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In quantum spin systems, singlet phases often develop in the vicinity of an antiferromagnetic
order. Typical settings for such problems arise when itinerant fermions are also present. In this work,
we develop a theoretical framework for addressing such competing orders in an itinerant system,
described by Dirac fermions strongly coupled to an O(3) nonlinear sigma model. We focus on two
spatial dimensions, where upon disordering the antiferromagnetic order by quantum fluctuations
the singular tunneling events also known as (anti)hedgehogs can nucleate competing singlet orders
in the paramagnetic phase. In the presence of an isolated hedgehog configuration of the nonlinear
sigma model field, we show that the fermion determinant vanishes as the dynamic Euclidean Dirac
operator supports fermion zero modes of definite chirality. This provides a topological mechanism
for suppressing the tunneling events. Using the methodology of quantum chromodynamics, we
evaluate the fermion determinant in the close proximity of magnetic quantum phase transition,
when the antiferromagnetic order parameter field can be described by a dilute gas of hedgehogs
and antihedgehogs. We show how the precise nature of emergent singlet order is determined by
the overlap between dynamic fermion zero modes of opposite chirality, localized on the hedgehogs
and antihedgehogs. For a Kondo-Heisenberg model on the honeycomb lattice, we demonstrate the
competition between spin Peierls order and Kondo singlet formation, thereby elucidating its global
phase diagram. We also discuss other physical problems that can be addressed within this general
framework.

I. INTRODUCTION

The competition between spin-singlet phases and an-
tiferromagnetic order is a common feature of the phase
diagrams for many strongly correlated systems, such as
heavy fermion compounds, cuprates, and iron pnictides.
Depending on the context, the singlet order can corre-
spond to unconventional superconductivity, charge, bond
and current density waves, and static Kondo singlets.
The competition between singlet and triplet orders can
cause an exotic quantum critical point or an intervening
non-Fermi liquid phase between two distinct broken sym-
metry states. A prototype case arises in heavy fermion
metals, where non-Fermi liquid properties arise in the
quantum critical regime1–8. The latter is typically asso-
ciated with a competition between the antiferromagnetic
order of the local moments and the Kondo-singlet or re-
lated phases, and a global phase diagram has been ad-
vanced to capture the variety of spin-singlet phases near
the antiferromagnetic order6. Therefore, it is imperative
to develop a general scheme for identifying competing
singlet orders beginning from the magnetically ordered
phase and vice versa.

In this paper, we will develop such a scheme for an
itinerant system of (2+1) dimensional massless Dirac
fermions which are strongly coupled to an O(3) nonlin-
ear sigma model, by considering the interplay between
fermionic degrees of freedom and the topological defects
of antiferromagnetic order parameter. Inside the antifer-
romagnetically ordered phase, the low energy spin wave
excitations or Goldstone modes are well described by an
O(3) nonlinear sigma model9–12. However, it is tailored

for capturing the smooth collective excitations, and will
be impervious to the presence of competing singlet or-
ders. For insulating systems described by generalized
Heisenberg models, it has been proposed that the topo-
logical excitations of (2+1) dimensional nonlinear sigma
model can give rise to singlet valence bond solid order
in the paramagnetic phase9,12. On the magnetically or-
dered side, competing singlet orders can reside inside the
core of a topological but nonsingular skyrmion defect (see
Fig. 1). Since the skyrmion is a finite energy excitation,
the singlet orders can exist only as gapped, fluctuating
quantities in the magnetically ordered phase. By con-
trast, due to the vanishing of spin stiffness inside the
paramagnetic phase, the skyrmion excitation gap disap-
pears, causing an enormous degeneracy among topologi-
cally distinct ground states, labeled by different skyrmion
numbers. Therefore, inside the paramagnetic phase dif-
ferent types of singlet orders can be nucleated by break-
ing the skyrmion number conservation.

The huge ground state degeneracy of the paramagnetic
phase is generally lifted by the topological hedgehog sin-
gularities (see Fig. 2), which describe tunneling between
ground states with different skyrmion numbers. The
hedgehogs are generally accompanied by a dynamic Berry
phase term for the nonlinear sigma model9,12. Within the
coarse grained description of magnetic order, the Berry
phase carries important information regarding the quan-
tized value of microscopic spin and determines the nature
(or reduced degeneracy) of singlet order in the paramag-
netic phase. Based on this physical picture, an exotic
continuous quantum phase transition between two dis-
tinct broken symmetry phases has been proposed13,14,
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FIG. 1: Illustration of a skyrmion texture of nonlinear sigma
model field with topological invariant +1 in the x− y plane.
The skyrmion texture is well defined only inside the magnet-
ically ordered phase, when the tunneling singularities shown
in Fig. 2, namely the hedgehog and antihedgehog remain lin-
early confined. The skyrmion core can support several fluc-
tuating translational symmetry breaking or intervalley orders
for a single species of Dirac fermion. For two or more species
of Dirac fermions it can also support translational symmetry
preserving inter-species orders such as Kondo singlets.

which falls outside the paradigm of conventional Landau-
Ginzburg theory. Within the CP1 formulation of the
sigma model, both magnetic (Higgs phase of gauge the-
ory) and paramagnetic spin Peierls phases are confined
states of an underlying compact U(1) gauge theory. It has
been suggested that only at the critical point the hedge-
hogs or monnopoles can be suppressed, leading to the
deconfined or noncompact U(1) gauge field and spinon
excitations. There are ongoing numerical studies on dif-
ferent microscopic models which are providing encourag-
ing evidence for an exotic direct transition between two
ordered states15–18. However, numerical works also find
strong violations of hyperscaling and the issue of decon-
fined criticality is not yet settled.

How does the coupling between antiferromagnetic or-
der parameter and itinerant fermions affect this scenario?
In the present work, we will be addressing this important
question. We want to compute the fermion determinant
for the following model

S1 =

∫
d3x ψ̄

[
2∑

µ=0

Γµ ⊗ σ0∂µ − im Γ3 ⊗ σ · n

]
ψ, (1)

and its suitable generalizations, where ψ is an eight com-
ponent Dirac spinor comprising of two sublattices, two

(a) (b)

FIG. 2: Illustration of nonlinear sigma model field around
(a) a radial hedgehog and (b) a radial antihedgehog singulari-
ties in Euclidean space-time. They represent tunneling events
which change the skyrmion number of the background by one.
On the magnetic side they stay linearly confined without influ-
encing the low energy physics. However on the paramagnetic
side, they are no longer confined and play dominant role in
determining the nature of emergent competing order. Over-
all neutrality condition for the background field requires an
equal number of hedgehog and antihedgehog singularities on
average, and we show one pair of these singularities in Fig. 3.

valleys and two spin components, Γµ and Γ3 are 4×4 Her-
mitian anticommuting matrices, and σjs are Pauli ma-
trices operating in the spin space. The nonlinear sigma
model field is described by the unit vector n and m is
a coupling constant. This model will be generally aug-
mented by a standard effective action for nonlinear sigma
model. But, in this work we are mainly interested in com-
puting the fermionic contribution to the effective action
in the paramagnetic phase, when n only displays short
range correlations. We note that the dynamic Dirac op-
erator anticommutes with the fifth gamma matrix Γ5.
For convenience, we will work with a block off-diagonal
representation of the Dirac operator with the following
choice of gamma matrices: Γ0 = η1 ⊗ τ3, Γ1 = η1 ⊗ τ1,
Γ2 = η1⊗ τ2, Γ3 = η2⊗ τ0 and Γ5 = η3⊗ τ0, where Pauli
matrices ηµs and τµs respectively operate on valley and
sublattice indices.

A. Nucleation of spin Peierls order

From previous perturbative calculations (gradient ex-
pansion controlled by the local gap m) on the mag-
netically ordered side19–28 we know that the skyrmion
core can support several translational symmetry break-
ing (mixing two valleys) charge, bond and current density
wave orders. Their explicit forms are given by the pairs

(i) (ψ̄ψ, iψ̄Γ5ψ), (ii) (ψ̄Γ0jψ, iψ̄Γ5Γ0jψ),

with j = 1, 2, 3. While the Dirac mass terms (ψ̄ψ, iψ̄Γ5ψ)
describe spin Peierls order (also known as valence bond
solid and Kekule bond density wave), the other three
pairs (not mass terms) correspond to charge and cur-
rent density wave orders. For the Dirac fermions ob-
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tained from the honeycomb lattice, j = 1, 2, 3 pairs re-
spectively describe (a) intervalley, nonstaggered, intra-
sublattice charge (b) intervalley, staggered intrasublat-
tice charge, (c) intervalley, intersublattice current den-
sity waves. What is the explicit mechanism by which the
system determines the form of nucleated singlet order in
the paramagnetic phase, where skyrmion number is no
longer conserved?

We show that in the presence of an isolated hedgehog
singularity n = x̂ (see Fig. 2) or single-hedgehog, the
Euclidean Dirac operator

D = Γµ∂µ − imΓ3 ⊗ σ · n

supports a fermion zero mode of positive chirality (valley
index= +1) with an antisymmetric locking of spin and
sublattice indices (εaα). By contrast, a zero mode for
the antihedhehog singularity possesses opposite chirality
(valley index −1), but the same form of spin-sublattice
locking. The source of opposite chirality is the spectral
symmetry condition {D,Γ5} = 0, and the zero modes are
protected by the Callias index theorem29–31. The fermion
determinant vanishes due to these dynamic fermion zero
modes, leading to an infinite action for an isolated tun-
neling event. Consequently, the probability or fugacity of
a single (anti)hedgehog vanishes, providing a topological
mechanism for suppressing tunneling events. In the close
proximity of magnetic quantum phase transition, we can
model the neutral background field n for paramagnetic
phase in terms of a dilute gas consisting of equal num-
bers of hedgehogs and antihedgehogs on average (as their
mean separation is controlled by the diverging correlation
length), and the overlap between localized zero modes of
opposite chirality determines the precise nature of singlet
order. A pair of hedgehog and antihedgehog are shown
in Fig. 3. By averaging over hedgehog location and ori-
entation within the O(3) group, we unambiguously show
that the resulting singlet order parameter corresponds to
the dynamic, complex Dirac mass ψ̄eiθΓ5ψ describing the
translational symmetry breaking spin Peierls order.

As a consequence of the Callias index theorem, any
isolated hedgehog singularity with arbitrary topological
invariant can support fermion zero modes. The difference
between number of zero modes with positive and nega-
tive chirality is determined by the integer topological in-
variant qh of a hedgehog configuration. Therefore, the
coupling between nonlinear sigma model field and Dirac
fermions can be effective in suppressing any isolated tun-
neling event (valid within the dilute gas approximation)
at the magnetic quantum critical point. This general va-
lidity of zero mode physics is important for addressing
different microscopic systems. It is known that the C3v

point group symmetry of a honeycomb lattice only allows
for triple-hedgehog configurations (i.e., qh = ±3). By
contrast, the C4v point group symmetry of a square lat-
tice would only admit four-fold hedgehogs (i.e., qh = ±4).
Nevertheless, an unconventional quantum phase transi-
tion between two different broken symmetry phases can
occur for either lattice due to the suppression of tunnel-

ing events due to fermion zero modes. However due to
the crystalline point group symmetry, the chiral angle θ
becomes locked into a three-fold (four-fold) pattern for
honeycomb (square) lattice, below the energy scale of hy-
bridization gap.

FIG. 3: A pair of hedgehog and antihedgehog separated by
a distance R along imaginary time direction. Since hedge-
hog and antihedgehog are respectively the monopole and an-
timonopole of CP 1 gauge field, there will be quantized 2π
amount of CP 1 flux through the xy plane, which is perpen-
dicular to the direction of their separation. The situation is
analogous to how 2π Berry flux passes through a plane per-
pendicular to the separation vector of left and right handed
Weyl points in a three dimensional Weyl semimetal. On the
paramagnetic side, but close to the magnetic quantum critical
point, the separation R varies as ξx, where ξ is the correla-
tion length of nonlinear sigma model field. In the vicinity of
quantum critical point, the diverging ξ implies a very large
separation R, which allows us to perform calculations with a
dilute hedgehog gas approximation.

B. Competition between spin Peierls and Kondo
singlets

Next we consider two species of eight-component Dirac
fermions ψ and χ with an opposite sign of Yukawa cou-
plings (m1 = −m2 = m),

S2 =

∫
d3x ψ̄

[
2∑

µ=0

Γµ∂µ − im Γ3 ⊗ σ · n

]
ψ

+

∫
d3x χ̄

[
2∑

µ=0

Γµ∂µ + im Γ3 ⊗ σ · n

]
χ. (2)
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This type of effective theory can describe the antiferro-
magnetic insulator phase of a Kondo-Heisenberg model
on a honeycomb lattice28. Within the gradient expan-
sion scheme for magnetically ordered phase, previously
we have identified the following translational symmetry
preserving Kondo (interspecies) singlet bilinears in the
skyrmion core

Ψ̄Γρ ⊗ µ1Ψ, Ψ̄ΓρΓ5 ⊗ µ1Ψ, Ψ̄Γρ ⊗ µ2Ψ, Ψ̄ΓρΓ5 ⊗ µ2Ψ,

with ρ = 0, 1, 2, 3, where ΨT = (ψT , χT ) is a sixteen com-
ponent spinor and Pauli matrices µjs operate on species
index28. Additionally a skyrmion core can support the
following intraspecies, translational symmetry breaking
bilinears

Ψ̄µ0/3Ψ, iΨ̄Γ5 ⊗ µ0/3Ψ, Ψ̄Γ0j ⊗ µ0/3Ψ, iΨ̄Γ5Γ0j ⊗ µ0/3Ψ,

and µ3 describes species-staggering. In the paramagnetic
phase, we find two additional zero modes for χ fermions.
The zero modes for ψ and χ fermions are of opposite
chirality. Since a hedgehog altogether leads to four zero
modes, after averaging over the ensemble of hedgehogs
and antihedgehogs we obtain a special form of quartic in-
teraction within the zero mode subspace, which describes
the strong competition between spin Peierls order and
Kondo singlets (inter species singlets). In particular for
the above effective model, we find equally strong attrac-
tive interactions for Ψ̄Γ3 ⊗ µ1/2Ψ type Kondo singlets

and Ψ̄µ0Ψ, iΨ̄Γ5 ⊗ µ0Ψ type spin Peierls bilinears. We
also note that the relationship between the instantons
of nonlinear sigma model and Kondo singlet formation
has been discussed for (1+1)-dimensional models32,33.
Next we consider the similarity of our (2+1)-dimensional
models and (3+1)-dimensional quantum chromodynam-
ics (QCD4).

C. General theme of chiral symmetry breaking by
instantons

In the absence of fermionic matter (or quarks), the
tunneling events (instantons) lift the huge ground state
degeneracy of topologically distinct pure gauge configu-
rations (vacua) of the Yang-Mills field34–37. When mass-
less quarks (Dirac fermions) are coupled to a nonabelian
gauge field, the (3+1) dimensional dynamic Dirac opera-
tor supports zero modes of definite chirality (left or right
handed) in the presence of an instanton background34.
This causes a vanishing fermion determinant, and the
effective action for an isolated tunneling event becomes
infinite. Consequently, the probability of an isolated in-
stanton vanishes. The presence of fermion zero mode
of definite chirality provides a topological mechanism for
breaking separate number conservation laws for right and
left handed fermions, a phenomenon known as the axial
anomaly. For a topologically trivial gauge field configura-
tion, comprising of equal numbers of instantons and anti-
instantons, the zero modes of opposite chirality (respec-
tively localized on the instantons and the antiinstantons)

can overlap. This overlap or hybridization of fermion zero
modes with opposite chirality gives rise to a dynamic
mass for the quarks, describing the breakdown of chiral
symmetry34–37. Depending on the number of flavors Nf ,
the overlap of zero modes leads to 2Nf fermion interac-
tion vertex also known as t’Hooft vertex. For Nf = 1
it corresponds to Dirac mass. For Nf = 2 one obtains
a quartic interaction very similar to the Nambu-Jona-
Lasinio model, which describes spontaneous breaking of
flavor chiral symmetry. As emphasized in the previous
subsections, the dynamic mass for one species of eight
component Dirac fermion arising due to the hybridization
of two valleys also causes a breakdown of U(1) chiral sym-
metry (separate number conservation laws for two val-
leys), which is a continuum description of discrete trans-
lational symmetry. For our Nf = 2 model, the quartic
interaction describes the competition between Kondo sin-
glet and spin Peierls orders, which capture general forms
of flavor chiral symmetry breaking. Given these similar-
ities, we will closely follow the methodology of QCD4 as
described in the review works of Refs. 36,37, and also
denote the hedgehog induced interaction vertex as the
’t Hooft vertex. The instanton induced chiral symme-
try breaking is quite general38, and can arise in many
strongly interacting systems in different spatial dimen-
sions. We will later discuss an example of a quantum spin
Hall system in (2+1) dimensions, where the instantons
lead to superconducting phase on the quantum disor-
dered side39–43, as well as some higher dimensional mod-
els where D-dimensional Dirac fermions are coupled to a
quantum disordered O(D) nonlinear sigma model22.

Our paper is organized as follows. In Sec. II, we con-
sider the continuum limit of a Kondo-Heisenberg model
on a honeycomb lattice to show how the effective actions
of Eq. (1) and Eq. (2) can arise. The topological defects
of O(3) nonlinear sigma model are discussed in Sec. III.
In Sec. IV we obtain the induced fermion numbers of
skyrmion textures for a single species of eight compo-
nent Dirac fermion of Eq. (1) and the list of competing
singlet orders in particle-hole channel. The necessity of
dynamic fermion zero modes as suggested by the gradient
expansion calculations and the relation with Callias in-
dex theorem are discussed in Sec. V. We show the explicit
form of zero mode solutions in Sec. VI. In Sec. VII, we de-
termine the overlap between the zero modes of opposite
chirality and establish the explicit mechanism behind nu-
cleating spin-Peierls order for eight component fermions
of Eq. (1). In Sec. VIII we consider the case of Kondo
singlet formation for two species of fermions described by
Eq. (2), and derive an effective four fermion interaction or
’t Hooft vertex within the zero mode subspace. We show
how such an interaction governs the competition between
the Kondo singlet formation and spin Peierls order. The
applications of our methodology for diverse problems are
discussed in Sec. IX. We summarize our main findings
in Sec. X. The detailed derivation of ’t Hooft vertex is
relegated to Appendix A.
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II. MODEL AND CONTINUUM LIMIT

We focus on the following Kondo Heisenberg model on
the honeycomb lattice at half filling

H2 =
∑
〈ij〉

[
− t c†i,αcj,α + h.c.+ JH si · sj

]

+
JK
2

∑
i

c†i,α σαβ ci+1,β · si, (3)

where 〈ij〉 represents the pair of nearest neighbors lo-
cated on two different sublattices. In the absence of
Kondo coupling, the conduction and the valence bands
touch at the corners of the hexagonal Brillouin zone, and
possess linear dispersion in the vicinity of these points.
For each spin component, this is the touching between
two nondegenerate bands, which gives rise to two com-
ponent Weyl fermions as low energy excitations. When
we linearize the spectrum around two such inequivalent
points located at K and K′, we arrive at the following
effective action at each valley

S+ =

∫
d2xdτR†a [∂τ + ivτj∂j ]Ra, (4)

S− =

∫
d2xdτL†a [∂τ − ivτj∂j ]La. (5)

In the above equations a is the index for the spin compo-
nents, which can be thought as flavor degrees of freedom,
and Pauli matrices τj operate on the sublattice sector.
We have denoted the two component spinors around the
diabolic points as R and L, and their explicit forms are
given by

RT = [cA,α(k + K), cB,α(k + K)] , (6)

LT = [cB,α(k + K′), cA,α(k + K′)] . (7)

It is also important to note that for Euclidean action R
and R† (similarly L and L†) are two independent Grass-
mann spinors. It is also possible to combine the R and L
into a four component spinor ψTα = (RTa , L

T
a ), and write

the effective action as

S = S+ + S−

=

∫
d2xdτψ†a [∂τ + ivαj ]ψa, (8)

where αj = τj ⊗ η3 for j = 1, 2 are two anticommut-
ing Dirac matrices in the chiral representation. There
are three additional anticommuting Dirac matrices α3 =
τ3⊗η3, β = τ0⊗η1 and βγ5 = τ0η2. The chirality matrix
γ5 = τ0⊗η3 commutes with αj ’s and anticommutes with
β. The R and L sectors are eigenstates of γ5 with eigen-
values ±1. The continuum Hamiltonian anticommutes
with α3, β and βγ5 which signifies an emergent SU(2)
chiral symmetry. After defining ψ̄ = ψ†β = ψ†Γ0 we ob-
tain the Euclidean action of fermions shown in Eq. (1)
which will be used throughout this paper.

The free fermion action is invariant under the following
discrete symmetry operations:

(i) the time reversal:

ψ(t,x)→ T ψ(−t,x), ψ̄(t,x)→ −ψ̄(−t,x)T ,
T = iΓ5Γ1 ⊗ σ2K, (9)

where K stands for complex conjugation;
(ii) the reflection about the x axis:

ψ(t, x, y)→ Ixψ(t, x,−y), ψ̄(t, x, y)→ ψ̄(t, x,−y)Ix,
Ix = iΓ2Γ3 ⊗ σ0; (10)

(iii) the reflection about the y axis:

ψ(t, x, y)→ Iyψ(t,−x, y), ψ̄(t, x, y)→ ψ̄(t,−x, y)Iy,
Iy = Γ5Γ1 ⊗ σ0; (11)

(iv) the inversion through the origin:

ψ(t,x)→ Pψ(t,−x), ψ̄(t,x)→ ψ̄(t,−x)P,
P = IxIy = Γ0 ⊗ σ0; (12)

(v) the lattice translations: ri → ri+R, R = n1a1+n2a2,
where n1 ∈ Z, n2 ∈ Z, and

ψ(t,x)→ Tψ(t,x + R), ψ̄(t,x)→ ψ̄(t,x + R)T,

T = exp

(
i
2π

3
(n1 + n2)Γ5

)
= exp

(
i(−1)n1+n2

2π

3
Γ5

)
;

(13)

(vi) the rotation by π/3 about the origin:

ψ(t,x)→ Rψ(t,x′), ψ̄(t,x)→ ψ̄(t,x′)R†,

R = cos
2π

3
Γ0 − i sin

2π

3
Γ5Γ3. (14)

In the continuum limit the local moments are described
by the following QNLσM action

Sn =
1

2cg

∫
d2xdτ

[
c2(∂xn)2 + (∂τn)2

]
+ iSB [nj]. (15)

The coupling constant g has the dimension of length,
and there is an antiferromagnetically ordered phase for g
smaller than a critical strength gc. In addition, SB [nj] de-
notes the underlying Berry phase that vanishes inside the
magnetically ordered phase. However, inside the param-
agnetic phase the Berry phase does not vanish. It is also
important to note the absence of a continuum description
of the Berry phase term.

The coupling between the fermions and the QNLσM
fields is described by

Sfn = g

∫
d2xdτ

[
R†τ3σ · nR− L†τ3σ · nL

]
, (16)

which in the four component notation becomes

Sfn = g

∫
d2xdτψ†αα3n · σαβψβ . (17)
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Appearance of τ3 and equivalently α3 matrices represent
the breakdown of the inversion or the sublattice symme-
try in the presence of AFM order. The chiral symmetry is
now reduced from SU(2) to U(1). The matrix γ5 is the
generator of this U(1) chiral symmetry. This is a con-
tinuum version of the discrete translational symmetry of
the honeycomb lattice. It turns out to be more useful
to represent the local moment part in terms of another
set of Dirac fermions χ coupled to the collective mode
n. For capturing the effects of antiferromagnetic Kondo
coupling we have to choose m1 = −m2 = m as in Eq. (2).

III. TOPOLOGICAL DEFECTS OF QNLσM

The sigma model in 2+1-dimensions have two impor-
tant topological defects. There are static nonsingular
topological defects called skyrmions, which cost finite en-
ergy45. After identifying all the points at spatial infinity,
the spatial coordinate space R2 is compactified on the
two sphere S2. The skyrmion textures are classified ac-
cording to the homotopy group Π2(S2) = Z. The explicit
form of the skyrmion configurations with topological in-
dex q, which are also the solutions of the Euler Lagrange
equation ∇2n = 0 are described by

n =

(
2rqλq

r2q + λ2q
cos qφ,

2rqλq

r2q + λ2q
sin qφ,

r2q − λ2q

r2q + λ2q

)
,

(18)

Wsk[n] =
1

8π

∫
dxdτ εαβλ εij nα∂inβ∂jnλ = q, (19)

where φ = arctan(x2/x1). In Fig. 1 we have illustrated
a unit skyrmion configuration for the nonlinear sigma
model field. Physically the skyrmion density is tied to the
underlying scalar spin chirality. Inside the magnetically
ordered phase, the conserved skyrmion current density is
defined as

jµ,sk =
εµνλ
4π

n · (∂νn× ∂λn) . (20)

Therefore, the conserved skyrmion number is well defined
and equals to the Pontryagin index

Qsk =

∫
d2xj0,sk = Wsk[n]. (21)

In the CP 1 formulation, one can give skyrmions more
physically appealing interpretation. Within this formal-
ism, one introduces a complex, two component bosonic
spinor z satisfying the constraint z†z = 1, and defines
O(3) field as n = z†σz. A skyrmion in the CP 1 for-
mulation describes the presence of gauge flux (“magnetic
flux”) 2πq through the xy plane.

The energy cost for a skyrmion is proportional to the
stiffness of the sigma model and the topological charge,
and it is given by

Esk = 2πρsWsk[n]. (22)

Therefore, topologically distinct skyrmion configurations
inside the magnetically ordered state (Higgs phase of the
CP 1 model) are energetically non-degenerate. When the
magnetic phase is destroyed by quantum fluctuations be-
yond a critical coupling gc, the spin stiffness vanishes.
Consequently, the skyrmion excitation gap also vanishes
and all the topologically distinct ground states labeled
by the skyrmion number become energetically degener-
ate. This is very similar to what goes on for non-Abelian
gauge theory in (3+1)-dimensions. The topologically dis-
tinct pure gauge configurations of a non-Abelian gauge
field cause enormous ground state (vacuum) degeneracy.
For non-Abelian gauge theories, such ground state de-
generacy is lifted by the tunneling events between topo-
logically distinct pure gauge configurations or instan-
tons36,37. A similar phenomenon can also occur in the
paramagnetic phase of (2+1)-dimensional O(3) nonlin-
ear sigma model.

The tunneling between two states with different
skyrmion numbers can occur through a singular hedgehog
configuration in the Euclidean space-time9,12. Within
the CP 1 formulation the hedgehogs are monopoles of
the compact U(1) gauge field. Inside the paramagnetic
phase, the hedgehogs possess effective finite action Sh,
and e−Sh describes the tunneling probability. These tun-
neling singularities are also classified according to homo-
topy relation Π2(S2) = Z, but it involves the mapping
of a sphere surrounding the singularity onto the order
parameter space (another sphere)44. The topological in-
variant of the hedgehog is given by

qh =
1

8π

∫
d2Saεabc εαβλ nα∂bnβ∂cnλ, (23)

where the integral is performed over a sphere surrounding
the singularity. The qh = ±1 radial (anti)hedgehog cor-
responds to n = ±xµ/x, or any version of them obtained
after applying O(3) rotations. By applying Gauss’s law
we can write∫

d3r∂µjµ,sk =

∫
dŜµjµ,sk = qh, (24)

which explicitly demonstrates that a hedgegog violates
the skyrmion current conservation law. Furthermore,
from the above relation we can also show that

qh = Wsk[τ =∞]−Wsk[τ = −∞]. (25)

These dynamic singular configurations are responsible
for giving rise to the Berry’s phase9,12. In the ordered
phase, the hedgehog and anti-hedgehog are linearly con-
fined, and the Berry’s phase vanishes. Only in the param-
agnetic phase, the hedgehogs can give rise to a nontrivial
Berry’s phase. In contrast to the (1+1) dimensions, we
do not have a continuum description for SB [n] in (2+1)
dimensions. Only for a simultaneously time reversal and
parity (spatial reflection symmetry) breaking theory, we
can have a continuum description of the Berry’s phase as
a topological theta or a Hopf term (which in the CP 1 for-
malism arises as a Chern Simons term for the U(1) gauge
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fields). When parity is preserved, the Berry’s phase de-
pends on the size of the spin S and the lattice coordina-
tion number Z according to the formula

SB [n] =

∫
dτ
∑
j

4Sπ

Z
ξjqh,j , (26)

where j specifies the dual lattice sites, and qh,j is the
topological charge of the hedgehogs located at j12. The
dual lattice is partitioned into Z sublattices and the in-
teger valued weight factors ξj = 0, 1, ..., Z − 1 on the
different sublattices. Consequently, there is a periodic-
ity 2S(moduloZ). On a honeycomb lattice Z = 3, and
the Berry’s phase determines the pattern of the C3v sym-
metry breaking due to the spin Peierls order for differ-
ent quantized value of the spin. For 2S = 0(modulo3),
Berry’s phase is absent and there is no spin Peierls or-
der, and the disordered ground state is nondegenerate.
When 2S = 1(modulo3), the disordered ground state has
threefold degeneracy, and corresponds to the spin Peierls
order.

TABLE I: The transformation properties of the compet-
ing singlet orders under the discrete symmetry operations,
for single species of fermions, in the absence of the Kondo
coupling. Under the translation T , the bilinears OM,ψ =

ψ̄M̂ ⊗ σ0 eiφΓ5ψ → ψ̄M̂ ⊗ σ0 ei(φ+ 4π
3

)Γ5ψ. The even and
odd properties under the symmetry operations are respec-
tively denoted by + and − signs.

Bilinear T Ix Iy P R
ψ̄ψ + + + + +

ψ̄iΓ5ψ + + − − −
ψ̄Γ01ψ + + − − − cos 4π

3
ψ̄Γ01ψ + sin 4π

3
ψ̄Γ02χ

ψ̄iΓ01Γ5ψ + + + + cos 4π
3
ψ̄iΓ01Γ5ψ − sin 4π

3
ψ̄iΓ02Γ5ψ

ψ̄Γ02ψ + − + − − cos 4π
3
ψ̄Γ02ψ − sin 4π

3
ψ̄Γ01ψ

ψ̄iΓ02Γ5ψ + − − + cos 4π
3
ψ̄iΓ02Γ5ψ + sin 4π

3
ψ̄iΓ01Γ5ψ

ψ̄Γ03ψ − − + − −
ψ̄iΓ03Γ5ψ − − − + +

IV. INDUCED FERMION NUMBER OF
SKYRMIONS

Now we look for the effects of skyrmion excitations on
the fermionic sector of the magnetically ordered phase.
For a sufficiently large core size, the variation of the sigma
model field is weak, and we can perform a gradient ex-
pansion calculation19–22. Within the gradient expansion
scheme, the skyrmion configurations give rise to the fol-
lowing relations

jR,µ + jL,µ = ψ̄Γµψ = 0, (27)

jR,µ − jL,µ = ψ̄ΓµΓ5ψ = 2jsk,µ. (28)

The difference between right and left handed fermion cur-
rents is also known as the chiral current, and its expec-
tation value is obtained as

〈ψ̄ΓµΓ5ψ〉 = Tr

[
ΓµΓ5

iΓρ∂ρ +mΓ3n · σ

]
= Tr

[
ΓµΓ5(iΓν∂ν +mΓ3n · σ)

−∂2 +m2 + imΓρΓ3∂ρn · σ

]
= m3Tr

[
ΓµΓ5Γ3ΓνΓ3ΓλΓ3n · σ∂νn · σ∂λn · σ

(∂2 +m2)
3

]
(29)

The trace in the above formula consists of a matrix trace
and also integral over the spatial coordinates. The matrix
trace leads to 8×εµνλ×εabc, and after using the following
elementary integral in the energy-momentum space∫

d3k

(2π)3

1

(k2 +m2)3
=

16π

|m|3
, (30)

we obtain the result for induced current of Eq. (28).
Due to the conservation of the skyrmion current in-

side the magnetically ordered phase, the chiral current is
also identically conserved. Consequently, we identify the
chiral charge with the skyrmion number

qch = 2

∫
d2x(jR,0 − jL,0) = 2Wsk, (31)

which acts as the generator of the U(1) axial/chiral rota-
tion. This U(1) chiral symmetry is a continuum descrip-
tion of the translational symmetry, and the generator
Γ5 causes rotation among the chiral symmetry breaking
(intervalley) fermion bilinears ψ̄ψ and ψ̄Γ5ψ, and other
competing singlets ψ̄Γ0jψ and ψ̄Γ0jΓ5ψ with j = 1, 2, 3.
These bilinears and their symmetry properties for a hon-
eycomb lattice are shown in Table I. When the tunneling
events destroy the skyrmion number conservation, it also
concomitantly destroy the axial current conservation law
∂µjµ,5 = 0. This arises even though we do not have a
notion of chiral anomaly in (2+1) dimensions. By using
Eq. 24 and Eq. 28, we arrive at

∂µjR,µ − ∂µjL,µ = 2
∑
i

qh,iδ
3(r− ri), (32)

demonstrating the violation of chiral symmetry by the
hedgehogs.

There is an apparent similarity between Eq. 32 and
the Adler-Bell-Jackiw chiral anomaly equation in (3+1)-
dimensions. The Adler-Bell-Jackiw formula

∂µjµ,5 = ∂µ[jR,µ − jL,µ] =
g2

32π2
Tr[Fµν F̃µν ], (33)

describes the violation of separate number conservation
laws for the right and left handed Weyl fermions in
(3+1)-dimensions. The trace is taken over the color
index of non-abelian gauge fields, and it is absent for
abelian gauge fields. The right hand side of this equa-
tion describes the instanton density of the non-abelian
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gauge fields. Despite the technical differences regarding
the presence or the absence of axial anomaly in a di-
mension specific manner, the underlying physical picture
of chiral symmetry violation by the tunneling events is
quite general. Therefore, for both problems of non-linear
sigma model coupled to the (2+1)-dimensional Dirac
fermions and (3+1)-dimensional QCD, we anticipate in-
stanton driven breakdown of the U(1) chiral symmetry.
Due to this similarity, in the subsequent sections we will
closely follow the methodology of QCD4 for addressing
the fermion-hedgehog scattering.

V. NECESSITY OF FERMION ZERO MODES

We will first show why the violation of chiral current
conservation as suggested by Eq. (32) is tied to the exis-
tence of fermion zero modes. In this regard, we consider
the Euclidean Dirac operator

D =

2∑
µ=0

∂µΓµ ⊗ σ0 − imΓ3 ⊗ σ · n (34)

in the presence of a single radial hedgehog located at the
origin (of space-time) r = 0. Notice that our Dirac op-
erator is antiHermitian and possesses purely imaginary
eigenvalues. If we have defined conjugate Dirac spinor
ψ̄ by absorbing an additional factor of i, the modified
dynamic Dirac operator iD would describe a fictitious
Hamiltonian in three dimensions. Since D does not in-
volve the matrix Γ5, it has the following spectral symme-
try

{D,Γ5} = 0. (35)

If φ is an eigenstate of D with eigenvalue λ, due to
the spectral symmetry Γ5φ is also an eigenstate of D
with eigenvalue −λ. Consequently, the eigenstates with
nonzero eigenvalues do not contribute to the expectation
value 〈ψ̄Γ5ψ〉. Rather 〈ψ̄Γ5ψ〉 is entirely determined by
the zero modes of D, which are also the eigenstates of Γ5.
Whether Γ5φ = ±φ determines the chirality or valley in-
dex of the zero mode eigenfunction. Thus,

〈ψ̄Γ5ψ〉 = n+ − n−, (36)

where n± are the number of zero modes with chirality
±1.

Let us again consider the expectation value of the chi-
ral current operator 〈ψ̄ΓµΓ5ψ〉. But, instead of using
the plane wave basis as used in the gradient expansion
scheme, we will employ the exact eigenstates of the Eu-
clidean Dirac operator for computing this expectation
value. Following Jackiw and Rebbi35 we can write∫

∂µ〈ψ̄ΓµΓ5ψ〉 =

∫
∂µTr

[∑
n

φnφ
†
n

λn
ΓµΓ5

]

=

∫ ∑
n

1

λn
(Tr[∂µφnφ

†
nΓµΓ5] + Tr[φn∂µφ

†
nΓµΓ5]).

(37)

After using the equation of motion and the invariance of
the trace under cyclic permutation we find∫

∂µ〈ψ̄ΓµΓ5ψ〉 = 2

∫ ∑
n

Tr[φ†nΓ5φn]. (38)

Now using Eq. (32) and Eq. (36) we obtain∫
∂µ〈ψ̄ΓµΓ5ψ〉 = 2(n+ − n−) = 2

∫ ∑
i

qh,iδ
3(r− ri).(39)

Therefore, the mechanism for breaking chiral conserva-
tion law is intimately tied to the existence of fermion zero
modes for the dynamic Dirac operator D in the instanton
background. This relationship between the number of
zero modes and the topological invariant qh of the back-
ground field is known as Callias index theorem31. On
the mathematical ground, if normalizable zero modes for
D exist, they are protected by the index theorem. In
the following section we derive the explicit form of zero
modes for single-hedgehog.

VI. FERMION ZERO MODES

We need to solve the differential equations

Γµ∂µψ − im(r)Γ3 ⊗ σ · nψ = 0, (40)

Γµ∂µψ̄ + im(r)ψ̄Γ3 ⊗ σ · n = 0. (41)

For simplicity we will consider a constant amplitude
m(r) = m and a single radial (anti)hedgehog configu-
ration n = ±r̂. These equations of motion suggest that
a hedgehog as seen by the field ψ is perceived as an an-
tihedgehog by the conjugate field ψ̄ (recall that ψ̄ is an
independent Grassmann spinor and not the Hermitian
conjugate of ψ). Since, the antiferromagnetic order pa-
rameter does not couple two valleys, we can consider the
equations for two valleys separately. For the ± valleys,
the Dirac kernels are respectively given by

D± =

[
∂0σ0 ∓mn · σ (∂1 − i∂2)σ0

(∂1 + i∂2)σ0 −∂0σ0 ∓mn · σ

]
. (42)

For a given valley, we are writing the four component
spinor as ψ = (u↑, u↓, v↑, v↓)

T . For the + valley, u and
v respectively denote A and B sublattices, while for −
valley they correspond to B and A sublattices.

For the radial (anti) hedgehog configuration we will
employ spherical polar coordinates to write n =
±(sin θ cosφ, sin θ sinφ, cos θ), and look for the zero mode
solutions in the s-wave channel. In the s-wave channel,
all the derivatives with respect to angular variables θ and
φ drop out, leading to the following set of equations for



9

the + valley in the presence of a hedgehog,

cos θ(∂r −m)u↑ + sin θe−iφ (∂rv↑ −mu↓) = 0,

cos θ(∂r +m)u↓ + sin θe−iφ
(
∂rv↓ −mei2φu↑

)
= 0,

− cos θ(∂r +m)v↑ + sin θeiφ
(
∂ru↑ −me−i2φv↓

)
= 0,

− cos θ(∂r −m)v↓ + sin θeiφ (∂ru↓ −mv↑) = 0.

(43)

The normalizable solutions can only appear for u↓ and
v↑, with u↓ = −v↑ and u↑ = v↓ = 0, signifying anti-
symmetric locking between spin and sublattice indices.
Thus we find a normalizable four-component zero mode
wavefunction for the + valley (positive chirality) due to
an isolated single-hedgehog (with qh = +1). The up and
down spin components of the wavefunction are

ψR,h,↑ = eiϕR f(r)

(
0

1

)
, ψR,h,↓ = −eiϕR f(r)

(
1

0

)
,

(44)

where f(r) = |m|3/2√
π

e−mr, and eiϕR is an arbitrary global

phase factor. We do not find any zero mode for the −
valley due to a hedgehog. Therefore, for a unit hedge-
hog we indeed have n+ = 1, n− = 0, and qh = 1, in
accordance with the index theorem.

On the other hand, for an isolated antihedgehog con-
figuration, we do not find any normalizable zero mode for
the + valley. But, a normalizable zero mode can be found
for the − valley. The up and down spin components of
the wavefunction are given by

ψR,h,↑ = eiϕL f(r)

(
0

1

)
, ψR,h,↓ = −eiϕL f(r)

(
1

0

)
,

(45)
where eiϕL is another independent global phase factor.
For a unit antihedgehog we have n+ = 0, n− = 1,
and qh = −1, satisfying the index theorem. The situ-
ation for the conjugate fields is exactly opposite. For
the (anti)hedgehog configuration, the conjugate spinor
on (+)− valley has a zero mode.

As we have chosen a constant amplitude m for the
magnet, the zero modes are exponentially localized. For
a space-time dependent amplitude m(r), we will obtain
f(r) ∝ exp

[
−
∫ r

0
drm(r)

]
. Thus, a smooth amplitude

variation will introduce only quantitative modifications.
For the constant M(r) = m, we can also calculate rest
of the eigenvalues by following Refs. 29,30. It can be
shown that the differential equation for the eigenfunc-
tions of D†D and DD† for a given valley are same as
the Schrödinger equation for a nonrelativistic particle in
the Coulomb potential30. Therefore, the nonzero eigen-
values can be obtained from the solution of a well known
problem. However, the nonzero eigenvalues only cause
a quantitative modification of our main results, and will
not be considered in this work.

How about a non-radial hedgehog configuration? A
non-radial configuration can be obtained by rotating the

radial hedgehog about an arbitrary unit vector m̂ by an
angle φ with the help of an SO(3) matrix to obtain

n̂ = R(m̂, φ)x̂

= (x̂ · m̂)m̂+ cosφ [x̂− (x̂ · m̂)] + sinφ m̂× x̂,(46)

which describes a general hedgehog configuration with
Wh = 1. This can also be achieved in terms of SU(2)
matrices. Since, SU(2) is the universal covering group of
SO(3), we can write

n · σ = U†x̂ · σU ,

where U = ±eiφ/2m̂·σ. The ± describes the same SO(3)
rotation for φ and φ+2π, which is a consequence of 2 to 1
homomorphism. Therefore, the zero mode wavefunction
for an arbitrary single-hedgehog can be obtained from
the previously found wavefunction for radial hedgehog
through the SU(2) rotation ψ(m̂, φ) = U†ψ(x̂). Notice,
that the zero mode wavefunction changes its sign when
φ→ φ+ 2π.

In the absence of any source field, the existence of
fermion zero mode causes the fermion determinant to
vanish. Consequently, the effective action of a hedgehog
diverges, leading to a vanishing fugacity or probability
of an isolated tunneling event. Therefore, fermion zero
modes of the dynamic Dirac operator provide a concrete
topological mechanism for suppressing isolated instan-
tons of the O(3) nonlinear sigma model. Within the CP 1

formulation, this implies the suppression of monopoles,
through which the U(1) gauge field can become noncom-
pact or deconfined.

What can we say about a neutral background with
an equal number of hedgehogs and antihedgehogs? This
is a very complicated problem, as instantons themselves
may be in a liquid, solid or gaseous phase. However, in
the close proximity of a magnetic quantum critical point,
the diverging correlation length ξ controls the average
separation between a pair of hedgehog and antihedgehog
(see Fig. 3), and the instanton denisty is expected to be
very small. We will assume that the instanton density in
the vicinity of the critical point behaves as

n ∼ a−3(a/ξ)x.

For determining the exponent x we have to explicitly
consider the dynamics of the nonlinear sigma model, and
a precise determination of x is a challenging problem. In
the absence of fermions, x has been computed by Murthy
and Sachdev for a CPN−1 model in the large N limit11.
Within the large N limit it has been concluded that

xq = 2Nρq,with ρ1 ≈ 0.0623, ρ2 ≈ 0.1556.

For simplicity, we will leave this exponent unspecified,
and work with a dilute instanton gas approximation for
obtaining qualitative information in the vicinity of the
critical point. For such a background, the zero modes
localized on the two tunneling events will hybridize and
split away from the zero eigenvalue. Consequently, we
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expect a finite fugacity in the paramagnetic phase, which
can only vanishes at the critical point as an inverse power
of the correlation length.

If we introduce Grassmann source fields η and η̄ in the
path integral as η̄ψ + ψ̄η, we can compute the effects of
fermion zero modes on the correlation functions. The
spinor structure of the zero mode wavefunction will only
allow intervalley correlation functions. Therefore, the
hedgehog and the antihedgehog creation operators can
be respectively coupled to the operators ψ̄LM̂ψR and
ψ̄RM̂ψL, where M̂ is a Hermitian matrix chosen from
the following sixteen entries: τ0 ⊗ σ0, τa ⊗ σ0, τ0 ⊗ σj ,
and τa ⊗ σj . Among them τ0 ⊗ σ0 and τa ⊗ σ0 corre-

spond to spin singlet bilinears. We will determine M̂ in
the following section, where we also provide a heuristic
estimation of the chiral symmetry breaking condensate,
based on the overlap between two zero modes of opposite
chirality. For this, we have to average over random loca-
tions and orientations of the hedgehog. Such a procedure
will help us to pinpoint the precise nature of the chiral
symmetry breaking order parameter or M̂ .

VII. NATURE AND SIZE OF THE CHIRAL
CONDENSATE

For obtaining the overlap between two zero modes lo-
calized on widely separated hedgehogs and antihedge-
hogs, we will need the Fourier transform of the zero mode
eigenfunction. The Fourier transform of f(r) is given by

f(k) =
|m|3/2√

π

∫ ∞
0

r2dr

∫ 1

−1

d(cos θ)

∫ 2π

0

dϕ e−mr

×eikr cos θ =
4
√
π|m|5/2

(k2 +m2)2
, (47)

where k = (k0,k) is the three-momentum. For simplicity,
we will also set ϕch = ϕR − ϕL = 0.

A. Overlap of zero modes

The overlap between two degenerate zero modes local-
ized around the space-time points r1 and r2 is caused by
the kinetic part Γµ∂µ of the Dirac operator. The overlap
matrix elements are determined as

Th−ah =

∫
d3r (0, ψ†−(r − r1)U†1 ) D(r)

(
0

U2ψ−(r − r2)

)
,

Tah−h =

∫
d3r (ψ†+(r − r1)U†1 , 0) D(r)

(
U2ψ+(r − r2)

0

)
,

(48)

where Ujs describe the arbitrary orientation of the hedge-
hog and antihedgehog. We have to average over the orien-
tations by performing an SU(2) group integral, by using

the identity ∫
dU Uij U†kl =

1

2
δil δjk. (49)

Since our zero mode wavefunctions display an antisym-
metric locking of spin and sublattice indices, the aver-
aging over orientation only allows ψ̄ψ as the emergent
chiral symmetry breaking operators. This Dirac mass
term describes the emergent spin Peierls order. We are
not obtaining the other Dirac mass ψ̄iΓ5ψ due to the
specific gauge choice ϕch = 0. The rotationally averaged
matrix element can be written as

T̄h−ah =
64π

|m|3

∫
d3k

(2π)3

(iω)eik·(r1−r2)

(1 + k2

m2 )4
. (50)

The spread of the spectrum around the zero eigenvalue
is determined by

∆ ∼
[
n

∫
d3rT̄h−ahT̄ah−h

]1/2

(51)

=

[
n

(
64π

|m|3

)2 ∫
d3k

(2π)3

k2

(1 + k2

m2 )4

]1/2

(52)

After performing the integral we find

∆ ∼
√
πn

m
∼ 1√

mR3/2
, (53)

, where R is the average instanton separation. Therefore
the size of the condensate will be

〈ψ̄ψ〉 ∼ π n
∆
∼
√
nm (54)

If we associate the amplitude m with the inverse corre-
lation length ξ, the condensate vanishes at the critical
point according to

〈ψ̄ψ〉 ∼ ξ−(x+1)/2. (55)

Instead if we choose m to describe the bare stiffness, then

〈ψ̄ψ〉 ∼ ξ−x/2. (56)

This last estimate will be in qualitative agreement with
the results of Read and Sachdev for SU(N) Heisenberg
model. However, we note that there is no a priori reason
for the agreement between the results of two different
models.

We can make another important statement regarding
the size of the condensate by following the methodology
of QCD. For ϕch = 0, the condensate size is determined
by

〈ψ̄ψ〉 = i

∫
d3xTr[G(x, x)]. (57)
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If we introduce an infinitesimal mass Mψ̄ψ for conve-
nience (as an infra red regulator) of formal manipula-
tions, the fermion propagator in the exact eigenbasis will
be given by

G(x, y) = −
∑ φn(x)φ†n(y)

λn + iM
. (58)

For determining the condensate size in the thermody-
namic limit we will take the limit M → 0 at the end of
the calculations. After noting that the chiral symmetry
{D,Γ5} = 0 implies the existence of a state Γ5φn with
eigenvalue −λn. Therefore, the amplitude of the spin
Peierls order will be given by

〈ψ̄ψ〉 = −i
∑
n

1

λn + iM

= −
∑
λn>0

2M

λ2
n +M2

= −
∫
dλρ(λ)

2M

λ2 +M2
. (59)

Here ρ(λ) is the spectral density for the eigenvalues of
the space-time Dirac operator. In the random ensemble,
the overlap ∆ between the zero modes localized on the
instantons and the antiinstantons causes splitting of the
zero modes while giving rise to a continuum of states in
the vicinity of the zero eigenvalue. For this reason, the
density of states at ρ(λ = 0) 6= 0 and after taking M → 0
limit, we arrive at

〈ψ̄ψ〉 = −πρ(λ = 0). (60)

In the context of QCD this is known as the Banks-Casher
relation46. The reason behind obtaining the same for-
mula as in QCD for a different model in different dimen-
sionality is the existence of the fermion zero modes in the
instanton background. The central message of this rela-
tion is the following: the existence of a finite spectral den-
sity of the Dirac operator at zero eigenvalue leads to the
chiral symmetry breaking, and the ensuing order parame-
ter density is directly proportional to the spectral density
at zero eigenvalue. Therefore, akin to the QCD problem
one can numerically and analytically study the spectrum
of a Dirac operator in the presence of hedgehogs to obtain
further nonperturbative information. Just based on the
dimensional analysis we can infer that ρ(λ = 0) ∝

√
n,

where n is the instanton density, which is naturally in
agreement with our previous estimation.

B. Unambiguous choice of spin Peierls order

We can put the appearance of spin Peierls order on a
stronger footing through the following calculation. This
has been somewhat glossed over during our qualitative
discussion of overlap between zero modes. Recall that the
hedgehog creation operator can couple to a matrix M̂ in

the form ψ̄LM̂ψR. In the context of QCD, such operators
are known as the t’Hooft vertex. For our problem, the
t’Hooft vertex for hedgehogs is given by

Yh = −
∫
d3xh

∫
dU
[∫

d3x ψ̄(x)Γ · ∇φh(x− xh)

]
×
[∫

d3y φ̄h(y − xh)Γ · ∇ψ(y)

]
, (61)

where we are averaging over the position and orientation
of hedgehog respectively denoted by xh and U . The zero
mode wavefunctions are denoted by φh and φ̄h, which
are left handed and conjugate right handed zero modes
respectively. In the frequency-momentum space this can
be rewritten as

Yh = yh

∫
d3k

∫
dU
[
ψ̄(k)Γ · kφh(k)

] [
φ̄h(k)Γ · kψ(k)

]
= yh e

iϕch

∫
d3k

∫
dU
[
R̄a1α1

(k)τ ja1b1kjUα1β1

× φh,b1β1
(k)

][
φ̄h,a2α2

(k)τ la2b2klU
†
α2β2

Lb2β2
(k)

]
=

yh
2
eiϕch

∫
d3k f2(k)

[
R̄a1α1Lb2α1kjkl

×τ ja1b1τ
l
a2b2εb1β1

εa2β1

]
=

yh
2
eiϕch

∫
d3k f2(k)R̄a1b1Lb2α1

[
k2τ0

+i(k× k) · τ
]
a1b2

=
yh
2
eiϕch

∫
d3k f2(k)k2 R̄τ0 ⊗ σ0L (62)

where yh is the fugacity of hedgehogs, and ϕch = ϕR−ϕL
is the global chiral phase of the zero mode wavefunctions.
Similarly for the antihedgehogs we obtain the vertex

Yah =
yah
2
e−iϕch

∫
d3k f2(k)k2 L̄τ0 ⊗ σ0R. (63)

After accounting for yh = yah due to the neutrality of
the background, the net t’Hooft vertex becomes

Y = Yh + Yah =
yh
2

∫
d3k f2(k)k2

×
[
eiϕchR̄τ0 ⊗ σ0L+ e−iϕchL̄τ0 ⊗ σ0R

]
=

yh
2

∫
d3k f2(k)k2 ψ̄ exp [iϕchΓ5 ⊗ σ0]ψ (64)

which corresponds to an energy-momentum dependent,
complex Dirac mass term. If we set ϕch = 0, we recover
the results of previous subsection. Therefore, by averag-
ing over hedgehog location and orientation we can unam-
biguously identify the emergent singlet order as the spin
Peierls order for a single flavor of eight component Dirac
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fermion. Within the continuum theory of Dirac fermions,
ϕch is arbitrary, signifying that a continuous U(1) chiral
symmetry is being broken (signature of Goldstone mode).
However, after accounting for the higher gradient correc-
tions to Dirac fermion action, one finds that the emergent
U(1) symmetry is reduced to the three-fold symmetry of
honeycomb lattice. This happens through the presence of
a periodic potential cos(3ϕch) in the effective action and
ϕch gets locked into one of the three degenerate min-
ima. We anticipate that the zero mode physics can be
enormously helpful for narrowing down our search for
competing orders in several problems. In this regard, we
provide a concrete example of competing spin Peierls and
Kondo singlets for two flavors of eight component Dirac
fermions.

TABLE II: The transformation properties of the Kondo sin-
glet bilinears under the discrete symmetry operations. We
are denoting the Kondo bilinears as Oµ,a = Ψ̄Γµ ⊗ µaΨ, and
Oµ5,a = Ψ̄ΓµΓ5⊗µaΨ, where µ = 0, 1, 2, 3, and a = 1, 2. The
even and odd properties under the symmetry operations are
respectively denoted by + and − signs.

Bilinear T Ix Iy P T R
O0,a (−1)a−1 + + + + +

O05,a (−1)a + − − + −
O3,a (−1)a−1 − + − + −
O35,a (−1)a − − + + +

O1,a (−1)a + − − + − cos 4π
3
O1,a + sin 4π

3
O2,a

O15,a (−1)a−1 + + + + cos 4π
3
O15,a − sin 4π

3
O25,a

O2,a (−1)a − + − + − cos 4π
3
O2,a − sin 4π

3
O1,a

O25,a (−1)a−1 − − + + cos 4π
3
O25,a + sin 4π

3
O15,a

VIII. SPIN PEIERLS VS. KONDO SINGLETS

We will be considering two species of eight-component
Dirac fermions ψ and χ coupled to the O(3) model with
opposite signs

S2 =

∫
d3x ψ̄

[
2∑

µ=0

Γµ∂µ − im Γ3 ⊗ σ · n

]
ψ

+

∫
d3x χ̄

[
2∑

µ=0

Γµ∂µ + im Γ3 ⊗ σ · n

]
χ.

On the magnetically ordered side, the gradient expansion
in the presence of skyrmion texture leads to

ψ̄Γµψ = 0, χ̄Γµχ = 0 (65)

ψ̄ΓµΓ5ψ = −χ̄ΓµΓ5χ = 2jsk,µ. (66)

Therefore, the sum and the difference between the total
number of two species are conserved. If we work with
the sixteen component spinor Ψ = (ψ, χ)T , we can say
Ψ̄Γ0⊗µ0Ψ and Ψ̄Γ0⊗µ3Ψ are conserved quantities. Since
the sum of chiral currents for two species vanishes, we can
also state that Ψ̄Γ0Γ5⊗µ0Ψ or the net chiral density is a
conserved quantity. However, the difference between the
chiral currents carried by two species is related to the
skyrmion current according to

Ψ̄ΓρΓ5 ⊗ µ3Ψ = 4jsk,ρ,

and the skyrmion number acts as the generator of rela-
tive chiral rotation between two species. Based on this
equation, we have earlier constructed

Ψ̄Γρ ⊗ µ1Ψ, Ψ̄ΓρΓ5 ⊗ µ1Ψ, Ψ̄Γρ ⊗ µ2Ψ, Ψ̄ΓρΓ5 ⊗ µ2Ψ,

with ρ = 0, 1, 2, 3 as inter-species, intravalley, Kondo sin-
glets and

Ψ̄µ0/3Ψ, iΨ̄Γ5 ⊗ µ0,3Ψ, Ψ̄Γ0j ⊗ µ0/3Ψ, iΨ̄Γ5Γ0j ⊗ µ0/3Ψ,

as intra-species, intervalley singlets as the candidates
for competing singlet order. The symmetry properties
of Kondo singlet operators on a honeycomb lattice are
shown in Table II. How can we select the appropriate
singlet orders from this list?

The relative chiral conservation law ∂ρjρ,ch,− = 0 will
be directly broken by the instantons in the paramagnetic
phase for nucleating the singlet order, and the factor of
four on the right hand side indicates that we have to con-
sider four fermion zero modes. Notice that a hedgehog
seen by the ψ fermion, is perceived as an antihedgehog
by the χ fermion. Therefore, the zero modes of ψ and
χ fermions will have opposite chirality. After solving the
differential equations in the presence of (anti)hedgehog,
we indeed find the zero modes for χ fermions to have
(positive) negative chirality. We also note that the zero
modes for χ fermions can possess new global chiral phases
ϕχ,R and ϕχ,L. Since there are four zero modes the non-
vanishing correlation functions will involve four fermion
operators. To be specific the effective vertex for hedgehog
will have a schematic form ψ̄RM̂ψLχ̄lχR, which indeed
breaks the relative chiral rotation symmetry generated
by Ψ̄Γ0Γ5 ⊗ µ3Ψ. The actual form of the effective in-
teraction and its calculation is quite involved and it is
presented in the Appendix. For (i) ϕch,− = 2nπ and (ii)
ϕch,− = (2n + 1)π the effective interaction acquires the
form
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Y =
yh
16

cos(ϕch,−)

∫
d3k1d

3k2 k
2
1k

2
2f

2(k1)f2(k2)

[
Ψ̄µ0Ψ(k1)Ψ̄µ0Ψ(k2) + Ψ̄iΓ5µ0Ψ(k1)Ψ̄iΓ5µ0Ψ(k2)

+Ψ̄iµ1Γ3Ψ(k1)Ψ̄iµ1Γ3Ψ(k2) + Ψ̄iµ2Γ3Ψ(k1)Ψ̄iµ2Γ3Ψ(k2)− Ψ̄µ3Ψ(k1)Ψ̄µ3Ψ(k2)− Ψ̄iµ3Γ5Ψ(k1)Ψ̄iµ3Γ5Ψ(k2)

−Ψ̄µ1Γ35Ψ(k1)Ψ̄µ1Γ35Ψ(k2)− Ψ̄iµ2Γ35Ψ(k1)Ψ̄iµ2Γ35Ψ(k2)

]
. (67)

This form of interaction is reminiscent of umklapp inter-
actions for spin 1/2 chain, which breaks the U(1) chiral
symmetry of Dirac fermions down to Z2, and the sign
of umklapp term determines whether an Ising Neel or
a spin Peierls phase is nucleated. For the chiral gauge
choice ϕch,− = 0, we can nucleate Ψ̄µ0Ψ, Ψ̄iΓ5µ0Ψ as
spin Peierls components, and Ψ̄iµ1Γ3Ψ, Ψ̄iµ2Γ3Ψ as in-
version symmetry breaking (sublattice staggered) Kondo
singlets. Notice that within the zero mode subspace, all
four terms have equal strength of interactions, leading to
a very strong competition between two types of singlets.
Such a strong competition can even give rise to a liq-
uid phase, where different orders exist only at short dis-
tance. We are implying that Ψ̄µ0Ψ, Ψ̄iΓ5µ0Ψ, Ψ̄iµ1Γ3Ψ,
Ψ̄iµ2Γ3Ψ mutually anticommute and form an SO(4) or-
der parameter, which only has an amplitude but lacks
the stiffness. Whether such a situation is indeed realized
for a microscopic model, or nonzero mode contributions
cause a mild breaking of SO(4) symmetry will be inves-
tigated in a separate work. In the following section we
outline some additional applications of the instanton cal-
culations for itinerant systems.

IX. FURTHER APPLICATIONS OF OUR
APPROACH

One important aspect of the dynamic fermion zero
modes is the topological mechanism for instanton sup-
pression. For the two species case we have found a strong
competition between spin Peierls and Kondo singlet or-
ders. When residual interactions from lattice scale or
non-zero modes can lift the degeneracy between these
two channels, we can have spin-Peierls to Kondo singlet,
antiferromagnet to Kondo singlet and antiferromagnet
to spin Peierls transitions. For both antiferromagnet to
Kondo singlet and antiferromagnet to spin Peierls tran-
sitions, our analysis suggests unconventional criticality
with suppressed tunneling. In an earlier work28, we have
shown that such transitions may be accompanied by a
level 2 WZW term.

This is in line with the case of a single species of
eight component Dirac fermions, for which we have also
demonstrated that the paramagnetic phase supports spin
Peierls order (out of several possible singlet orders), and
the expectation value of this order parameter vanishes
with a power law at the magnetic critical point. This
suggests an unconventional critical point between two dif-

ferent ordered states due to suppression of tunneling and
also an unified description where both antiferromagnetic
and spin Peierls orders should be treated on an equal
footing as

S′1 =

∫
d3x

[ 2∑
µ=0

ψ̄Γµ ⊗ σ0∂µψ + imψ̄Γ3 ⊗ σ · nψ

+m′1ψ̄e
iθΓ5ψ

]
.(68)

We can combine two different order parameters in terms
of an O(5) nonlinear sigma model with an overall ampli-

tude or coupling constant
√
m2 + (m′1)2. Interestingly,

after integrating out the fermion fields, one obtains an
O(5) nonlinear sigma model augmented by a level one
topological Wess-Zumino-Witten (WZW) term22,24,25.
Thus our dynamic zero mode calculations are providing
some insight into the nature of unconventional critical
point arising due to the WZW term. Our instanton based
calculations also suggest a relation between the level of
Wess-Zumino-Witten theory and the number of fermion
zero modes (two vs. four). Additional work along this
line is required for a better understanding of the critical
theories. Another interesting direction will be to extend
our work to a finite density of Dirac fermions, which can
stabilize a translational symmetry breaking (FFLO) su-
perconducting state in the paramagnetic phase.

Another future direction will be to explicitly study the
zero mode wavefunctions and t’Hooft vertex for qh > 1.
This is particularly important as underlying point group
symmetry generally allows specific values of qh > 1. For
example, the C3v point group symmetry of honeycomb
lattice allows qh = ±3 hedgehogs. The index theorem
suggests that the triple-hedgehog configurations also al-
low fermion zero modes with n+ − n− = 3. In a fu-
ture publication we will provide explicit form of these
zero mode wavefunctions and the t’Hooft vertex which
shows three-fold locking of ϕch. However, we would like
to emphasize that such generalizations will not change
our main conclusions regarding the suppression of all
tunneling events at the critical point and the qualita-
tive estimation of hybridization gap (or the size of chiral
condensate).

The methodology developed in this paper can be ap-
plied for computing the fermion determinant when O(d+
1) nonlinear sigma model is coupled to massless Dirac
fermions in (d+1) dimensional space-time. This provides
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a direct way to obtain a competing O(2) order parame-
ter, which generally anticommutes with the vector order
described by the nonlinear sigma model. Therefore, we
suspect this methodology to be relevant for understand-
ing the O(d + 3) nonlinear sigma model with a Wess-
Zumino-Witten term22. An application along this line
will be to replace the antiferromagnetic order by a quan-
tum spin Hall order parameter in (2+1) dimensions39–43,
which couples to the Dirac fermions as ψ̄Γ3Γ5 ⊗ σ · nψ.
For such a model, a hedgehog defect gives rise to zero
modes for both valleys. By contrast, the antihedgehog
leads to zero modes for conjugate spinor fields. By ex-
tending our calculation on the quantum disordered side
within a dilute gas approximation, we can immediately
show the emergence of a superconducting order param-
eter. However, we emphasize the superconducting mass
term will have a frequency-momentum dependent form
factor. In (3+1)-dimensions, antiferromagnetic hedge-
hogs are static defects and zero modes are actually zero
energy eigenstates47,48. Similarly spin Peierls order pa-
rameter is also a three component vector and can support
zero energy states. By performing a calculation along the
lines of this paper, we can show the nucleation of compet-
ing orders and justify an O(6) theory with WZW term48.
We also note that an algebraic method for analyzing the
zero modes of d dimensional Dirac fermions in the hedge-
hog background has been described in Ref. 49.

This method will also be useful for providing nonper-
turbative insight into various quenched disorder problems
involving Dirac fermions. Particularly in the context of
disordered three dimensional topological insulators, su-
perconductors as well as Dirac semimetals, three dimen-
sional Dirac fermions are coupled to different types of
replica or supersymmetric nonlinear sigma models (de-
scribing diffusons and cooperons). For such models, the
fermion zero modes actually represent physical zero en-
ergy states with nontrivial multifractal properties. How
they provide a nonperturbative framework for obtain-
ing topological invariant of a disordered insulating state
and also their relationship to a direct quantum phase
transitions between two topologically distinct insulating
states50–52 will be discussed in a separate publication.

X. CONCLUSION

We have developed a theoretical framework for study-
ing competing singlet orders induced by topological de-
fects of antiferromagnetic order parameter in a (2+1)-
dimensional itinerant system. For making progress, we
have modeled the itinerant system by Dirac fermions
which are strongly coupled to the quantum disordered
O(3) nonlinear sigma model. Our main goal was to com-
pute the fermion determinant in the presence of a fluctu-
ating or short range antiferromagnetically ordered back-
ground, which was built out of an equal number of hedge-
hogs and antihedgehogs. The salient points of our work
are summarized below.

On the magnetically ordered side, the topological tun-
neling singularities, also known as the hedgehogs and
antihedgehogs are linearly confined, and the skyrmion
number conservation gives rise to a continuity equation
for the skyrmion current. Based on the perturbative gra-
dient expansion method, we have shown that an appro-
priate fermion current (denoted as chiral current) equals
the skyrmion current with a multiplicative factor deter-
mined by the number of fermion flavors. This has allowed
us to identify an induced chiral fermion number for the
skyrmion excitations, which acts as the generator of the
U(1) chiral symmetry. For the problem at hand, the
chiral symmetry is a continuum description of the under-
lying discrete translational symmetry on the honeycomb
lattice. The identification of the skyrmion number as the
generator of chiral symmetry helps us to classify all the
relevant competing orders. If the nonlinear sigma model
is used to describe the collective mode of an underly-
ing single species of eight component Dirac fermion (due
to two valleys, two sublattices and two spin indices), the
relevant singlet orders mix two valleys and break transla-
tional symmetry. By contrast, for the Kondo-Heiseberg
model, the coupling between the itinerant fermion and
the antiferromagnetically ordered local moments can lead
to translational symmetry preserving (intravalley) Kondo
singlet states as additional competing orders.

We have demonstrated the topological mechanism
through which the hedgehogs pick out a specific com-
peting order. In the hedgehog background, the dynamic
Dirac operator possesses zero modes of definite chirality
(valley quantum number), leading to the anomalous vio-
lation of chiral current conservation law inside the param-
agnetic phase. The emergence of fermion zero mode and
its stability is shown to be a consequence of the Callias
index theorem. The fermion zero modes cause vanishing
fugacity for isolated tunneling events and provide a topo-
logical mechanism for suppressing the tunneling events,
which may lead to a deconfined quantum critical point.
Based on the zero mode structure, we have identified
a similarity between our (2+1)-dimensional model and
(3+1)-dimensional QCD. For a topologically neutral back-
ground field with an equal number of hedgehogs and anti-
hedgehogs, the overlap between localized zero modes of op-
posite chirality determines the precise form of the emer-
gent singlet order. In the close vicinity of magnetic criti-
cal point, when instantons can be treated within a dilute
gas approximations, we have explicitly derived the over-
lap between the zero modes. For a single species of four
component fermion, we show how the overlap between
zero modes unambiguously selects the dynamic complex
Dirac mass or spin Peierls order over the other charge
and current density wave orders. At a technical level this
has been identified with the ’t Hooft interaction vertex
discussed in the context of QCD. The size of chiral sym-
metry breaking spin-Peierls condensate is proportional
to the density of states of the fermion zero modes and it
follows an analog of the Banks-Casher formula for QCD.
For the Kondo-Heisenberg model, there are two species
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of four component fermions, and the ’t Hooft vertex de-
scribes a quartic fermion interaction, which captures the
ensuing competition between the spin Peierls order and
Kondo singlet formation. We have also discussed several
other applications of our theoretical methods for inter-
acting as well as disordered problems.

Acknowledgments

This work has been supported in part by JQI-NSF-
PFC and LPS-MPO-CMTC (P.G.), and by the NSF

grant DMR-1611392 and the Robert A. Welch Founda-
tion Grant No. C-1411 (Q.S.). We also acknowledge
the hospitality of the Aspen Center for Physics (the NSF
Grant No. 1066293) and the Kavli Institute of Theoreti-
cal Physics, UCSB (the NSF Grant No. PHY11-25915).

Appendix A: Derivation of ’t Hooft vertex for Nf = 2

If there are Nf flavors of Dirac fermions, we have seen there are Nf four-component (spinful) zero modes of positive
chirality (+ valley index) localized on the hedgehogs in addition to Nf negative chirality (- valley) zero modes localized
on the antihedgehogs. Therefore, the hedgehog creation operator will couple to a nonlocal t’Hooft interaction vertex
with 2Nf -fermion operators. We have already seen that for Nf = 1, the hedgehog is coupled to only two fermions
operators, which leads to the Dirac mass (spin Peierls order). For Nf = 2 we will derive the relevant four fermion
vertex by following Refs. 36,37.

The partition function for the hedgehog ensemble can be written as

Z =
∏
f

∫
DψfDψ̄f exp[−

∫
d3xψ̄fDψf ][V̄h(ψf , ψ̄f )]N+ [V̄ah(ψf , ψ

†
f )]N− , (A1)

where N± are the number of (anti)hedgehogs, and f is the flavor index. For f = 1, 2 we respectively have ψ and χ
fermions introduced in the context of Kondo-Heisenberg model. In the above equation

Vh =

∫
d3xψ̄f (x)Dφh,0(x)

∫
d3yφ̄h,0Dψf (y) (A2)

is the product of the overlap between zero mode wavefunction φ and the field operator ψ. Following the notations of
QCD4, we can further denote this averaged product as

Y± =

∫
d3rh/ah

∫
dUh/ah

∏
f

Vh/ah[ψf , ψ̄f ] (A3)

where rh and Uh respectively denote the location and the orientation of the hedgehog. By performing an auxiliary
integral the t’Hooft vertices Y± can be exponentiated as

Z =

∫
dλ+

2π

∫
dλ−
2π

exp[N+

(
log

n+

iλ+
− 1

)
+ (+→ −)]

∏
f

∫
DψfDψ

†
f exp[−

∫
d3xψ†fDψf + iλ+Y+ + iλ−Y−].

(A4)

It is more convenient to write these vertices in the frequency-momentum space. Recalling the Fourier transform of
the zero mode wavefunction, we can infer that the induced interactions are very short-ranged, and the strength of the
interaction will be governed by the instanton density n.

For the problem with an antiferromagnetic Kondo coupling, the hedgehog contribution to the t’Hooft vertex is
obtained as

Yh = yh
∏
i

∫
d3ki δ

3(k1 + k3 − k2 − k4)

∫
dU [ψ̄(k1)Γ · k1φh,ψ(k1)][φ̄h,ψ(k2)Γ · k2ψ(k2)][χ̄(k3)Γ · k3φh,χ(k3)]

×[φ̄h,χ(k4)Γ · k4χ(k4)]

= yhe
iϕch,−

∏
i

∫
d3ki f(ki) δ

3(k1 + k3 − k2 − k4)

∫
dU [L̄a1α1(k1)Ra2β2 r̄a3α3(k3)lb4β4 ][τ j1a1b1τ

j2
a2b2

τ j3a3b3τ
j4
a4b4

×k1,j1k2,j2k3,j3k4,j4 ][Uα1β1
U†α2β2

Uα3β3
U†α4β4

][εb1β1
εa2α2

εb3β3
εa4α4

] (A5)
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After using the SU(2) group integral identity53∫
dUUα1β1

U†α2β2
Uα3β3

U†α4β4
=

1

3
δα1β2

δβ1α2
δα3β4

δβ3α4
+

1

3
δα1β4

δβ1α4
δα2β4

δβ2α3
− 1

6
δα1β2

δα3β4
δβ1α4

δα2β3

−1

6
δα1β4δβ2α3δβ1α2δβ3α4 , (A6)

we find that the t’Hooft vertex has following four parts

Y 1
h =

yh
3
eiϕch,−

∏
i

∫
d3ki f(ki) δ

3(k1 + k3 − k2 − k4) L̄a1,α1
(k1)[k1 · k2τ0 + i(k1 × k2) · τ ]a1b1Rb1α1

(k2)

×r̄a2,α2(k3)[k3 · k4τ0 + i(k3 × k4) · τ ]a2b2 lb2α2(k4), (A7)

Y 2
h =

yh
3
eiϕch,−

∏
i

∫
d3ki f(ki) δ

3(k1 + k3 − k2 − k4) L̄a1,α1(k1)[k1 · k4τ0 + i(k1 × k4) · τ ]a1b1 lb1α1(k4)

×r̄a2,α2
(k3)[k3 · k2τ0 + i(k3 × k2) · τ ]a2b2Rb2α2

(k2), (A8)

Y 3
h = −yh

6
eiϕch,−

∏
i

∫
d3ki f(ki) δ

3(k1 + k3 − k2 − k4) L̄a1,α1
(k1)Rb2α1

(k2)r̄a3,α3
(k3)lb4α3

(k4)[k1 · k4τ0

+i(k1 × k4) · τ ]a1b4 [k3 · k2τ0 + i(k3 × k2) · τ ]a3b2 , (A9)

Y 4
h = −yh

6
eiϕch,−

∏
i

∫
d3ki f(ki) δ

3(k1 + k3 − k2 − k4) L̄a1,α1
(k1)Rb2β2

(k2)r̄a3,β2
(k3)lb4α1

(k4)[k1 · k2τ0

+i(k1 × k2) · τ ]a1b2 [k3 · k4τ0 + i(k3 × k4) · τ ]a3b4 . (A10)

Similarly for antihedgehog we will obtain four quartic interaction terms which are Hermitian conjugates of the four
terms obtained for hedgehog vertex. The role of these quartic terms can be made more transparent if we contract
(i) k1 = k2, k3 = k4 in Y 1

h and Y 4
h , and (ii) k1 = k4, k2 = k3 in Y 2

h and Y 3
h . Through this we obtain the form of

interactions that can be easily decoupled via Hubbard Stratonovich transformations. The reduced form of the quartic
term Y 1

h is given by

Y 1
h =

yh
3
eiϕch,−

∫
d3k1d

3k2 [L̄(k1)R(k1)k2
1f

2(k1)][r̄(k2)l(k2)k2
2f

2(k2)]. (A11)

The corresponding term for antihedgehog is

Y 1
ah =

yh
3
e−iϕch,−

∫
d3k1d

3k2 [R̄(k1)L(k1)k2
1f

2(k1)][l̄(k2)r(k2)k2
2f

2(k2)] (A12)

For simplicity let us consider the phase choice (i) ϕch,− = 2nπ and (ii) ϕch,− = (2n + 1)π. After combining Y 1
h and

Y 1
ah and setting ϕch,− = 2nπ, we obtain

Y 1 =
yh
24

∫
d3k1d

3k2 k
2
1k

2
2f

2(k1)f2(k2)

[
Ψ̄Ψ(k1)Ψ̄Ψ(k2) + Ψ̄iΓ5Ψ(k1)Ψ̄iΓ5Ψ(k2)− Ψ̄µ3Ψ(k1)Ψ̄µ3Ψ(k2)

−Ψ̄iµ3Γ5Ψ(k1)Ψ̄iµ3Γ5Ψ(k2)

]
(A13)

Notice that Y 1 breaks the symmetry with respect to ϕch,−, and the interaction changes sign for ϕch,− = (2n + 1)π.
This is reminiscent of the umklapp interaction in one dimension. For ϕch,− = 2nπ, Y 1 will nucleate spin Peierls
bilinears Ψ̄Ψ and Ψ̄iΓ5Ψ, and the relative phase between them remains free as a Goldstone mode (this phase will
be locked into the three-fold pattern only after accounting for lattice effects by going beyond the linearized theory).
After some algebra we find Y 2

h and its antihedgehog counterpart leading to

Y 2 =
yh
24

∫
d3k1d

3k2 k
2
1k

2
2f

2(k1)f2(k2)

[
Ψ̄iµ1Γ3Ψ(k1)Ψ̄iµ1Γ3Ψ(k2) + Ψ̄iµ2Γ3Ψ(k1)Ψ̄iµ2Γ3Ψ(k2)

−Ψ̄µ1Γ35Ψ(k1)Ψ̄µ1Γ35Ψ(k2)− Ψ̄µ2Γ35Ψ(k1)Ψ̄µ2Γ35Ψ(k2)

]
, (A14)

for ϕch,− = 2nπ. Clearly, this part of the interaction will cause formation of inversion symmetry breaking Kondo
singlets denoted by Ψ̄iµ1Γ3Ψ and Ψ̄iµ2Γ3Ψ. In the absence of any internal gauge field for f electrons, the phase for
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Kondo singlets will represent U(1) Goldstone mode. This mode will be massive if an internal gauge field is considered.
After some algebra involving the Fierz identity of Pauli matrices the other two quartic terms become Y 3 = Y 2/2 and
Y 4 = Y 1/2. Therefore, the net reduced form of quartic interaction is given by

Y =
yh
16

∫
d3k1d

3k2 k
2
1k

2
2f

2(k1)f2(k2)

[
Ψ̄Ψ(k1)Ψ̄Ψ(k2) + Ψ̄iΓ5Ψ(k1)Ψ̄iΓ5Ψ(k2) + Ψ̄iµ1Γ3Ψ(k1)Ψ̄iµ1Γ3Ψ(k2)

+Ψ̄iµ2Γ3Ψ(k1)Ψ̄iµ2Γ3Ψ(k2)− Ψ̄µ3Ψ(k1)Ψ̄µ3Ψ(k2)− Ψ̄iµ3Γ5Ψ(k1)Ψ̄iµ3Γ5Ψ(k2)

−Ψ̄µ1Γ35Ψ(k1)Ψ̄µ1Γ35Ψ(k2)− Ψ̄iµ2Γ35Ψ(k1)Ψ̄iµ2Γ35Ψ(k2)

]
. (A15)

We notice that the spin Peierls and Kondo channels have equal strengths of interaction from the hedgehog induced
zero mode subspace. This is indicative of a very strong competition among translational symmetry breaking spin
Peierls and translational symmetry preserving but inversion symmetry breaking Kondo singlet orders. The form of
effective interaction is reminiscent of the Nambu-Jona-Lasinio model of chiral symmetry breaking derived for N = 2
flavor QCD4.
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