for a Gaussian distribution48.
Note that disorder in the lattice model produces scat-
tering between Weyl nodes, an effect that is ignored in
the present analytic calculations. Despite this difference,
numerically computed rare eigenstates from the model in
Eq. (2) agree quantitively with the expectations from a
theory of a single Weyl node, we therefore don’t expect
this will affect our results strongly in the weak disorder
regime. However at sufficiently large disorder the two
models are distinct since the model in Eq. (1) represents
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FIG. 1. (color online) (a) Schematic crossover diagram for disordered Weyl semimetals as a function of momentum (k) and
disorder (W ), with the diffusive metal (DM) regime at low momentum, the semimetal (SM) regime at weak disorder and
intermediate momentum, and the quantum critical (QC) fan at intermediate disorder and momentum. The cut off momentum
Λ/v bounds the low energy regime. The shape of the crossover boundaries follows from E(k) and Refs.41 and48. (b-d) Electronic
dispersion curves of the spectral function A(k, ω) = −G′′(k, ω)/π for momentum k = (k, 0, 0) with |k| < 1, for L = 40 and
KPM expansion order NC = 1024 at W/t = 0.2 (b), 0.75 (c), and 0.9 (d). Each curve is shifted vertically by (10kL/2π). The
quasiparticle excitations are sharp in the SM regime (b), and marginally broadened in the QC regime (c).

two independent Weyl nodes, which do not have an An-
derson localization transition56, while the lattice model
does at Wl ≈ 3.75t for Gaussian disorder (see Refs. 36
and 47). We will refer to the Hamiltonian simply as H .
We compute the disorder averaged retarded

single particle Green function, G(ri − rj , t) =
i[〈0|ψ(ri, t)ψ†(rj , 0)|0〉], in momentum-frequency space,

Gαβ(k, ω) = [〈k, α| 1

ω + iδ −H
|k, β〉]. (3)

Here

|k, α〉 = 1√
V

∑

r

e−ir·kψ†
r,α|0〉 (4)

is a momentum eigenstate in the clean limit, V = L3 is
the volume, α, β are spinor indices, |0〉 is the single parti-
cle vacuum, δ → 0+, and [. . . ] denotes a disorder average.
Note that each disorder sample will have a Green func-
tion that depends on two momenta but after disorder

averaging (which restores translational symmetry) these
off-diagonal components vanish and we therefore only fo-
cus on G(k, ω). In all of the numerical data presented
here we average over 1, 000 disorder realizations.

We use the structure of G(k, ω) to extract the proper-
ties of single particle excitations. The models in Eqs. (1)
and (2) have two bands (labeled by±) that in the absence
of disorder touch linearly at the Weyl points. Diagonal-
izing the Green function in spinor space gives two eigen-
values that correspond to G±(k, ω) for each band. For
each disorder sample there is a set of exact eigenstates
that have a non-zero overlap with the (clean) momen-
tum eigenstates. This broadens the momentum states
and for disorder that is not too strong, the functions
G±(k, ω) = G′

± + iG′′
± have poles at ω = ±E(k)− iγ(k),

which define the single particle dispersion E(k). In stan-
dard many body fashion we expand near the pole to ob-
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tain

G±(k, ω) ≈
Z(k)

ω ∓ E(k) + iγ(k)
, (5)

where

1/Z(k) = ∂ωG
′
±(k, ω)

−1
∣

∣

ω=E(k)
, (6)

and

γ(k) = Z(k)G′′
±(k, E(k))−1 (7)

defines the residue of the pole and the damping [or in-
verse lifetime 1/τ(k)] respectively. Eq. (5) approximates
the spectral function A±(k, ω) = −G′′

±(k, ω)/π as a
Lorentzian centered about E(k).

III. METHODS

A. T -matrix

We now describe the T -matrix formalism to determine
the low energy excitations at very weak disorder. Fo-
cusing on a Gaussian distribution for the disorder po-
tential with W/t ≪ 1, it is natural to expect that the
perturbative corrections will almost be exact. However,
due to the unbounded tails of P [V ] it is possible that
at some site R, there arises resonant scattering which
is inherently non-perturbative. The most natural way
to describe such a process is to consider the impuri-
ties to be dilute (with density nimpb

3 ≪ 1, where b
is the radius of the impurity well) and solve for the
single scattering event non-perturbatively (i.e. includ-
ing resonance). This is achieved by considering the po-

tential, V (x) =
∑Nimp

j=1 λjΘ(b − |x − Rj |), which de-

scribes Nimp(= nimpL
3) randomly distributed spherically

symmetric square-well potentials with a fixed width b
and a strength λj that is randomly distributed follow-
ing a gaussian distribution with zero mean and variance
W̃ 2. The relation between W and W̃ is then given by

W 2 = nimpb
6
(

4π
3

)2
W̃ 2. The geometric factor b6

(

4π
3

)2

can change for different shapes of the potential. Approx-
imating the impurities as square wells is for convenience,
and is not expected to affect the physics45.
The disorder averaged (both impurity position and

strength) Green function is given by

[Gαβ (k, ω)] ≈G(0)
αβ (k, ω)

+ nimpG
(0)
αδ (k, ω)

[

Γ
(λ)
δδ′ (ω;k,k)

]

G
(0)
δ′β (k, ω) ,

(8)

where we have used the Einstein summation convention.
G(0) denotes the Green function in the clean limit; Γ(λ)

is the vertex function due to position averaged disorder
scattering with a fixed strength λ. Again, [. . . ] indicates
average over λ. One can show that Γ(λ) in the dilute
limit (nimpb

3 ≪ 1) is identical to the T-matrix of the

single impurity well with the strength λ (see Ref. 57).
The disorder averaged Green function in the dilute limit
only constitutes the diagonal part (in momentum) of the
vertex function.
The disorder averaged Green function satisfies the

Dyson equation Gαβ (k, ω)
−1

= G
(0)
αβ (k, ω)

−1 −
Σαβ(k, ω). In the limit of dilute impurities we find that
the self energy is momentum independent and given by

Σαβ(E) = δαβnimp

∫

dλP̃ [λ]T (λ)(k,k)
∣

∣

|k|=E/(~v)
, (9)

where T (λ) is the T -matrix for scattering off a single im-
purity well with strength λ. We solve for the T -matrix
analytically via quantum mechanical scattering theory
focusing on a single potential well. The phase shift (δj
is the phase shift for total angular momentum j) of the
scattering problem is known exactly45

tan δj =
sgn(q/k)Jj(|k|b)Jj+1(|q|b)− Jj(|q|b)Jj+1(|k|b)
sgn(q/k)Yj(|k|b)Jj+1(|q|b)− Jj(|q|b)Yj+1(|k|b)

,

(10)

where q = k − λ
~v , Jn (Yn) is the Bessel function of the

first (second) kind with order n.
The diagonal T -matrix for the Weyl problem at hand

can be expressed in terms of the phase shift via

T (λ)(k,k) =− 2π~v

k
f (λ)(k,k), (11)

f (λ)(k,k) =
∑

j

(2j + 1)
ei2δj − 1

2ik
, (12)

where f (λ)(k,k′) is the scattering amplitude of the scat-
tering problem from a single impurity with a strength
λ.
In the low-energy long wavelength limit, we focus on

the j = 1/2 sector as j ≥ 3/2-sectors contribute higher
powers of |k|. One can see this by considering the small
|k|b expansion of the T -matrix in the j = 1/2 sector gives

T
(λ)
1/2(k,k) =λ

[

Ũ0 +O(|k|2)
]

+ λ2Ũ2
0

[

−2 (~vk)

5b~2v2
− i

(~vk)
2

4π~3v3

]

+ . . . ,

(13)

where Ũ0 = 4π
3 b

3 is the Fourier transform of Θ(b − |x|)
at k = 0. The leading term in Eq. (13) matches the
impurity potential. The second line in Eq. (13) gives the
correct Born approximation contribution. For the finite
momentum dependence of the single particle properties
we consider contributions from both j = 1/2 and j =
3/2 sectors. At weak disorder this method captures both
the perturbative and non-perturbative effects of disorder,
and allows us to calculate the parameters E(k), Z(k)
and γ(k) in Eq. (5) from a reduced problem for a single
impurity.
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Finally, let us discuss the regime of validity of the T -
matrix calculation. Firstly and most obviously, this cal-
culation technique ignores coherent scattering between
different impurities. As such it is only well controlled
in the limit of dilute impurities nimpb

3 ≪ 1. Addition-
ally, the T matrix is evaluated using phase shifts in the
j = 1/2 and j = 3/2 channels only. This provides an
accurate estimate of the T matrix in the long wavelength
regime, since higher angular momentum channels enter
with larger powers of k. However, this also implies that
the method will fail at large momenta. Finally, and most
subtly, the phase shifts are extracted from the asymp-
totic forms of the wavefunctions for a system with a sin-
gle impurity. This only works if the wavefunctions have
reached their asymptotic form on the length scale of the
typical inter-impurity spacing. As pointed out in Ref. 45,
on the lowest energy scales, this approximation fails, and
hybridization of wavefunctions centered on different im-
purities (i.e. the hybridization of multiple power-law lo-
calized states) must be taken into account. However,
(as also pointed out in Ref. 45), this last approximation
only fails on energy scales E < ν0, where ν0 is the low
energy density of states, whereas non-perturbative reso-
nant scatterings from a single impurity already dominate
the self energy for E <

√
ν0. There is thus a parametri-

cally broad regime of energies ν0 < E <
√
ν0 where the

single impurity T -matrix approach is valid.

B. KPM

The KPM expands the imaginary part of G(k, ω) (de-
noted as G′′) in terms of Chebyshev polynomials [Tn(x)]
to an order NC and we use the Lorentz kernel to filter out
Gibbs oscillations. The real part of the Green function is
obtain using the Kramers-Kronig relation55. This yields
the KPM expression for the Green function

Gαβ(k, ω) =
[

− i

a
√
1− ω̃2

(

µ0(k, α, β)g0

+ 2

NC−1
∑

n=1

µn(k, α, β)gne
−in arccos ω̃

)

]

, (14)

where gn denotes the Kernel, ω̃ = (ω − b)/a, where a is
the half-bandwidth and b is half of the band asymmetry.
The coefficients of the expansion are given by

µn(k, α, β) = 〈α,k|Tn(H̃)|k, β〉, (15)

and H̃ = (H − b)/a is the rescaled Hamiltonian. The
Lorentz kernel broadens each Dirac-delta function in
the spectral function A(k, ω) = −G′′(k, ω)/π into a
Lorentzian55 of width λD/NC (for a bandwidth D), and
λ controls both the width of the Lorentzian and the
strength of Gibbs oscillations due to truncating the se-
ries. Here, we work with λ = 0.5 so that we can accu-
rately compute the intrinsic broadening due to disorder.
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FIG. 2. (color online) (a) The convergence of γ(0) with L and
NC for a gaussian disorder distribution. Data for different NC

is with L = 80 and data with L ≥ 120 is for NC = 214. γ(0)
is well converged for W ≥ 0.625t, L = 176, and NC = 16384,
whereas for smaller values of W we are not able to clearly
discern between the artificial KPM broadening or the intrin-
sic broadening due to disorder. (Inset) Zoomed in on the low
W region displaying the strong finite L and NC effects. (b)
The damping γ(0) of the disordered Weyl point on a log scale
computed from the T -matrix in the dilute limit for HW and
the KPM for a gaussian disorder distribution for HL (con-
verged in L and NC) versus 1/W

2. Dashed lines are fits to the
rare region form in Eq. (18). For the T -matrix, we consider
nimpb

3 = 0.039 to get the best comparison with the KPM
results, and t is replaced by the unit of energy E0 = ~v/b.
The offset arises because although the leading W dependence
of γ(0) is universal, the pre-exponential factor is sensitive to
the difference between Eqs. (1) and (2). (Inset) γ(0) versus
W on a linear scale.

C. Modified RG scheme

There are different schemes for controlling the pertur-
bative RG calculations for disordered Dirac and Weyl
fermions. For a massless Dirac system in d spatial di-
mensions, under the scale transformation x → xel, the
disorder coupling for Gaussian white noise disorder scales
as ∆(l) = ∆(0)e(2−d)l. Therefore, for a three dimensional
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system we can carry out a d = 2 + ǫ expansion and set
ǫ = 1 at the end of calculations. Such an analysis at one
loop order predicts the correlation length and dynamic
scaling exponents ν = 1/ǫ = 1 and z = 1 + ǫ/2 = 3/2,
which agrees well with high accuracy numerical calcula-
tions48. Within this scheme, the one loop fermion self
energy is independent of momentum and only depends
on frequency and one finds η = 0 at one loop order.
For any dimension d, disorder potentials with a 1/r2

correlation act as a marginal perturbation for Dirac
fermions. Therefore perturbative calculations can also be
controlled by varying the range of the probability distri-
bution. This can be seen from the following arguments
by considering a generalized power law distribution for
the random potential

〈V (x)V (y)〉 ∼ ∆

|x− y|d−α
, (16)

and α = 0 corresponds to the Gaussian white noise
distribution58. After fixing the spatial dimensionality
d = 3, the disorder coupling scales as ∆(l) = ∆(0)e(α−1)l.
Therefore, we can control the perturbative RG analysis
with respect to the marginal case α = 1 by choosing
α = 1 − ǫ and setting ǫ = 1 at the end of our calcula-
tions. One loop analysis within this scheme also predicts
the same correlation length and dynamic scaling expo-
nents ν = 1/ǫ = 1 and z = 1+ ǫ/2 = 3/2 as found within
the d = 2 + ǫ expansion but in contrast predicts a non-
trivial value of η = 1/8. We will use these two different
RG schemes below when comparing to the KPM data.

IV. RESULTS

We have computed the single particle Green function
using KPM, yielding the results shown in Figs. 1 (b),
(c), and (d). We refer to the disorder strength rela-
tive to the location of the AQCP in the crossover dia-
gram of the models, see Fig. 1 (a). The semimetal (SM)
regime occurs at finite but low energy and weak disorder
(W < Wc ≈ 0.75t for Gaussian disorder), whereas the
quantum critical (QC) scaling regime exists at nonzero
energy for moderate disorder strengths (W ≈ Wc), and
the diffusive metal (DM) regime occurs for all energies
with a crossover boundary that grows with increasingW
(here large disorder refers to W > Wc). At weak dis-
order and low momentum the spectral function is well
described by a Lorentzian shape, whereas at large mo-
mentum the spectral function is broad and asymmetric
such that the approximation in Eq. (5) is no longer valid.
Despite the disorder broadening of the momentum eigen-
states, the average spectral function satisfies the sum rule

1

2L3

∫

dω
∑

k,p=±

Ap(k, ω) = 1, (17)

which also restricts Z(k). This implies that if Z(k) < 1
for some k, then Z(k′) > 1 at some other k′ is re-
quired. This is in contrast to interacting systems, where
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FIG. 3. (color online) (a) The quasiparticle residue at the
Weyl node Z(k = 0) as a function of the disorder strength
computed within the three methods we use in this manuscript.
The dashed line shows the qualitative expectation of the RG,
Z(0) ∼ (1−W/Wc)

ν(z−1−η), with ν(z− 1− η) = 0.37558 . We
find Z(0) has a minimum near the AQCP (Wc/t ≈ 0.75 for
Gaussian) but does not go to zero. (Inset) Z(0) up to large
disorder strengths passing through the Anderson localization
transition (Wl ≈ 3.75t, Ref.47) at E = 0. (b) The quasiparti-
cle residue at k = 0 for Gaussian (G) and binary (B) disorder
as a function of disorder for various expansion orders. We find
Z(0) is well converged and has a minimum near the avoided
quantum critical point, with a value that is dictated by the
strength of avoidance.

the “missing” quasiparticle residue goes into incoherent
spectral weight due to inelastic scattering and Z(k) ≤ 1
for all k is possible.

For the quasiparticle excitation to be “sharp” the two
spectral functions centered about ±E(k) need to have
very little overlap. Therefore, sharp quasiparticle exci-
tations are only well defined for E(k) ≫ γ(k). Note
that the excitations near k = π/2(±1,±1,±1) are at the
upper and lower band edges, and become Anderson lo-
calized for a weak amount of disorder. By considering
k = (k, 0, 0) and W/t ≤ 1, we ensure that the single
particle mobility edge never crosses E(k) and all the ex-
citations we discuss in this work are delocalized.
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A. Disordered Weyl node
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FIG. 4. (color online) Momentum dependence of the quasi-
particle residue (a) and the damping (b) from the T -matrix
formalism. We set nimpb

3 = 0.34 among all the data. The
legend is shared across the two plots, the unit of energy is
E0 = ~v/b, and open symbols denote the contributions from
only the j = 1/2 momentum sector and filled symbols denote
the contributions from both j = 1/2 and j = 3/2 sectors.
Dashed lines are a fit to γ(k) = γ(0) + a|k|2. The quasipar-
ticle residue becomes larger than one for some finite k. The
j = 3/2 contribution plays an important role for k > 0.3.

The existence of sharp excitations at the Weyl node
in the SM regime would require the damping rate γ(k)
to vanish faster than E(k) ∼ |k| at small |k|. Focus-
ing on the Weyl point, this question reduces to whether
or not γ(0) > 0. In the SM regime the finite size
DOS has low-|E| peaks that are composed of perturba-
tively dressed Weyl states47. These produce sharp mo-
mentum resolved Weyl peaks in A(k, ω) at low-|ω| and
low-|k| as shown in Fig. 1 (b). Therefore, in addition
to the intrinsic line-width that is non-zero in the ther-
modynamic limit there is also two additional spurious
contributions to the width of the peaks in the spectral
function. These are due to (i) perturbative disorder
broadening that vanishes in the large-L limit and (ii)

the finite KPM expansion order sets an extrinsic spec-
tral width going as ∼ 1/NC . The perturbative con-
tributions to the energy go like E ≈ E0 + E1 + E2,
where E1 =

∑

r
V (r)/L3 ∼W/L3/2×(random sign) and

E2 ∼W 2/L2× (random sign). By shifting the Gaussian
distribution for each sample to satisfy

∑

r
V (r) = 0 we

have set E1 = 0 suppressing the leading finite size ef-
fect, and the perturbative contribution only appears at
W 2/L2 order. To reach the intrinsic line width we con-
verge the KPM data in both NC and L. Our procedure
is as follows, we first fix the system size to L = 80 and
increase NC until γ(0) converges, we then increase L for
fixed NC = 16384, see Fig. 2 (a) . This allows us to work
in the SM regime (W < Wc ≈ 0.75t), but due to the
perturbative broadening we cannot go to arbitrarily low
disorder strengths for the system sizes and expansion or-
ders considered here. As shown in the inset of Fig. 2 (a),
we can converge γ(0) in L and NC down to W = 0.625t.
As shown in Fig. 2 (b), we find that γ(0) is exponen-

tially small at weak disorder and is well fit by the rare
region form (see Ref.45)

log γ(0) ∼ −(t/W )2, (18)

which is one of our main results. We find excellent qual-
itative agreement [Fig. 2 (b)] between the T -matrix cal-
culation and the KPM data. Therefore, we conclude
that rare states produce excitations with an exponen-
tially large (but not infinite at any finite disorder no
matter how weak) quasiparticle lifetime, and there are
no sharp quasiparticle excitations at the Weyl node for
W > 0.
We now turn to the residue of the Weyl node as a

function of the disorder strength as shown in Fig. 3 (a).
The T -matrix gives a weak correction and Z(0) ≈ 1. This
is in sharp contrast to a perturbative RG calculation41

that finds Z(0) ∼ (1 −W/Wc)
ν(z−1−η) signaling a non-

analytic G(k, ω) at Wc. However, the numerically exact
results are qualitatively in-between these two pictures,
the quasiparticle residue is always non-zero but has a
minimum near the AQCP (for Gaussian disorder47 Wc ≈
0.75t). At larger disorder Z(0) is unaffected by passing
through the Anderson localization transition [see inset of
Fig. 3 (a)]. The binary disorder distribution suppresses
the strength of avoidance, as shown in Fig. 3 (b) this leads
to a smaller value of Z(0) at the AQCP (Wc ≈ 0.86t for
binary48). Thus, the size of Z(0) near Wc is controlled
by the strength of avoidance and the Green function is
always analytic near the quasiparticle peaks for W > 0.
This is an important new result.

B. Disordered Weyl excitations

We now come to the momentum dependence of the
single particle excitations. Within the T -matrix calcu-
lation we find that the quasiparticle residue is weakly
renormalized away from unity and develops momentum
dependence at low energy, see Fig. 4 (a). The T -matrix
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FIG. 5. (color online) Momentum dependence of the single particle excitations for various Gaussian disorder strengths for
L = 80, NC = 29, and momentum k = (k, 0, 0). (a) The residue, (b) spectral line width, (c) and dispersion for various disorder
strengths. The solid grey lines are the power law fits at the AQCP (Wc/t ≈ 0.75), and the solid blue [red] line is a fit of γ(k)
[E(k)] to γ(0) + a|k|2 [v|k|] at low momentum.

calculation leads to a low-momentum damping rate go-
ing as γ(k) ≈ γ(0) + a(W )|k|2, where γ(0) is given by
Eq. (18) and a(W ) is an increasing function of W , [See
Fig. 4 (b).]
Turning to the KPM results shown in Fig. 5, at weak

disorder and low momentum we find E(k) ≈ ±v(W )|k|,
Z(k) ≈ const, and the damping is well described by
γ(k) ≈ γ(0) + ã(W )|k|2 in good agreement with the
T -matrix results. For larger disorder strengths, ap-
proaching the AQCP (W ≈ Wc) we find a momentum
regime k∗ < |k| < Λ/v where the single particle exci-
tations develop clear powers going like E(k) ∼ ±|k|1.3,
γ(k) ∼ |k|1.3, and Z(k) ∼ |k|0.4. The low momentum
cross over scale k∗ is determined by when γ(k) is com-
parable to E(k). Our results are consistent with the
single particle excitations developing non-trivial power
laws in the QC regime: E(k) ∼ ±|k|z, γ(k) ∼ |k|d−z,
and Z(k) ∼ |k|z−1−η, where z = 1.5 and η = 0.125
(within a modified RG scheme58). However, due to the
strong avoidance and the resulting limited scaling regime,
the momentum power laws provide a poor estimate of
z(= 1.5± 0.04, Ref. 48) and η.

C. Off-shell rare region contribution

So far we have been concerned with the properties
of the Green function in the vicinity of the quasiparti-
cle peaks and the renormalization of the “on-shell” sin-
gle particle properties, i.e. the renormalization of the
pole in G(k, ω). In this subsection we consider the low
energy“off-shell” contributions to the spectral function
far away (in energy) from the quasiparticle peaks. For
the DOS by using a twist, we are able to move the Weyl
states away from zero energy to separate the perturba-
tive and rare contributions, this is not possible when we
consider the momentum resolved spectral function since
a twist will just move the location of the Weyl cone.
As shown in Refs. 45 and 47, rare low energy eigen-

states give rise to an exponentially small but non-zero
DOS for an arbitrarily small disorder strength ρ(0) ∼

exp(−a/W 2). Whereas, typical perturbatively dressed
Weyl states produce peaks in the finite-size DOS, that
become momentum resolved Weyl peaks in A(k, ω) [see
Figs. 1 (b), (c), and (d)]. It is therefore an interesting
and natural question to ask how will rare states con-
tribute to the spectral function? These rare eigenstates
are quasi-localized about the site with a very large dis-
order strength and fall off like 1/r2 at short distances.
As a result we expect these wave functions to be broad
in momentum space and they can in principle have a
non-zero overlap with almost any clean plane wave like
state. To see this we will consider the “off-shell” con-
tributions of states near ω = 0 for k > 0. As shown in
Fig. 6 (a) the average spectral function for k = 6(2π)/L
is peaked at k for weak disorder and in addition there
is a clear peak that is centered about ω = 0 with an
amplitude that is several orders of magnitude below the
on-shell peak at k. To understand the origin of the peak
at ω = 0 we consider A(k, ω) for a single disorder sample
in Fig. 6 and take two different disorder configurations –
one rare and one typical – where we know a priori one
sample produces a rare state near low-|ω| and the other
sample does not47. As shown In Fig. 6 (b), we find that
for the rare disorder sample there is a peak near ω = 0
for each k shown, whereas the typical sample does not
have a peak near zero energy. Therefore, we conclude
rare states produce an off-shell contribution near ω = 0
to A(k, ω) that produces a peak in the finite-size average
spectral function.

D. Anomalous dimension of AQCP

We now consider the quantum critical scaling of G′ and
compute the anomalous dimension (η) of the Weyl field
at the AQCP, which is defined as

G(k, 0) ∼ k̂ · σ/k1+η. (19)

Using the d = 2 + ǫ expansion scheme at one loop order
one finds η = 0 (see Refs. 26, 29, 35, and 41) and is
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FIG. 6. (color online) Off-shell rare region contribution to
the spectral function. (a) The average spectral function for
L = 50, NC = 512, k = 6k0 = 6(2π/L), and various disorder
strengths. At weak disorder the spectral function is peaked
near k but there is a clear peak near ω = 0. (b) Spectral func-
tion for a single sample that is either rare (R) or typical (T)
with L = 25, W/t = 0.5, NC = 1024, and various momentum
(k0 = 2π/L). We find the rare sample has a clear peak near
zero energy at all momentum we consider here that is absent
in the typical sample.

unchanged from W = 0. But, a modified RG scheme58

at one loop leads to

G(k, ω) ∼ e−(z−1−η)l

ω + iδ − vk · σe(1−z)l
, (20)

with z = 1 + ǫ/2 and η = ǫ/8. In the critical regime
el ∼ 1/|k| and G′(k, 0) ∼ 1/|k|1+η with η = 0.125, ν = 1
and z = 1.5 (after setting ǫ = 1).
Turning to the KPM, due to the limited quantum crit-

ical range in momentum in Fig. 5, we focus on the cor-
responding scaling in energy G′(k = 0, ω) ∼ 1/ω(1+η)/z.
Here, we use binary disorder to get the largest critical
scaling regime before the avoidance rounds it out48. As
seen in the inset of Fig. 7 using binary disorder, we have
a clear power law fit for about a decade and a half, which
yields (1+η)/z = 0.75±0.01, thus η = 0.13±0.04 (using

z = 1.5± 0.04, Ref. 48). Note that at the lowest energies
the data falls off of this power law as the model crosses
over to the DM regime. This is in excellent agreement
with the modified RG scheme. Due to the KPM broad-
ening, the finite expansion order acts like an effective
inverse energy scale that can round out the AQCP48. As
a result, we expect that in the quantum critical regime
the Green function obeys single parameter scaling

G′(0, ω)−1 ∼ N
−(1+η)/z
C f(ωNC), (21)

where f(x) is a scaling function. As shown in Fig. 7, we
find excellent data collapse for over two decades in NCω.
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FIG. 7. (color online) Computing the anomalous dimension η
at the AQCP (Wc/t = 0.86± 0.01) for binary disorder and a
system size of L = 80: (Inset) Fit of 1/G′(k = 0, ω) to a power
law in the quantum critical regime yields η = 0.13±0.04. Data
collapse in the KPM expansion order NC , showing excellent
single parameter scaling for over two decades of NCω.

V. CONCLUSIONS

We have investigated the single particle Green function
in disordered Weyl semimetals. We have employed vari-
ous techniques including the T -matrix, the renormaliza-
tion group, and the numerically exact kernel polynomial
method. Our results can be directly tested in STM and
ARPES experiments in compounds dominated by neutral
defects (e.g. vacancies and interstitials) to avoid “dop-
ing” the Weyl cone due to the screening of charged impu-
rities3,59. In general, approaching the Dirac-Weyl point
is a formidable experimental challenge even in a system
as well-studied as graphene because of inhomogeneous
density puddles induced by random charged disorder in-
variably present in the material60, but a combination of
materials improvement with little residual Coulomb dis-
order and not too low a temperature61 may very well lead
to a verification of our predictions. At weak disorder, our
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results predict a spectral line-width that scales like |k|2 at
moderate |k| but saturates to a non-zero constant at (ex-
ponentially) small |k|. Detecting the exponentially small
γ(0) at finite temperature will be challenging on very
clean samples, but the broadening of the line shapes with
increasing |k| should be accessible. At moderate disorder
strengths, elastic scattering induces line shapes that are
broad and asymmetric with strongly renormalized single
particle properties due to the avoided quantum critical
point. This will produce a measurable effect by reducing
the observed Fermi velocity.

We have provided the first numerical estimate of the
anomalous dimension of the avoided quantum critical
point, with η = 0.13 ± 0.04. It is interesting that the
two different RG schemes we have discussed yield results
that differ in their estimate of η. A priori it is in no
way obvious which RG procedure yields more accurate
results. The ‘conventional’ 2 + ǫ expansion yields a re-
sult that is unchanged from the clean limit (η = 0). In
contrast, the use of a spatially correlated disorder dis-
tribution in Eq. (16) has lead to η = 1/8, which is in
excellent agreement with the numerics. Thus the com-
bined RG and numerical analysis allows us to conclude
that the spatially correlated disorder procedure is in fact
more accurate then the conventional RG treatment.

We have demonstrated that quasiparticle excitations
are sharp in the semimetal regime and marginally broad-
ened in the quantum critical regime. However, at suffi-
ciently low energy and weak disorder, non-perturbative
effects of disorder dominate and excitations at the Weyl
node always have a finite lifetime. Our numerically ex-
act results have established that the disorder averaged

single particle Green function remains analytic near the
quasiparticle peaks, but obeys single parameter scaling
in the cross over regime at finite energy. Lastly, we have
shown how rare states contribute to both the on-shell and
off-shell part of the spectral function. Our work estab-
lishes definitively how quasiparticle spectral properties in
disordered Weyl fluids directly reflect both the avoided
criticality and the rare region effects in subtle, but well-
defined, manners.
Note Added— During the review of our work we became
aware of the publication Phys. Rev. Lett. 118, 146401
(2017). Our work disagrees with this publication and our
findings related to non-perturbative effects of disorder
and avoided critical scaling invalidate their conclusions.
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51 C. Pépin and P. A. Lee, Phys. Rev. B 63, 054502 (2001).
52 C. Chamon and C. Mudry, Phys. Rev. B 63, 100503 (2001).
53 A. Altland, Phys. Rev. B 65, 104525 (2002).
54 P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys.

Rev. B 74, 235443 (2006).
55 A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev.

Mod. Phys. 78, 275 (2006).
56 A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Lud-

wig, Phys. Rev. B 78, 195125 (2008).
57 G. D. Mahan, Many-particle physics (Springer, 2000).
58 P. Goswami and S. Chakravarty, arXiv preprint

arXiv:1603.03763 (2016).
59 B. Skinner, Phys. Rev. B 90, 060202 (2014).
60 S. Adam, E. Hwang, V. Galitski, and S. D. Sarma, Pro-

ceedings of the National Academy of Sciences 104, 18392
(2007).

61 S. Das Sarma and E. H. Hwang, Phys. Rev. B 87, 035415
(2013).


