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We describe a mechanism for insulator–to–metal transition triggered by spin–canting following fs laser–
excitation of insulating anti–ferromagnetic (AFM) states of colossal magneto-resistive (CMR) manganites. We
show that photoexcitation of composite fermion quasi–particles dressed by spin fluctuations results in the popu-
lation of a broad metallic conduction band due to canting of the AFM background spins via strong electron–spin
local correlation. By inducing spin–canting, photoexcitation can increase the quasi–particle energy dispersion
and quench the charge excitation energy gap. This increases the critical Jahn–Teller (JT) lattice displace-
ment required to maintain an insulating state. We present fs–resolved pump–probe measurements showing
bi–exponential relaxation of the differential reflectivity below the AFM transition temperature. We observe a
nonlinear dependence of the ratio of the fs and ps relaxation component amplitudes at the same pump fluence
threshold where we observe femtosecond magnetization photoexcitation. We attribute this correlation between
nonlinear fs spin and charge dynamics to spin/charge/lattice coupling and population inversion between the
polaronic majority carriers and metallic quasi–electron minority carriers as the lattice displacement becomes
smaller than the critical value required to maintain an insulating state following laser–induced spin canting.

PACS numbers: 78.67.Wj, 73.22.Pr, 78.47.J-,78.45.+h

INTRODUCTION

The spin– and charge–ordered phases of quantum ma-
terials are traditionally switched by tuning static parame-
ters such as chemical dopants, pressure, or magnetic fields.
Spontaneous coherence induced in this way, e.g. between
many–body states separated by the Mott–Hubbard insula-
tor gap, can establish new ordered phases via equilibrium
phase transitions. The question then arises whether non–
equilibrium phase transitions can be similarly triggered by
laser–induced charge fluctuations [1, 2] and non–thermal pop-
ulations of many–body states [3]. In this way, femtosecond
(fs) laser pulses can be used to create a quasi–instantaneous
electronic “initial condition” for non–adiabatic time evolu-
tion prior to lattice thermalization [4–8]. The physical prop-
erties of complex materials such as the manganites [9] are
governed by collective order and fluctuations of coupled de-
grees of freedom [10–14]. This results in elementary excita-
tions and order parameters with coupled charge, orbital, spin,
and lattice components, which makes it difficult to under-
pin their microscopic composition [8, 15–19]. In the man-
ganites, while strong coupling of electronic, magnetic, and
lattice degrees of freedom is believed to be responsible for
the emergence of coexisting insulating/lattice–distorted/AFM
and metallic/undistorted/FM nanoscale regions [9], the rele-
vant quasi–particles have not been fully characterized yet [19].
Some theoretical studies have proposed that the sensitivity to
the non–thermal electronic perturbations leading to the CMR
phase transition from AFM/insulating to FM/metallic state
may be due to delocalized electrons with mobility mediated

by classical spin–canting [15, 20, 21], which coexist with the
polaronic carriers that dominate in the insulating ground state
[22–24].

In quantum materials, two different pathways may lead to a
photo-induced phase transition [25]: (1) electronic pathway,
triggered by photo–excitation and subsequent relaxation of
electronic and spin populations can also change the lattice po-
tential in the excited state, (2) lattice pathway, which may lead
to a delayed crystallographic phase transition that typically
completes within ps timescales [26]. Here we are mostly in-
terested in the first stage of the time–dependent process, which
is initiated by fs laser excitation of AFM insulating systems
such as the manganites. In VO2 [25] and TiSe2 [8] systems,
experiments have shown that a highly non-equilibrium initial
condition is set by quasi-instantaneous electronic processes
induced by the photo–carriers, which can lead to metastable
states prior to an insulator–to–metal phase transition [8, 27].
For example, in the TiSe2 insulator, the electronic compo-
nent of the charge density wave order parameter is quenched
quasi-instantaneously while the lattice component persists [8].
This results in a non–equilibrium state with lattice order sim-
ilar to equilibrium, whose properties are controlled by the
photoinduced change in the local electronic density matrix
[8]. In VO2, a metastable metallic phase with the mono-
clinic lattice structure of the insulating phase is observed af-
ter the electronic component has switched from insulating to
metallic [27]. Here we investigate the possible role in a non–
equilibrium phase transition of spin fluctuations driven by
photo–carrier populations interacting with a deformable spin
and lattice medium.
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In low-bandwidth insulating manganites such as the
Pr0.7Ca0.3MnO3 system (PCMO) studied experimentally
here, metallic phases cannot be accessed by tuning the temper-
ature [9]. An AFM insulator to FM metal equilibrium phase
transition can, however, be induced non–thermally, e.g. by ap-
plying a strong magnetic field, which leads to CMR. While in
equilibrium a magnetic field simultaneously changes the cou-
pled electronic, magnetic, and lattice order components, sev-
eral ultrafast spectroscopy experiments [13, 14, 28–36] have
observed non–thermal fs charge and/or spin dynamics prior
to electron–lattice relaxation. While a new lattice structure
seems to be established after ps timescales, electronic, or-
bital, and magnetic orders have been observed to change much
faster. Photo-induced non-equilibrium phase transitions are
typically characterized by a nonlinear threshold dependence
of the measured properties on the pump laser fluence. The
time evolution of the charge, orbital, lattice, and magnetic
components of a complex order parameter can be separately
monitored with fs X-ray diffraction (XRD) [28, 29]. The fs
dynamics of AFM order is less understood, as it may involve
an AFM→FM transition initiated by charge excitations. Ref.
4 reported a threshold increase of the fs-resolved magneto-
optical Kerr (MOKE) and circular dichroism (MCD) signals
at 100fs time delays, which is absent at ps time delays and
only appears below the AFM transition (Neel) temperature
when a small magnetic field breaks the symmetry. This fs non-
linearity was interpreted in terms of an AFM→FM transition
that occurs prior to the ps spin–lattice relaxation [4]. It was
proposed that quantum femtosecond magnetism [6] and FM
correlation may arise from both laser–driven charge fluctua-
tions and non-thermal electronic populations. However, the
microscopic link between spin and charge excitations in the fs
temporal regime requires further clarification.

Few ultrafast spectroscopy experiments suggest a link be-
tween fs spin and charge laser–induced dynamics of an AFM–
ordered insulating phase. The magneto-optical Kerr measure-
ments by Miyasaka et.al. [30] show that ultrafast excitation
of the charge degrees of freedom of the Nd0.5Sr0.5MnO3 CE–
type AFM ground state leads to a ps AFM→FM transition.
The initial increase of the magnetic moment within 1ps was
attributed to non–thermal spin–flip electronic scattering in the
excited state. This is followed by a much slower magnetiza-
tion increase due to spin–lattice thermalization, which slows
down close to the AFM transition temperature. Matsubara
et.al. [31] argued that a ps phase transition develops in several
steps following fs photoexcitation of the Gd0.55Sr0.45MnO3

AFM/CO/OO ground state. First, a metallic state develops
after 100fs and decays within 1ps, while the magnetization
grows within 500fs and decays within 10ps. The fast mag-
netization component increases with pump intensity, indicat-
ing that it arises from a microscopic mechanism that involves
the excited photo-electrons. Okimoto et al [32] observed that
100fs photoexcitation of Gd0.55Sr0.45MnO3 leads to metal-
lic behavior of the conductivity within 200fs. The insula-
tor gap decreases within 100fs timescales, well before lattice
thermalization, and triggers the subsequent dynamics. The

differential reflectivity displayed two relaxation components,
fast (∼280fs) and slow (1ps). For low intensity, the ps com-
ponent was smaller than the fs component and increased lin-
early with pump power, while the fast fs component domi-
nated for high intensity. Wall et. al. [33] studied the A-type
AFM insulating state of LaMnO3, where the spins align in
FM planes that are AFM-coupled along the perpendicular c-
axis. They found that the amplitude and damping of coherent
lattice vibrations exhibit a sharp discontinuity at the Neel tem-
perature, unlike for the background signal that showed smooth
dependence on temperature. The observation of a ∼50-100fs
relaxation component of the differential reflectivity indicates
that an ultrafast spin–correlation mechanism is at work in the
photoexcited state during non-thermal timescales, where elec-
tronic processes and the tunneling between the AFM–coupled
FM planes can play an important role.

Pulsed X–ray measurements of the individual order pa-
rameter components can distinguish electronic, lattice, and
spin signals. Forst et al [29] measured the time evolution
of the magnetic and orbital order of the LaSrMnO mangan-
ite and compared the results between mid-infrared (tuned at
92meV) and near-infrared (tuned at 1.5eV) pump photoexci-
tation. While the near–infrared photoexcitation of the elec-
tronic degrees of freedom changes the AFM order on a fast
250fs timescale, the mid–infrared excitation of lattice degrees
of freedom leads to much slower (∼ 10ps) dynamics. This
experimental result indicates that fs changes in the magnetic
properties triggered by spin–photoelectron coupling should be
distinguished from the slower spin–lattice relaxation. Ehrke
et. al. [34] studied the La0.5Sr1.5MnO4 AFM state with ultra-
fast XRD and showed that, while fs photoexcitation melts the
AFM spin order, the orbital order is only partly reduced. This
observation was attributed to a metastable FM state induced
by the charge redistribution between different lattice sites fol-
lowing fs laser excitation. Unlike in the conventional double–
exchange mechanism [37], the charge excitations were found
to change the short–range magnetic correlations and cant the
AFM spins prior to melting of the JT-distorted lattice. Beaud
et.al. [28] used time-resolved XRD to show that the dynamics
of the phase transformation may be described phenomenolog-
ically by a single time-dependent parameter determined by the
photo–carrier populations. They proposed that a phenomeno-
logical potential with time–dependent spring constant can de-
scribe the dynamics based on classical equations of motion
for three coupled lattice modes. Matsuzaki et.al. [35] studied
the ultrafast dynamics of charge and orbital order melting in
Nd0.5Ca0.5MnO3 by using 20fs pulses with low intensity and
concluded that, although charge order melts within 30fs via
strong electronic correlations, the oxygen displacements as-
sociated with the orbitally–ordered ordered phase persist and
are only released later. Polli et.al. [13] found that melting of
the charge order in PCMO occurs non-instantaneously within
50fs, later than in Nd0.5Ca0.5MnO3. This delayed charge re-
sponse was attributed to cooperative and nonlinear effects for
high pump intensities. Finally, Singla et. al. [36] reported a
18fs bottleneck for the loss of orbital order following photo-
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excitation of La0.5Sr1.5MnO4 with 4fs laser pulses. The ob-
servation of a threshold in the fluence dependence of the JT
phonon amplitude is consistent with a cooperative response
for high photo-carrier density.

To interpret ultrafast spectroscopy experiments such as the
above, a quantum theory of coupled spin and charge dynam-
ics in systems with deformable spin and lattice backgrounds
is needed. Model Hamiltonians studied with different the-
oretical techniques must be used to make progress in un-
derstanding strongly correlated systems [38]. In this paper
we propose a possible mechanism for photoinduced insula-
tor to metal transition triggered by transient spin–canting that
changes the excited quasi–particle energy dispersions, which
is based on the interplay between a quasi–instantaneous elec-
tronic/magnetic pathway and a delayed lattice pathway. We
discuss the possible role of “soft” composite fermion quasi–
particle energy bands that are modified by fs laser excita-
tion and strong electron–magnon quantum fluctuations. We
note that the latter have been observed to significantly change
the spin–wave energy dispersion and lifetimes in metallic
manganites [39–41]. Our calculations are based on a gen-
eralized tight–binding model taken from the manganite lit-
erature [9, 19]. We treat the local Mn + O multi–electron
configurations and strong magnetic exchange correlations by
introducing Hubbard composite fermion operators [17, 42].
We present numerical results for a CE–type AFM/CO/OO
unit cell showing strong coupling of the AFM chains and
planes that characterize the insulating states of the mangan-
ites [9, 19, 21]. due to quantum spin fluctuations coupled
to the charge excitations. In particular, such strong electron–
magnon coupling delocalizes the excited quasi–particles due
to the deformation of the AFM spin background during the
electronic hopping. We show that the non–perturbative de-
pendence of the quasi–particle energy disperions on local spin
canting leads to a broad metallic conduction band and quench-
ing of the insulator energy gap. As a result, the critical value
of the Jahn–Teller (JT) lattice displacement necessary for sta-
bilizing an insulating state increases, which can lead to an ul-
trafast transition to a metallic state following photoexcitation
of FM correlation.

The experimental observation of threshold nonlinear depen-
dence of pump–probe signals on the pump fluence is typi-
cally associated with photoinduced phase transitions. Here
we present experimental results showing a threshold non–
linear pump–fluence dependence of both fs differential re-
flectivity and fs magneto–optical signals below the transition
to AFM order. In particular, the ratio of the amplitudes of
the “fast” (fs) and “slow” (ps) relaxation components of a
two–step bi–exponential relaxation of the differential reflec-
tivity signal below the Neel temperature grows nonlinearly
with pump–fluence close to the threshold for fs AFM→FM
switching observed in both Kerr effect (MOKE) and magnetic
circular dichroism (MCD) signals at∼100fs. We propose that
a possible interpretation of the above experimental nonlinear-
ities involves an inverted photoexcited state above a pump flu-
ence threshold, where fast, mobile, metallic quasi–electrons

dressed by quantum spin fluctuations coexist with the pola-
ronic carriers that populate the ground state. Laser excita-
tion then results in ultrafast charge redistribution between JT–
distorted and undistorted sites, which changes the energy gap,
spin properties, and lattice distortions.

The paper is organized as follows. In Section II we outline
our theoretical model and discuss its relevance to the man-
ganites. In Section III we discuss the photoexcitation of spin
dynamics and present a quantum kinetic calculation of non–
adiabatic FM short–range correlation arising from quantum
spin fluctuations. In Section IV we present our quantum ki-
netic theoretical formulation of the charge–spin coupled dy-
namics of composite fermion quasi–particles. In Section V
we calculate the itinerant quasi-particle energy dispersions
within a Hubbard–I mean–field approximation and compare
with bare electrons and holes moving in an adiabatically–
decoupled classical spin background. In Section VI we pro-
pose a theoretical picture of a fs photoinduced insulator to
metal transition driven by spin dynamics. In Section VII we
present fs–resolved pump–probe experimental results show-
ing the emergence of two different (fs and ps) relaxation com-
ponents below the AFM transition temperature, whose ampli-
tude ratio displays a nonlinear dependence at the pump fluence
threshold necessary for fs magnetization photogeneration. In
Section VIII we discuss our conclusions and implications of
our results and, lastly, we summarize the theoretical calcula-
tions in the appendix.

THE MODEL AND ITS RELATION TO THE MANGANITES

Our generalized tight–binding model is based on Hubbard
operators that describe charge excitations bertween the local
multi–electron configurations [17]. We assume that the charge
at each site i fluctuates between multi–electron configurations
|iαM〉, with total spin (J,M), and |im〉, with total spin (S,m).
The above electronic configurations are assumed to be eigen-
states of the local Hamiltonian [17] that describes all on–site
interactions, including the strong electron–lattice and mag-
netic exchange (Hund’s rule) interactions. In the manganites,
these correspond to Mn + O hybridized states analogous to the
Zhang–Rice local singlet between the O hole and the Cu2+

ion in the Cu–oxide superconductors [43], which can justify
the use of a generalized tight-binding model [19] and is con-
sistent with the ab–initio results of Ref. 44.

The motion of an itinerant spin–1/2 electron is restricted by
its strong magnetic exchange interaction JH with the local-
ized spins on each site [37] and by the energy barrier EJT be-
tween JT–distorted and undistorted site local configurations.
JH originates from Hund’s rule and typically exceeds the ki-
netic energy bandwidth (strong coupling limit) [9, 21]. We de-
scribe such strong local FM correlation between the itinerant
and localized electron spins by introducing magnetic Hubbard
bands [17, 42] characterized by the total spin quantum num-
bers (J,M) and note that the population of J = S−1/2 states
is suppressed. The local electron–lattice interaction is charac-
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terized by two different parameters: (i) ratio of the JT energy
barrier EJT over the electron hopping energy t, (ii) adiabatic-
ity parameter, given by the ratio of phonon energy h̄ωph over
t [21]. In the manganites, the JT phonon energy (∼70meV)
is smaller that the electron hopping energy (t ∼200meV) [9],
which implies that hopping between sites is faster than the
lattice rearrangements that accompany it [21]. Similar to pre-
vious works [9, 45, 46], we can then assume that the electronic
energy levels depend on classical lattice coordinates.

In our calculations, the AFM order was modelled with a
CE–AFM unit cell. Such insulating ground state with charge
order (CO) and orbital order (OO) is observed, e.g., in the
PCMO manganite studied experimentally here and in several
half–doped manganites. The unit cell, Fig. 1(a), consists of in-
equivalent alternating “bridge” and “corner” lattice sites pop-
ulated by Mn + O octahedra with different charge, spin, and
JT distortions as observed experimentally [47]. These Mn
+ O clusters order along charge–modulated zig–zag chains
with FM spins [9, 44]. Different chains are AFM–coupled
and stacked in AFM–coupled planes (Fig. 1(a)). The JT dis-
tortions stabilize OO by splitting the degenerate states at the
bridge sites, which enhances the population of the Mn 3d or-
bitals pointing along the zig–zag chain [9, 44]. As several
experiments report that the Mn valence is similar between
bridge and corner sites, the charge modulation most likely in-
volves the total charge of the Mn + O local clusters, rather
than Mn3+/Mn4+ ions as originally thought [9]. For exam-
ple, the calculations of Ferrari et. al. [44] suggest that, in the
less distorted corner sites of the zig–zag FM chain, the role
of the Mn4+ core spin is played by a Mn atom strongly hy-
bridized with spin–polarized oxygen holes. On the other hand,
the bridge sites are populated by a Mn3+ ion surrounded by
a JT–distorted oxygen octahedron. In our model, we describe
the Mn + O corner states in terms of “core spin” states |im〉,
m = −S, · · · , S, with S ≈3/2 [44]. In the bridge sites, we
consider an electronic configuration |iαM〉, M = −J · · · J ,
with total spin J = S + 1/2 ≈ 2, whose energy is lower by
EJT as compared to the corner site configurations due to the
JT lattice distortion.

The main purpose of this paper is to discuss the possi-
ble role of spin fluctuations in laser–induced insulator→metal
and AFM→FM non–equilibrium phase transitions. Within
classical spin scenarios, the itinerant electrons move on top
of an adiabatically–decoupled spin background with their
spins FM–locked to the localized electron spins at each site:
M=S+1/2 and m=S. Such an adiabatic picture assumes that
the electronic hopping fluctuations occur on a time scale faster
than the spin dynamics, so the spins always point along the
spin–canting classical angles θi. For AFM–coupled chains

as in the CE–AFM state Fig. 1(a), spin conservation then
restricts the electronic motion inside a single FM chain for
large JH , due to the magnetic exchange energy cost for cre-
ating an anti–parallel spin configuration [9]. On the other
hand, quantum spin fluctuations allow the electrons to hop on
sites with anti–parallel spins by flipping the localized spins via
JHS

±
i ·s

∓
i . The electrons can then form states with J =S+1/2

(b)

)̂ ′ ′
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FIG. 1. (Color online) (a) Illustration of the inter–site electronic exci-
tations in the CE–AFM/CO/OO three–dimensional unit cell consid-
ered here, which consists of 16 sites in two stacked AFM planes and
two AFM–coupled FM zig–zag chains with alternating JT–distorted
(bridge) and undistorted (corner) sites [9]. (b) Hopping of a com-
posite fermion quasi–particle between two AFM sites induces quan-
tum spin canting by forming a local state with total spin M=S−1/2
and J = S+1/2. Such inter–site charge–spin coupling is described
by the Hubbard oparator amplitudes 〈ê†α′σ′(i

′M ′)êασ(iM)〉 as dis-
cussed in the text. (c) Calculated time–dependence of the total z–
component Sz(t) of the two AFM core spins discussed in the text,
driven by the coupling of a 100fs optical field pulse, for population
lifetime T1=1ps and different Rabi energies d0.

but M = S − 1/2 or smaller via electron–magnon quantum
fluctuations [39–41].

The motion of an itinerant electron is restricted by spin–
exchange, electron–lattice, and Mn + O local correlations.
To take this into account, we project the electron operator in
terms of composite fermion excitations with total charge e,
which are created by the Hubbard operators [17, 42]

ê†ασ(iM) = |iαM〉〈i,M − σ

2
|, (1)

on each site i, where σ=± 1 labels the z–component of the
local excitation total spin (h̄ =1). These Hubbard operators
obey the non–canonical anti–commutation relations [17, 18]

[ê†α′σ′(i
′M ′), êασ(iM)]+ = δii′

[
δ
M ′,M+σ′−σ

2

|iα′M ′〉〈iαM |+ δM ′,M δα,α′ |i,M −
σ

2
〉〈i,M ′ − σ′

2
|
]
. (2)



5

For sufficiently large JH , the J=S+1/2 local populations dom-
inate (lower magnetic Hubbard band) and

|iαM〉 =

√
S +M + 1

2

2S + 1
|iα; ↑M − 1

2
〉

+

√
S −M + 1

2

2S + 1
|iα; ↓M +

1

2
〉, (3)

where M=−J · · · J and α labels the eigenstates of the JT and
all other local interactions on site i. For our purposes here,
the details of these states are not crucial. Assuming that elec-
trons hop between sites faster than the lattice distortions that
accompany this hopping, as in the limit h̄ωph/t � 1 [21],
we can approximate |iα;σ/2,M − σ/2〉 ≈ c†iασ |i,M − σ

2 〉,
where c†iασ creates a bare electron with spin σ/2 in state α
(σ = ±1). We then project the bare electrons as follows [17]:

c†ασi ≈ ê
†
ασ(i) =

∑
M

Fσ(M) ê†ασ(iM), (4)

where we introduced the Clebsch–Gordan coefficients

Fσ(M) = 〈iαM |c†ασi|iM − σ/2〉 =

√
S + 1

2 + σM

2S + 1
. (5)

The projected Hamiltonian reads

H(t) =
∑
i

∑
αM

Ei(αM) |iαM〉〈iαM |

+
∑
i

∑
m

Ei(m) |im〉〈im|+Hhop(t), (6)

where the many–electron states |iαM〉 and |im〉 are the eigen-
states of the local Mn + O Hamiltonian at site i with eigen-
values Ei(αM) (|iαM〉) and Ei(m) (|im〉). The excitation
energies

εασ(i) = Ei(αM)− Ei(M −
σ

2
), (7)

depend on the lattice coordinates due to the electron–lattice
(JT) local coupling, which lowers the energy of the |iαM〉
configurations at the JT–distorted bridge sites. We thus as-
sume εασ(i) = −EJT (Q) at all bridge sites and εασ(i) = 0 at
all corner sites, where Q is the lattice coordinate. The quasi–
equilibrium spin directions on each site are determined by the
classical spin–canting angles θi, which define the local z–axes
for spin quantization. The quasi–particle hopping is described
by [17]

Hhop(t) = −
∑
ii′

∑
σ

∑
αα′

Vαα′(i− i′)
[
cos

(
θi − θi′

2

)
ê†ασ(i) êα′σ(i′) + σ sin

(
θi − θi′

2

)
ê†ασ(i) êα′−σ(i′)

]
, (8)

where the hopping amplitudes Vαα′(i − i′) have both static
(tαα′ ) and laser–induced (∆Vαα′ ) contributions, Vαα′(j −
i) = tαα′ + ∆Vαα′(t). Transient changes in the inter–site
hopping amplitudes, ∆V , can arise from the coupling of the
optical field:

∆Vαα′(i− j) ≈ d0(t)
tαα′(i− j)

h̄ωp
(9)

where d0(t)=eE(t)a is the Rabi energy, a is the lattice spacing,
E(t) ∝ e−t

2/t2p is the amplitude of the laser field, and h̄ωp is
the pump central frequency (tp=100fs here). Eq. (9) can be
derived by expanding the Peierls substitution expression of
the hopping amplitude between sites ri and rj in terms of the
laser vector potential A(t) for typical laser intensities:

Vαα′(j− i) = tαα′(j− i) exp[−ieA(t) · (rj−ri)/h̄c]. (10)

∆V (t) can also arise from time–dependent changes in the lat-
tice distortions, which change the local configurations. For
σ=1, the first term on the rhs of Eq.(8) recovers the double ex-
change model Hamiltonian [9, 20, 37] and vanishes for anti–
parallel spins |θi-θi′ |=π.

FEMTOSECOND QUANTUM SPIN DYNAMICS

In this section we discuss the possibility that charge pho-
toexcitation may instantaneously excite spin dynamics. For
example, in weakly correlated magnetic semiconductors, a
”sudden” non–adiabatic tilt of the magnetization results from
photoexcited population of states with strong spin–orbit in-
teraction, which creates a fs spin–orbit–torque pulse [7].
Here we show that fs FM correlation may be induced quasi–
instantaneously via quantum spin fluctuations triggered by the
photocarriers. The core spin component Sz(i) along the z–
axis defined by the quasi–equilibrium spin canting angle θi
may be expressed in terms of the local populations as follows:

Sz(i) =

S∑
m=−S

mρi(m) +

S+ 1
2∑

M=−S− 1
2

M
S

S + 1
2

∑
α

ραi (M),

(11)
where

ρi(m) = 〈|im〉〈im|〉, ραi (M) = 〈|iαM〉〈iαM |〉, (12)

and we assumed that JH is sufficiently large so that only
J=S+1/2 total spin configurations are populated. Similarly,
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the z–component of the itinerant electron spin is expressed as

sαz (i) =
1

2S + 1

S+ 1
2∑

M=−S− 1
2

M ραi (M). (13)

In the classical spin limit, the only populated states have
m = S or M = S + 1/2, as all spins point along the direc-
tions θi(t). Introducing the deviation of Sz(i) from its classi-
cal value, ∆Sz(i) = S − Sz(i), and using the completeness
relation ∑

αM

ραi (M) +
∑
m

ρi(m) = 1 (14)

we obtain from Eq.(11)

∆Sz(i)

S
=
∑
α

S− 1
2∑

M=−S− 1
2

S + 1
2 −M

S + 1
2

ραi (M)

+

S−1∑
m=−S

S −m
S

ρi(m). (15)

The above equation describes canting from the classical spin
direction θi due to the population of local states with M ≤
S − 1/2 and m ≤ S − 1. Similarly, we introduce the de-
viation of the itinerant electron spin from its classical value,
∆sαz (i) =

fαi
2 − s

α
z (i) where

fαi =
∑
M

ραi (M), (16)

is the total electron population on site i. We then obtain from
Eq.(13)

∆sαz (i) =
1

2

S− 1
2∑

M=−S− 1
2

S + 1
2 −M

S + 1
2

ραi (M). (17)

In this section we provide an example of photoexcitation of
short–range FM correlation

∑
i∈I ∆Sz(i) 6= 0 in a cluster I

of sites i. To illustrate this possibility, we consider a dimer
of AFM local spins that interact with e–h photoexcitations
(Fig.1(b)). This dimer consists of (i) a JT–distorted site (site 1)
populated by a J=S+1/2 configuration |iαM〉 with total spin
M=S+1/2 and energy −EJT , and (ii) an undistorted site (site
2) populated by a core spin S with z–component m=−S anti–
parallel to the spin at site 1 and energy zero. A fairly localized
charge density [48] already captures some of the properties
of the extended system [19, 20, 45] and leads to an effective
Hamiltonian with short–ranged interactions [19–21]. Here,
such interactions are modified by the coupling of a 100fs op-
tical field pulse with central frequency h̄ωp ∼ EJT , which
drives inter–site charge fluctuations illustrated by yellow ar-
rows in Fig. 1(b). The density matrix of the quantum dimer
considered in this section could serve as a quantum variable of
a more rigorous density matrix embedding theory that treats

strong correlations by mapping the extended system into a
self–consistent impurity plus bath problem similar to dynam-
ical mean field theory [49]. Laser–induced non–equilibrium
changes in the local density matrix affect the itinerant quasi–
particle dispersion, energy bandgap, and phonon properties in
correlated systems with “soft” energy bands [8, 50]. In this
section we solve the quantum–kinetic equations of motion for
the spin–dependent density matrix (appendix) and calculate
the z–component of the total core spin of the two above sites,
Sz=Sz(1)+Sz(2), by using Eq.(11). Fig. 1(c) shows that a fi-
nite ∆Sz(t), Eq.(15), develops with time. A long–range mag-
netization could then arise if a macroscopic number of dimers
(or clusters) orients along a preferred direction [4, 31].

To interpret the calculated time–dependence ∆Sz(t), we
plot in Fig. 2 all photoinduced populations ∆〈|im〉〈im|〉 and
∆〈|iαM〉〈iαM |〉 of the two AFM sites as function of time.
Here we assumed the same z–axis for both sites. Figs. 2(a),
2(c), and 2(e) compare the photoexcited spin populations of
the JT–distorted site 1 for three short dephasing times T2 of
the inter–site e–h charge fluctuations. The population of the
M=S+1/2 ground state configuration decreases with time due
to the laser–driven electron hopping to site 2, which creates a
quasi–hole excitation |1α, S+1/2〉 → |1S〉 on site 1. This ex-
citation leaves the core spin unchanged with m=S (see lower
panels of Figs. 2(a), (c), and (e)), so ∆Sz(1) ≈ 0. The pho-
toexcited electron hops on site 2 while conserving spin by cre-
ating a local excitation |2,−S〉 → |2α,−(S − 1/2)〉. The
population of these M = −(S−1/2) configurations on site 2
results in quantum canting of the local spin ∆Sz(2) 6= 0. For
very short dephasing times, the charge fluctuations terminate
after the initial charge transfer (see Fig. 2(e) and 2(f) calcu-
lated for T2=8fs). For longer T2 =50fs, there are additional
populations of the M= S−1/2 total spin state on site 1 and
the m = −(S − 1) core spin state on site 2, which further
enhance ∆Sz . In this case, the photo–electron can hop back
to site 1 from site 2 before the laser–induced inter–site coher-
ence is destroyed, which can lead to non–equilibrium molec-
ular bonding between AFM sites that modifies the inter–site
magnetic exchange interaction. Such laser–induced changes
in the spin interactions can be described by deriving a quan-
tum master equation from the equations of motion discussed
in the appendix. In all cases, charge photoexcitation induces
quantum dynamics of ∆Sz(t), which increases from zero dur-
ing electron hopping (quasi–instantaneous FM correlation).
In our model, ∆Sz(t) displays a nonlinear dependence on
pump intensity due to population inversion with lifetime T1

(appendix). Singla et. al. [36] observed that pump–probe os-
cillations in La0.5Sr1.5MnO4 persist at negative time delays
(probe before the pump), which is consistent with T2 ∼15fs.
For such T2, Figs 2(c) and (d) show an appreciable FM cor-
relation between the two AFM–coupled sites. In all cases,
∆Sz(t) describes non–adiabatic dynamics of the background
spins, which leads to spin–canting from the quasi–equilibrium
directions θi that is driven by the photoexcitation of quasi–
particles dressed by spin fluctuations as discussed next.
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QUANTUM KINETICS OF ITINERANT COMPOSITE
FERMION QUASI–PARTICLES

In this section we summarize the equations of motion
that determine the energy bands and time evolution of com-
posite fermion quasi–particles in the strong-coupling limit.
The time evolution of the local spin–dependent populations
ραi (M) and ρi(m) at site i, Eqs. (34) and (35, is deter-
mined by the inter–site amplitudes 〈ê†βσ̄(j) êασ(i)〉. The
equations of motion for the latter non–local coherences,
Eq.(36), couple to four–particle density matrices of the form
〈[ê†βσ̄(j), êβ′σ′(j)]+ ê

†
α′σ′(l) êασ(i)〉 with j 6= l, i. The

anti–commutator [ê†βσ̄(j), êβ′σ′(j)]+, Eq.(2), differs from its
fermionic value due to the restrictions in the population of the
J=S+1/2 and J=S-1/2 Hubbard bands imposed by the strong
Hund’s rule on–site interaction and is determined by the lo-
cal populations and bosonic excitations. Using a Hartree–
Fock factorization of the above four quasi–particle density
matrix, we obtain a closed system of equations of motion that
takes into account the kinematic interaction due to the strong
JH but neglects fluctuations of the composite fermion anti–
commutator:

i∂t〈ê†βσ̄(j) êασ(i)〉 − [εασ(i)− εβσ̄(j)] 〈ê†βσ̄(j) êασ(i)〉

= 〈[ê†βσ̄(j), êβσ̄(j)]+〉
∑
l

∑
α′

Vα′β(l − j) 〈
[
cos

(
θl − θj

2

)
ê†α′σ̄(l)− σ̄ sin

(
θl − θj

2

)
ê†α′−σ̄(l)

]
êασ(i)〉

−〈[ê†ασ(i), êασ(i)]+〉
∑
l

∑
β′

Vαβ′(i− l) 〈ê†βσ̄(j)

[
cos

(
θl − θi

2

)
êβ′σ(l)− σ sin

(
θl − θi

2

)
êβ′−σ(l)

]
〉, (18)

where i 6= j. The main difference between composite
fermion quasi–particles and bare electrons comes from the
spin–dependent anti–commutators

nασ(i) = 〈[ê†ασ′(i
′), êασ(i)]+〉 = δii′δσσ′

 S+ 1
2∑

M=−S− 1
2

S + 1
2 + σM

2S + 1
ραi (M) +

S∑
m=−S

S + 1
2 + σ(m+ σ

2 )

2S + 1
ρi(m)

 , (19)

where we neglected the population of the J = S − 1/2 upper
Hubbard band. We note the analogy to the composite boson
behavior of excitons, which results in optical nonlinearity [2]
due to phase space filling effects arising from the deviation of
excitons from bosonic behavior (kinematic interaction). Us-
ing the completeness relation Eq.(14) and Eqs.(11) and (13),
the above equation takes the following form after neglecting
the population of configurations α′ 6= α:

nασ(i) =
1

2S + 1
×[

S +
1

2
+ σ

(
Sz(i) + sαz (i) +

σ

2
(1− fαi )

)]
. (20)

Introducing the spin fluctuations, ∆Jαz (i) = ∆Sz(i) +
∆sαz (i), determined by population of M ≤ S − 1/2 and
m ≤ S − 1 spin states (see Eqs. (15) and (17)), we obtain

from the above equation

nασ(i) =
S + 1

2 + σ
(
S + 1

2 −∆Jαz
)

2S + 1

+
1− σ

2

1− fαi
2S + 1

. (21)

In the limit of classical spins, S →∞, Eq.(21) gives nα↑(i) =
1 and nα↓(i) = 0 as in the case of bare electrons. In this
approximation, the electrons are effectively spinless, as their
spin is locked with the core spin in a FM configuration parallel
to θi due to Hund’s rule [9, 37]. On the other hand, in the case
of composite fermions, Eq.(21) gives

nα↑(i) = 1− ∆Jαz
2S + 1

, nα↓(i) =
1− fαi + ∆Jαz

2S + 1
6= 0, (22)

which allows for σ=-1 quasi–particle excitations with total
spin anti–parallel to the equilibrium spin direction θi. In the
above equation, the composite fermion anticommutators de-
pend on the local spin fluctuations ∆Jαz , as well as on the
filling factor fαi that determines the spatial modulation of the
local charge.
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Eq.(18) suggests a Hubbard–I approximation for describing
the itinerant quasi–particles [17, 42]:

i∂t êασ(i, t) = εασ(i) êασ(i, t)

−〈[ê†ασ(i), êασ(i)]+〉
∑
l

∑
β′

Vαβ′(i− l)
[
cos

(
θl − θi

2

)
êβ′σ(l, t)− σ sin

(
θl − θi

2

)
êβ′−σ(l, t)

]
. (23)

For a periodic lattice of sites located at positions (R, i), where
i now labels the different atoms in the unit cell and R is the
periodic lattice vector, we transform to k–space,

êkσ(iα) =
1√
N

∑
R

e−ikR êασ(Ri), (24)

where N is the number of unit cells and k is the wavevector,
and introduce the normal modes

ênk =
∑
iβσ

uσnk(iα)
êkσ(iβ)√
nβσ(i)

, (25)

where n labels the different quasi–particle branches (bands).
From Eq. (23) we then obtain the following eigenvalue equa-
tion, which describes the quasi–particle energy bands:

(ωnk − εβσ(j))uσnk(jβ) = −
∑
lα

V kαβ(l − j)
√
nβσ(j)

√
nασ(l) cos

(
θl − θj

2

)
uσnk(lα)

+σ
∑
lα

V kαβ(l − j)
√
nβσ(j)

√
nα−σ(l) sin

(
θl − θj

2

)
u−σnk (lα). (26)

where

V kαβ(i− j) =
∑
R

Vαβ(R+ i− j) e−ikR, (27)

The above eigenvalue equation depends on the coupling be-
tween σ=1 (parallel quasi–particle spin) and σ=-1 (anti–
parallel quasi–particle spin) excitations. By neglecting this
coupling, the σ=1 contribution to the above equation re-
covers the previous results for bare electrons and classical
spins [9, 20, 37, 53]. In this case, the quasi–particle exci-
tation total spin is locked parallel to the background spins
throughout the motion and its hopping amplitudes V kαβ(l −
j)
√
nβ↑(j)nα↑(l) cos

(
θl−θj

2

)
are maximized between FM

sites with θi=θj . On the other hand, for quantum spins, the
finite anticommutator nα↓(i) couples σ=1 and σ=-1 excita-
tions and allows composite fermion quasi–particles to hop be-
tween AFM sites |θl − θj | ∼ π with an amplitude V kαβ(l −
j)
√
nβ↑(j)nα↓(l) sin

(
θl−θj

2

)
. In this way, the quantum spin

fluctuations couple the AFM chains and planes of Fig. 1(a)
(second term on the rhs of Eq.(26)) and lead to quasi–particle
delocalization.

Eq.(26) describes ”soft” energy bands of itinerant com-
posite fermion quasi–particles. These bands depend non–
perturbatively on the local spin and charge populations of the
different lattice sites as determined by Eqs. (19) and (22).

This dependence on the itinerant quasi–particle dispersion on
the local density matrix, due to the deviations of the composite
fermions from fermionic behavior, can lead to laser–induced
non–adiabatic changes determined by the equations of motion
Eqs. (34) and (35). In addition, the quasi–particle energy
bands depend on the background spins via the classical spin–
canting angles θi(t). Finally, they depend on the classical lat-
tice displacements and their dynamics, which determine the
eigenstates |iαM〉 and |im〉 of the local Hamiltonian on each
lattice site. This local Hamiltonian changes with lattice mo-
tion, which leads to lattice–dependent local excitation ener-
gies εασ(i), Eq. (7), and hopping matrix elements Vαα′ . In the
next sections we discuss the possible role of the “soft” quasi–
particle energy bands Eq.(26) in photo–induced phase tran-
sitions and note that analogous laser–induced quasi–particle
changes in TiSe2, VO2, and Ga(Mn)As systems have been
discussed in Refs. 7, 8, and 50.

PROPERTIES OF ITINERANT QUASI–PARTICLE BANDS

In this section we compare the energy dispersions between
bare electrons and composite fermion quasi–particles. We
consider a periodic system with the CE–AFM unit cell, Fig.
1(a), with 16 sites as discussed in Section II (two bridge and
two corner sites per chain, two AFM chains per plane, two
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AFM planes). Similar results are obtained for other AFM
unit cells. For bare electrons, nα↑=1 and nα↓=0, so elec-
tron hopping between sites i and j located in different chains
can only occur with finite canting of the spin background,
|θi − θj | 6= π. In this section we consider excitation of a
collinear AFM background state, so θi=0 or θi=π. For com-
posite fermions, the hopping amplitudes in Eq.(26) depend on
the anti–commutators nασ(i), Eq.(22). In this section we as-
sume background spins relaxed along θi, so ∆Jz=0. The dif-
ference between composite fermion and bare electron bands
then comes from the finite nα↓(i) on sites with total charge
fαi < 1, which allows hopping between AFM planes and
chains. In order to compare with the results of Refs. [9, 20],
we use the same tight–binding parameters. Our conclusions
about the effects of the finite nα↓(i) do not rely on the ex-
act charge modulation fαi or parameter values, so we fol-
low Ref. [44] and simply assume that only the lowest en-
ergy Mn + O configuration α is populated in the bridge sites,
fαi =1, while only S=3/2 spin Mn + O configurations are pop-
ulated in the corner sites, fαi =0. Similar results are however
obtained for different charge density modulations fαi , which
can be included phenomenologically [15] or calculated self–
consistently in equilibrium using an ab–initio theory for the
local multi–electron configurations.

Fig. 3 compares the calculated quasi–particle dispersions
along the three different directions marked in Fig. 1(a): kx
(along the zig–zag chains), ky (perpendicular to the chains but
along the same plane), and kz (perpendicular to the planes).
For a collinear AFM state, there are pronounced differences
in the energy bands between bare electrons (nα↑(i) = 1
and nα↓(i) = 0) and composite fermion quasi–particles
(nα↑(i) = 1 but nα↓(i) 6= 0). This is the case for both
small (Figs 3(a) and (b)) and large (Figs 3(c) and (d)) JT en-
ergy barrier EJT between the bridge and corner sites. Figs.
3(a) and 3(c) also show a pronounced difference between the
e (above the insulator gap) and h (below the insulator gap) en-
ergy bands for quantum spins, which differ markedly from the
case of classical collinear AFM spins (Figs. 3(b) and 3(d)).

In the classical spin limit, Figs 3(b) and 3(d) show that there
is no energy dispersion along ky and kz , as electron hopping
between different AFM–coupled chains and planes is prohib-
ited without spin canting between chains. The only energy
dispersion comes from electron motion along a single chain
with FM spins [9, 53]. For large EJT , this kx–dispersion is
also small, due to the energy barrier EJT between the alter-
nating JT–distorted and undistorted sites observed experimen-
tally [20, 44, 52]. Therefore, the electron charge density is
mostly localized in all three directions for large EJT . This
justifies the use of a localized electron effective Hamiltonian
for describing the spin interactions [20, 21], as in the previous
section. With decreasing EJT , the kx dispersion increases,
determined by the ratio t/EJT . However, the energy bands
below and above the energy gap have a similar dispersion (Fig.
3(b)), which can be obtained analytically [20]. Importantly,
the lowest conduction band is dispersionless [9] and is a linear
combination of corner state configurations [20]. The insulator

energy gap corresponds to transitions from the valence band
and the above discrete state [20].

As seen in Fig. 3, the above picture changes when spin fluc-
tuations are included non–perturbatively by using Eq. (26).
This is already seen in the deep insulating limit of large EJT ,
where the JT confinement results in energies clustered around
ε=0 (undistorted sites) and ε=-EJT (JT–distorted sites) (see
Figs. 3(c) and (d)). The energy gap is then dominated by
EJT , so a transition to a metallic state requires relaxation of
the JT distortions. However, the JT confinement does not pro-
hibit tunneling between stacked planes (see Fig. 1(a)), which
are AFM–coupled. With quantum spin fluctuations, Fig. 3(c)
shows that a finite quasi–particle energy dispersion develops
in the conduction band along kz , due to deformation of the
collinear AFM background by the excited electrons. In this
case, quasi–particle excitation opens up a channel of inter–
plane hopping, which delocalizes the electrons via quantum
spin fluctuations (electron–magnon coupling).

Figs. 3(a) and 3(b) show that the differences in the energy
bands between a bare electron and a composite fermion quasi–
particle become very pronounced as EJT ∼ t. On the other
hand, the valence bands remain similar. First, there are mul-
tiple composite fermion conduction bands that disperse in all
three directions, as both in–plane and out–of–plane electron
hopping between AFM chains is now facilitated by the quan-
tum spin fluctuations and can overcome the JT confinement
as EJT decreases. Second, the delocalization between the
AFM chains, enabled by the finite nα↓(i), significantly de-
creases the insulator energy gap (factor of two difference in
Fig 3) as compared to the case of an adiabatically–decoupled
classical spin background that is assumed to be slower than
electron hopping. This result suggests that, as the JT confine-
ment decreases, the excitation of composite fermion quasi–
particles can quench the insulator gap via quasi–instantaneous
spin fluctuations in the excited state. The non–perturbative
charge–spin coupling thus favors an insulator–to–metal transi-
tion. Excitation of a degenerate population of quasi–electrons
increases the spin canting and can in this way induce metal-
lic behavior, discussed in the next section. Note that classi-
cal spin calculations generally produce critical magnetic fields
that are much larger than the values measured in experiment,
as they require a large canting of the average background spins
to be induced by an external field in order to obtain metal-
lic behavior [20]. On the other hand, quantum spin canting
is induced instantaneously by the excited composite fermion
quasi–particles, whose population can be controlled by laser
photoexcitation.

Fig. 4 shows more directly that the composite fermion
quasi–electron excitations of the extended AFM system are
accompanied by strong quantum spin canting of the collinear
CE–AFM state. To see this, we compare the probabilities∑
jβ |unk↑(jβ)|2 and

∑
jβ |unk↓(jβ)|2 that describe the spin

mixing as function of EJT for two eigenstates with k=0, be-
low (left panel) and above (right panel) the insulator gap.
σ=1 (σ=-1) means quasi–particle total spin parallel (anti–
parallel) to the background local spin equilibrium direction.
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For bare electrons and classical spins,
∑
jβ |unk↑(jβ)|2=1 and

unk↓(jβ)=0. This is the case when there is no deformation of
the background spins with respect to the quasi–equilibrium
local canting angles θi (adiabatic decoupling of the spin back-
ground from the electronic hopping motion). In Fig. 4, the
eigenstate below the energy gap has very small quantum spin
canting, only for EJT ≤ t (unk↓(jβ) ≈0 in the left panel of
Fig. 4). Therefore, the motion of a quasi–hole mostly oc-
curs within a single FM chain and does not induce strong spin
dynamics. In contrast, the right panel of Fig 4 shows that
a pronounced spin deformation is induced by quasi–electron
excitations above the insulator energy gap during the elec-
tronic hopping. This is witnessed by the large probability

of spin–flips over a wide range of EJT for such eigenstates:∑
jβ |unk↓(jβ)|2 ≈

∑
jβ |unk↑(jβ)|2. We therefore expect that

a population of composite fermion quasi–electrons excited
above the insulator gap will instantaneously deform the anti–
parallel background spins and thus induce FM correlation al-
ready during excitation. With increasing quasi–particle den-
sity, these spin deformations will multiply. They can already
induced during fs laser excitation, either directly by the cou-
pling of the optical field (Section VIII) or via a fast avalanche
effect that excites many composite fermion e–h pairs close
to the insulator gap during the relaxation of a photoexcited
high energy pair [8]. In the next section we discuss the possi-
ble implication of the above results for non–equilibrium phase
transitions driven by laser–induced spin canting.

EFFECTS OF SPIN AND LATTICE PHOTOEXCITATION

In this section we propose a mechanism that can lead to
a photoinduced insulator to metal transition driven by laser–
induced spin canting and lattice motion. Similar to previ-
ous works, we assume that the lattice motion can be de-
scribed by classical coordinates Q [9, 20, 21]. The eigen-
states |iαM〉 of the local Hamiltonian depend on Q due to
electron–lattice coupling, which we model by introducing a
linear Q–dependence of the energy eigenvalues Ei(αM) sim-
ilar to Refs. 9 and 46. We neglect any Q–dependent changes
in the hopping parameters, which are less known in the real
materials [19] and should enhance the predicted effect.

Fig.5 shows the dependence of the low energy quasi–
particle energy bands on the energy barrier EJT (Q) = εJTQ
induced by the local electron–lattice coupling. These results
were obtained with a real space calculation of a small system
with periodic boundary conditions, which converges for suffi-
ciently large system size along the z–axis and reproduces the
results obtained in the periodic system. Fig. 5 compares the
Q–dependence of the energy bands between bare electrons,
which move on top of an adiabatically–decoupled classical
spin background (upper panel), and composite fermion quasi–
particles, whose motion deforms the background spins via
electron–magnon strong coupling (lower panel). It demon-
strates that the conduction and valence bands have different
dependence on both lattice distortions and spin fluctuations.
For classical spins, the upper panel of Fig. 5 reproduces pre-
vious results [20]. For collinear CE–AFM order, θ=0, in this
case the energy gap does not close even for undistorted lat-
tice Q=0, due to the electronic order of a single zig–zag chain
[9, 20]. As can be seen analytically [20], the unit cell of a
single zig–zag chain with four inequivalent bridge and corenr
sites results in two kinds of bands. The Q–dependent energy
bands are linear combinations of the local configurations of
bridge and corner sites. These bands, whose dispersion in
the first Brillouin zone is shown in Fig. 3, determine the
Q–dependence of both ground state energy and hole quasi–

particle energies. In addition, Fig. 5(a) shows a discrete de-
generate state with energy ε = 0. In the case of classical spins,
this lowest conduction band state is a linear superposition of
the electronic configurations in the two different corner sites
of the zig–zag chain unit cell and thus does not depend on Q
[20]. With increasing spin canting angle θ between the chains,
electronic hopping between planes breaks the degeneracy of
the above ε=0 state, which broadens the lowest conduction
band [20]. For large FM correlation between the chains, this
bandwidth increases and the energy gap closes, which results
in metallic behavior induced by a large classical spin canting
θ ≥ 15o.

In contrast to the above classical spin results, the lower
panel of Fig. 5 shows that, with n↓ 6= 0, the conduction band
of composite fermion quasi–particles is already very broad
and metallic in the collinear AFM ground state θ=0. Such
metallic conduction band arises from the quantum spin cant-
ing induced by the excitation of the quasi–electron, which
can tunnel between the different AFM planes and chains due
to electron–magnon quantum fluctuations that cant the back-
ground spins. While treating the spin background as adiabatic
assumes that it is slower than the electronic hopping, for com-
posite fermions quantum spin canting occurs during electronic
hopping timescales. This results in instantaneous metallic be-
havior and FM correlation during quasi–particle excitation,
even for large Q. As seen in Fig. 5(d), this can quench the en-
ergy gap even prior to any increase in θ. With increasing FM
correlation between the chains, θ > 0, the value of the critical
lattice distortion Qc > 0 below which the energy gap closes
increases. Figs. 5(d), (e), and (f) suggest that an insulator
to metal transition will occur when Q ≤ Qc. The existence
of two kinds bands with different dependence on the lattice
and spin degrees of freedom is consistent with previous de-
scriptions of the equilibrium states and CMR phase transition
of AFM insulating manganites in terms of polaronic majority
carriers and metallic–like minority carriers [21, 24].

In the ground state, the system is insulating, so Q > Qc.
Assuming θ ∼ 0 as seen in experiments, Qc=0 in the case of
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classical spins, as the electronic order of a zig–zag chain main-
tains the energy gap even for Q=0. For composite fermions,
the spin fluctuations quench the electronic energy gap, so a
larger lattice displacement is required to maintain it, Qc ≥ 0.
Laser excitation can lead to Q(t) ≤ Qc(t) and thus induce
an insulator–to–metal transition in two different ways: (i) in-
crease Qc(t) > Qc, (ii) decrease Q(t) < Q as compared to
the ground state. Fig. 6 demonstrates the difference in the
Q–dependence of the e–h quasi–particle energy gap extracted
from Fig. 5 between composite fermion and bare electron ex-
citations. It also shows that spin canting θ > 0 increases the
critical lattice displacementQc required to maintain an energy
gap. In the case of bare electrons, Fig. 6(a), the energy gap
does not close down to Q = 0 without a large canting angle
θ between the AFM chains. On the other hand, for composite
fermions, Fig. 6(b) shows that quantum spin canting during
quasi–particle excitation softens the energy gap, which now
closes below Qc ≥ 0 even for θ=0. The critical value Qc
increases with background spin canting θ for both classical
and quantum spins. However, in the case of bare electrons
with adiabatically–decoupled slower spins and more “rigid”
quasi–particle bands, a large spin canting angle θ is required
for Qc to become comparable to that in the case of compos-
ite fermions with “soft” energy bands. As a result, the insu-
lating state is more robust and rigid in the case of classical
adiabatically–decoupled spins, so it is more difficult to pho-
toinduce a phase transition without spin canting.

Furthermore, Fig. 6(c) shows that, in the case of compos-
ite fermions, the charge excitation gap depends on the spin
fluctuations around the average direction θi(t) via ∆Jz(i) =
∆Sz(i) + ∆sz(i) Eqs. (15) and (17), which determine the
composite fermion anti–commutator. Such spin fluctuations
can be induced by photoexcitation of local spin populations
with M ≤ S − 1/2 and m ≤ S − 1, analogous e.g. to Sec-
tion III or via an ultrafast avalanche effect that excites many
quasi–particles during relaxation of the high–energy photo-
carriers. This results in time–dependent changes of the com-
posite fermion anti–commutator Eq.(22) and thus to quasi–
instantaneous non–perturbative changes in the quasi–particle
properties and energy dispersion, obtained from Eqs.(22) and
(26):

∆nασ(i) = −
σ∆Jαz (i) + 1−σ

2 ∆fαi
2S + 1

(28)

The dependence of the composite fermion anti–commutator
nα↓(i) on the spin fluctuations ∆Jαz (i) results in a dynamic
change of the “soft” quasi–particle energy bands during time
evolution of the spin populations and local density matrix,
determined by the equations of motion Eqs.(35) and (34).
An example of quasi–instantaneous change in ∆Jz(t) due to
quasi–particle charge excitation by the coupling of an optical
field pulse was given in Section III. ∆Jz(t) may also be in-
duced during the initial stage of photocarrier relaxation via
excitation of e–h quasi–particles dressed by quantum spin
fluctuations in the presence of a small magnetic field that
introduces a preferred direction. In all cases, photoexcita-

tion of ∆Jαz (i) > 0 increases nα↓(i), which instantaneously
quenches the energy gap and increases Qc(t) as shown in Fig.
6(c). We conclude that, independent of the details of fs spin
photogeneration, both adiabatic θ(t) > 0 and nonadiabatic
∆Jz(t) > 0 FM correlation induced by the photoexcitation
leads to increased Qc(t). Such FM correlation during 100fs
timescales is observed experimentally above a pump fluence
threshold [4] and can trigger a metal to insulator transition
if it is sufficient for Q(t) ≤ Qc(t). This may already occur
during photoexcitation of sufficient population of composite
fermion quasi–particles, which can leads to instantaneous FM
correlation as discussed above. However, the detailed time–
dependence of the photoinduced spin canting, which deter-
mines the critical photocarrier density such thatQ(t) < Qc(t)
as required for a phase transition, is beyond the scope of the
present paper and will differ in different materials. Indepen-
dent of whether the condition Q(t) < Qc(t) is reached or
not following laser excitation, Fig. 6 implies a nonlinear de-
pendence of the electronic properties on the pump fluence, as
the latter controls the non–thermal populations of the compos-
ite fermion excitations that “suddenly” change the “soft” en-
ergy bands and Qc, while also inducing lattice displacements
Q(t) < Q as discussed next. We expect that, with multiple
quasi–particle excitations, such nonlinear dependence will be
even stronger than the single quasi–particle results presented
here. We note that classical spin equilibrium calculations [20]
predict a very high critical magnetic field for inducing a CMR
phase transition, due to the large charge excitation energy
gap for adiabatically–decoupled spins. Here we argue that
composite fermion excitations characterized by “soft” energy
bands that can be manipulated optically can make an insulator
to metal and AFM to FM transition possible for low magnetic
fields and pump fluences.

The second pathway in which optical excitation can lead
to an insulator to metal transition is to reduce the lattice dis-
placement Q(t) from its equilibrium value Q. The effective
potential that governs the lattice motion Q(t) includes both
the classical contribution UL(Q), which can be obtained phe-
nomenologically based on the symmetry [28, 54], and the
contribution of the local electron–lattice coupling. The latter
is important for the laser–induced phase transition proposed
here and is described by the Q–dependence of the Hamilto-
nian Eq.(6). The lattice equations of motion can be derived
as in Ref. 55. For this we introduce an orthonormal basis
of many–electron states |n > and expand the time–dependent
many–body state |Ψ(t)〉 evolving from the equilibrium state
|G〉 following photoexcitation. The time–dependence of the
lattice coordinates is described by the classical equation of
motion Ml

d2Ql
dt2 = Fl(Q), where the forces are determined by

the electronic density matrix ρn′n(t) = 〈n′||Ψ(t)〉〈Ψ(t)||n〉
[55]:

Fl = − ∂

∂Ql

[
UL(Q) +

∑
nn′

ρn′n(t) < n|H(Q, t)|n′〉

]
.(29)

After the laser pulse, the off–diagonal density matrix ele-
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ments can be neglected by assuming rapid dephasing. Us-
ing the many–body eigenstates of H(Q) as basis and sepa-
rating the contributions of the equilibrium state |G〉 from the
continuum of excited states |E〉 shown in Fig. 5, we obtain
from the above equation after using the completeness of the
basis states and introducing the time–dependent populations
fE(t) = ρEE(t) of the many–body states

Fl(Q, t) ≈ −
∂

∂Ql
[UL(Q) + 〈G|H(Q)|G〉]

−
∑
E 6=G

fE(t)
∂εE(Q)

∂Ql
, (30)

where

εE(Q) = 〈E|H(Q)|E〉 − 〈G|H(Q)|G〉 (31)

are the e–h quasi–particle excitation energies as in Fig. 5,
which depend on Q(t). The first term on the rhs of Eq.(30)
gives the adiabatic potential, which determines the lattice mo-
tion in the case of adiabatic time evolution of the insulating
state |G〉 without quasi–particle excitation [26]. The second
term on the rhs of Eq.(30) describes a quasi–instantaneous
change in the lattice potential and forces from their quasi–
equilibrium values when the population of excited many–
body states |E〉 becomes significant. Such non–equilibrium
potential change initiates lattice motion following quasi–
particle excitation and changes with time as determined by
the evolution of the non–equilibrium populations fE(t) and
by the dependence of the excitation energies Eq.(31) on
Q(t). This is analogous to previous results in VO2 [50, 51]
and semiconductors [56]. A phase transition is triggered if
Q(t) ≤ Qc(t) during the lattice motion Q(t), where the latter
can involve coherent phonon oscillations and/or anharmonic
damped motion. Fig. 5 indicates a nonlinear Q–dependence
of both ground state energy and e–h quasi–particle excita-
tion energies consistent with previous classical spin results
[20]. As a result, Eq.(30) implies that the effective spring con-
stants which determine, e.g., the coherent phonon oscillation
frequencies, will change from their quasi–equilibrium values
following photoexcitation of fE(t) even without any phase

transition. On the other hand, for EJT (Q) � t, the energy
band Q–dependence is approximately linear, which implies
much smaller changes in the sping constants. The fs–resolved
XRD experimental results of Ref. 28 show that the photocar-
rier density transiently modifies the lattice spring constants in
the manganites, consistent with the above results.

The laser–induced changes in the lattice potential and
forces with quasi–particle excitation will initiate a lattice mo-
tion that depends on both fE(t) and ∂εE(Q)

∂Q . New metastable
quasi–equilibrium lattice configurations Qeq(t) can be ob-
tained from Eq.(30) by setting Fl(Q) = 0. Such configura-
tions depend on the elastic potential UL(Q), determined by
multiple lattice modes and lattice anharmonicities [26, 54].
For our purposes here, we assume a simple UL(Q) = 1

2kQ
2.

In this case, Eq.(30) gives quasi–equilibrium lattice configu-
rations that depend on the photocarrier density:

Qeq(t) = −1

k

∂

∂Q
〈G|H(Q)|G〉 − 1

k

∑
E 6=G

fE(t)
∂εE(Q)

∂Q
.

(32)
The first term determines the quasi–equilibrium lattice distor-
tions, which are however modified following photoexcitation
of the continuum of many–body states |E〉. From Fig. 5 we
see that ∂εE(Q)

∂Q > 0 is dominated by the hole contribution to
the excitation energy. The photoexcited quasi–particle pop-
ulations then decrease the quasi–equilibrium lattice displace-
ments to Qeq(t) < Q when fE(t) 6= 0.

The lattice displacements Qeq(t) are expected to be small,
Qeq(t) � Q, in the case of laser–induced population inver-
sion between the two different quasi–particle bands of Fig. 5.
This is the case as the conduction and valence band eigen-
states have different admixture of corner and bridge site con-
figurations, which leads to their different Q–dependence, and
may lead to an irreversible transition when Qeq(t) ≤ Qc(t).
Noting that ∂〈n|H(Q)|n〉

∂Q = 〈n|∂H(Q)
∂Q |n〉 for the many–body

eigenstates of the HamiltonianH(Q), we obtain from Eq.(32)
after assuming for simplicity that the Q–dependence of the
Hamiltonian Eq.(6) mainly comes from the energies Ei(αM)

Qeq(t) ≈ −
1

k

∑
iαM

∂Ei(αM)

∂Q

〈G||iαM〉〈iαM ||G〉
1−

∑
E 6=G

fE(t)

+
∑
E 6=G

fE(t)〈E||iαM〉〈iαM ||E〉

 . (33)

As the energy gap closes, the population of the excited state
metallic continuum |E〉 (lower panel of Fig. 5) increases,∑
E 6=G fE(t) ∼ 1, and the lattice displacements are deter-

mined by the populations of the JT–distorted sites in the con-
tinuum of excited states |E〉. For multiple e–h quasi–particle
excitations during the fast relaxation of an initial photoexcited
high energy e–h, the population of lattice–distorted bridge

site configurations |iαM〉 in the highly excited many–body
states |E〉 is expected to be small. Therefore, the quenching
of the insulator energy gap by the spin fluctuations facilitiates
a quasi–equilibrium lattice structure with small JT displace-
ments due to the differences between the polaronic valence
band and the broad metallic conduction band.

The above picture of a photoinduced insulator to metal tran-
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sition above a critical photocarrier density such that Q(t) ≤
Qc(t) may be validated by experimental observations of non-
linear and threshold dependences of the ultrafast spectroscopy
signals with increasing pump fluence and with a better tem-
poral resolution of fs XRD that can distinguish between in-
stantaneous and time–delayed processes. In the non–thermal
temporal regime of interest here, a laser–induced population
inversion between the polaronic–like majority carriers and
the metallic–like minority carriers drives a nonlinear inter–
dependence of spin, charge, and lattice dynamics. In this
way, fs laser excitation can break the balance between elec-
tronic/magnetic and lattice degrees of freedom based on their
different dynamics as discussed above. To test this picture ex-
perimentally, one must be able to non–thermally control the
quasi–particle populations while simultaneously monitoring
the resulting spin, charge, and lattice time evolution on a fs
timescale. This may be possible by using fs X–ray pulses
[28, 34] as their time resolution improves. Several experi-
mental results so far, discussed in the introduction, indicate
the importance of AFM order and nonlinearity in the non–
thermal fs temporal regime, consistent with our predictions
here. In the next section we present pump–probe differential
reflectivity and magneto–optical simultaneous measurements
that show a non–linear threshold pump fluence dependence
of both the spin and the charge dynamics measured during
∼100fs timescales.

EXPERIMENTAL RESULTS AND THEIR RELATION TO
THE THEORY

In this section we present femtosecond pump–probe differ-
ential reflectivity and magneto–optical spectroscopy experi-
mental results showing nonlinear pump fluence threshold de-
pendence below the transition temperature for AFM order.
We studied Pr0.7Ca0.3MnO3 (PCMO) single-crystals grown
by the floating–zone method. An important characteristic of
this narrow-bandwidth manganite is that all its equilibrium
phases are insulating. CO/OO electronic order sets in below
∼200K, while CE–AFM order sets in below∼140K. We used
a Ti:Sapphire amplifier laser beam with pulse duration of 35fs
and repetition rate of 1KHz to perform fs pump–probe spec-
troscopy measurements of the differential reflectivity ∆R/R,
magneto-optical Kerr effect (MOKE, ∆θk), and magnetic cir-
cular dichroism (MCD, ∆ηk) signals. In this way, we can
compare the fs and ps spin and charge dynamics. To break
the symmetry, we applied a small magnetic field B≤ 0.25T,
much smaller than the critical field required for CMR transi-
tion, which introduces a preferred direction perpendicular to
the sample surface.

Fig.7(a) shows the fs–resolved ∆R(t)/R signal measured
at 30K when both pump and probe are tuned at 1.55eV. For
relatively high pump fluences ∼4.9 mJ/cm2, we observe a bi–
exponential ultrafast relaxation with two distinct signal decay
times, τ fs∼530fs and τps∼5.7ps. As seen by comparing the
normalized ∆R/R traces, this two–component relaxation is

suppressed for low–fluences (Fig. 7(b)) or/and for high tem-
peratures (Fig. 7(c)). At low temperature (30K), the two re-
laxation components are observed even for low pump fluence,
but the temporal profile of the normalized ∆R/R differs be-
tween low 0.4 mJ/cm2 and high 6.2 mJ/cm2 pump fluence
(Fig. 7(b)). In particular, for 0.4 mJ/cm2 fluence, the am-
plitude of the τ fs component is much smaller than that of the
τps component, while this reverses for high photoexcitation
intensity. On the other hand, at high temperatures (∼300K)
above the critical temperatures for CO/OO (200K) and AFM
(140K) phase transitions, Fig. 7(c) shows that all pump flu-
ences give the same single–exponential decay, with a relax-
ation time τ ini that is much shorter than both τ fs and τps. This
drastic change in the temporal profile of ∆R/R with increas-
ing temperature indicates that the bi–exponential relaxation is
related to the electronic and/or magnetic order. To clarify this,
Figs. 8(a) and 8(b) show the detailed temperature dependence
of the two–step pump–probe signal recovery at high pump flu-
ence (6.2 mJ/cm2). The two relaxation components τ fs and
τps appear below T=140K, i.e., below the AFM phase transi-
tion (Neel) temperature. We conclude from the above that the
observed bi–exponential relaxation is mainly related to AFM
order.

Fig. 9 shows a 2D false color plot of ∆R/R as function
of pump–fluence and time delay for two probe frequencies.
The color gradients demonstrate clear differences, along both
axes, between probe frequencies close to [1.55 eV, Fig. 9(a)]
or far above [3.1 eV, Fig. 9(d)] the insulator energy gap.
While at 1.55eV the peak of ∆R(t)/R shows an almost lin-
ear fluence–dependence, as expected from photo–carrier pop-
ulations [56], at 3.1eV it displays a transition from linear
to nonlinear saturation with increasing intensity. The pump
photon frequency was kept at h̄ωp=1.55eV (800nm) for both
probe frequencies, so the pump excites photo–carriers near
the insulator gap and is far detuned from the phonon frequen-
cies. For 1.55 eV probe, the amplitude of the photoinduced
∆R/R in the non–thermal temporal regime is expected to re-
flect the laser–excited quasi–particle density and temperature,
which also determine the lattice displacements [56]. We do
not observe any coherent phonon oscillations in ∆R/R, per-
haps due to the time resolution (∼100fs pulses are longer than
the ∼70fs JT phonon period) or due to strong phonon damp-
ing and nonlinearity induced by the photocarriers. Similar
to other experiments discussed in the introduction, we inter-
pret our observation of two distinct relaxation times τ fs and
τps in the AFM–ordered state to reflect the dynamics of non–
thermal electronic and spin populations of excited states (τ fs)
and quasi–equilibrium lattice relaxation (τps), respectively.

The differential reflectivity signal ∆R(t)/R measured at
3.1eV does not show any bi–exponential relaxation following
1.55eV pump photoexcitation. We expect that the “sudden”
increase of this non–resonant ∆R/R signal during ∼100fs
time delays mainly reflects a ”sudden” increase and satura-
tion of the overall conductivity of the photoexcited system.
Such behavior is expected, e.g., from an ultrafast quench of
the electronic component of the insulator energy gap [8] as
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in our theory. Following the rapid fs rise, Fig. 9(f) shows a
slower ps increase of ∆R(t)/R, which is consistent with the
expected increase in conductivity due to quasi–equilibrium
lattice structure relaxation. The possible connection between
spin and charge dynamics during fs non–thermal timescales
can be elucidated by comparing the pump fluence depen-
dence of the amplitudes of the two ∆R/R relaxation com-
ponents observed at 1.55eV to that of the fs–resolved MCD
and MOKE signals ∆M . The latter magneto–optical signals
measured at time delays of 200fs or earlier at probe frequen-
cies 3.1eV far detuned from the 1.55eV pump are shown in
Fig 10. Fig. 10(a) shows clearly that both MOKE and MCD
signals have the same pump–fluence–threshold nonlinear be-
havior at 200fs for very small magnetic field. The observa-
tion of a threshold nonlinearity is typically considered as a
signal of a non–equilibrium phase transition. Here, the non-
linear increase of both MOKE and MCD at ∼200fs, above a
phototoexcitation intensity threshold ∼2–3 mJ/cm2, indicates
that, above a critical photocarrier density, laser–induced FM
correlation develops on a ∼100fs timescale or less. In par-
ticular, the appearance of the same quasi–instantaneous jump
in both MOKE and MCD fs signals (inset of Fig. 10(a)) for
magnetic field ∼250mT well below the critical field required
for AFM→FM phase transition and CMR in equilibrium (few
Tesla) indicates the observation of fs magnetization photo-
generation coming from charge photoexcitation. Such laser–
induced FM correlation at 100fs timescales only occurs above
a critical pump–fluence of 2-3mJ/cm2 (compare the two tem-
poral profiles in the inset above and below the pump fluence
threshold for ∆M > 0 seen in Fig. 10(a)), which indicates
that a sufficiently large non–thermal photocarrier population
is necessary. This threshold nonlinearity of ∆M with increas-
ing pump fluence is absent at ps time delays, which are gov-
erned by quasi–thermal lattice dynamics.

Fig. 10(b) shows the pump–fluence dependence of the am-
plitudes Afs and Aps of the two relaxation components of
∆R/R measured at 1.55 eV, which were extracted with a bi–
exponential fit as shown in Fig. 7(a). The inset of Fig. 10(b)
also shows the intensity dependence of the sum of the two am-
plitudes Asum=Afs+Aps, which follows an overall linear de-
pendence on pump fluence that reflects the photocarrier den-
sity [56]. However, Asum saturates at a high pump fluence∼6
mJ/cm2, while Fig 10(b) shows that the individual amplitudes
Afs and Aps display different dependences on the pump flu-
ence. This difference in the two components becomes more
clear by plotting the ratio Afs/Asum at T=30K in Fig. 10(c).
In particular, Fig. 10(c) demonstrates a nonlinear threshold
dependence of the fs relaxation component. As seen by com-
paring Fig. 10(a) and Fig. 10(c), this threshold dependence
of the low–temperature ratio Afs/Asum coincides with that of
the pump–induced magneto–optical response ∆M measured
at 200fs. At the same time, the relaxation times τ fs and τps

remain fairly constant as function of pump fluence (see inset
of Fig. 10(c)).

The above experimental results indicate a correlation be-
tween the emergence of fs AFM→FM switching at 200fs,

above a pump fluence threshold that is not observed for ps
time delays, with the threshold for nonlinear increase of the
relative amplitude of the τ fs ∼500fs relaxation component.
This result is consistent with our threoretical prediction that
spin photoexcitation simultaneously leads to metallic behav-
ior via a non–thermal electronic channel. Quasi–particle pho-
toexcitation deforms the AFM background (FM correlation),
which in turn increases the quasi–particle dispersion and soft-
ens the energy gap. This results in a quasi–instantaneous in-
crease of the critical lattice displacement value Qc(t) below
which the excitation gap closes. At the same time, the pho-
toexcited carriers quasi–instantaneously change the effective
lattice potential arising from electron–lattice coupling, which
initiates lattice motion Q(t) to a new equilibrium configura-
tion Qeq(t) < Q.

For low pump fluences, the photoinduced spin canting in
the excited state is small, so there is no observable net mag-
netization and Q(t) > Qc similar to equilibrium. In this case,
the photoinduced changes in the quasi–particle energy bands
are small and mostly determined by the lattice motion Q(t).
The pump–fluence–dependence of the differential reflectivity
is then approximately linear, determined by the non–thermal
populations of “rigid” bands analogous to weakly correlated
semiconductors [56]. Note, however, that the photexcitation
will change the lattice spring constant as determined by the
photocarrier population. With increasing pump fluence, a suf-
ficiently large quasi–particle population of the metallic con-
duction band can result in significant quasi–instantaneous FM
correlation between the AFM planes and chains, which in the
presence of a symmetry–breaking magnetic field results in
the observation of a net magnetization. As a result of laser–
induced spin fluctuations, ∆Jz(t),∆θ(t) > 0 and the “soft”
quasi–particle energy bands change, while the energy gap de-
creases. This results in the transient increase of the critical
lattice displacement Qc(t) required for mainting an insulating
state, so the lattice motion can easily close the gap.

A photoexcited magnetization is observed in our fs–
resolved magneto–optical pump–probe signals during fs
timescales above a critical pump fluence (Fig. 10(a)). Above
this threshold, there are two possibilities: (i) Qc(t) exceeds
the equilibrium lattice displacement Q. In this case, the fs
photoexcitation “suddenly” quenches the insulator gap due
to the photoinduced FM correlation within 100fs timescales.
Such melting of the insulator gap can be induced instanta-
neously by composite fermion quasi–particle excitation as a
result of nonadiabatic photoinduced ∆Jz(t) > 0. Melting of
the charge excitation gap can also be induced by an adiabatic
spin canting angle ∆θ(t) > 0 (Fig. 6(b)). IfQc(t) > Q, an in-
sulator to metal transition can be “suddenly” induced without
the need for lattice motion. (ii) Qc(t) < Q but Q(t) ≤ Qc(t).
In this case, lattice motion is required for the energy gap to
close, so the insulator to metal transition is delayed as de-
termined by the JT phonon period. In all cases, the lattice
eventually reaches a transient state with smaller displacements
Qeq(t) following population inversion between the polaronic
valence band and metallic conduction band shown in Fig. 5.
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The deviation of Qeq(t) from the equilibrium lattice config-
uration increases as the energy gap closes due to the differ-
ences between the e and h quasi–particles, whose photoex-
citation results in a charge redistribution between bridge and
corner sites. As discussed in the introduction, several ultrafast
spectroscopy experiments indicate that quasi–thermal lattice
evolution occurs during ps timescales, while non–thermal spin
and charge populations are important during 100fs timescales.
While the spin fluctuation and electronic hopping timescales
are expected to be faster than the lattice oscillations, the exact
time evolution leading to Q(t) ≤ Qc(t) is beyond the scope
of the present paper and may differ for individual materials.
This lattice motion is not expected gto be a simple coherent
phonon harmonic motion following strong photoexcitation of
the metallic continuum of quasi–particle states |E〉.

CONCLUSIONS

To conclude, in this paper we described a possible mech-
anism for photoinduced insulator to metal and AFM to FM
simultaneous transitions triggered by non–thermal popula-
tion of a quasi–particle metallic conduction band induced by
spin fluctuations and electron–magnon strong coupling. This
mechanism involves a laser–induced nonlinear spin–charge–
lattice coupling in the case of an AFM ground state consisting
of FM chains and planes with JT distortions that stabilize the
insulator energy gap. We propose that this mechanism may
be relevant to explain the nonlinear pump fluence threshold
dependencies of both magneto–optical (MOKE and MCD)
and ∆R/R femtosecond signals measured in the PCMO man-
ganite studied here. It may also be relevant to several other
ultrafast spectroscopy experimental observations of nonlin-
ear behavior during the non–thermal temporal regime fol-
lowing fs laser excitation of the AFM state of different in-
sulating manganites [13, 14, 28–36]. In particular, we pre-
dict that electron–spin correlation leads to a broad conduc-
tion metallic band and quenches the electronic component of
the insulator energy gap below a critical value of the JT lat-
tice displacement that depends on the photoexcitation. Such
laser–induced effects are pronounced in the case of compos-
ite fermion quasi–particles with “soft” energy bands, which
mostly populate the lower magnetic Hubbard band due to the
large Hund’s rule interaction and excite spin fluctuations dur-
ing electronic hopping timescales. FM correlation and spin
canting during quasi–particle photoexcitation instantaneously
increase the critical lattice displacement Qc(t) below which
the energy gap closes, by changing the quasi–particle disper-
sions in a non–perturbative way. Above a critical photocar-
rier density, Qc(t) can become comparable to the equilibrium
lattice distortion, which also decreases following lattice mo-
tion. Both effects act cooperatively to favor a non–equilibrium
insulator to metal and AFM to FM simultaneous transitions.
FM correlation induced by photoexcitation can trigger an in-
stantaneous insulator to metal transition if Qc(t) ≥ Q(t) dur-
ing the laser pulse. The excitation of multiple quasi–particles

should increase the above effect by enhancing the deforma-
tion of the AFM background. After the photoexcited quasi–
electrons have relaxed on a fs timescale (τ fs), electron–lattice
and spin–lattice relaxation determines the subsequent ps dy-
namics (τps).

The above theoretical framework, based on femtosecond
magnetism induced by laser excitation, may be relevant for
explaining several experimental observations when worked
cooperatively with lattice deformation and free energy quasi–
equilibrium effects. Based on the presently available experi-
mental data and the uncertainties about the properties of the
real materials, we cannot rule out other possible mechanisms
for explaining the exprimentally observed fs spin and charge
nonlinearities. Ultrafast coherent phonon dynamics, ultrafast
lattice displacements that change the shape and distance of
the individual chains and planes, structural phase transition,
and melting of orbital order can all contribute to the observed
effects and may work cooperatively with the proposed elec-
tronic/magnetic quasi–instantaneous mechanism and nonlin-
earities. For example, FM correlation arising from lattice
distortions will change the quasi–particle energy dispersion,
which depends on the changes in the hopping matrix elements
for the local electronic configurations modified by electron–
lattice strong local coupling. Such effects can be studied
more directly with fs XRD, which unlike for conventional
pump–probe spectroscopy can distinguish the different order
parameter components. The observation of a time–dependent
spring constant [28] and nonlinear dependence of the coherent
phonon amplitudes on the pump intensity during non–thermal
fs timescales are consistent with “soft” quasi–particle energy
bands such as the ones proposed here. The lattice contribu-
tion is particularly important for the experimental observa-
tion of the ps τps component, as Pr/Ca atoms will adapt to
their final equilibrium positions at such ps time scales. Other
interpretations may involve higher-order electronic scattering
such as Auger Coulomb processes, which can increase the e–
h quasi–particle populations via an avalanche effect during
fs relaxation of the photocarriers. In all cases, any interpre-
tations of the pump fluence nonlinear dependence must in-
volve spin–flip dynamics in the excited state in order to ex-
plain the correlation to the “sudden” fs magnetization thresh-
old behavior shown by both the MOKE and MCD magneto–
optical signals. Our theory suggests a microscopic mecha-
nism for such quasi–instantaneous spin–charge–lattice pho-
toexcited effects, so we hope that it can open a discussion of
whether the electronic/magnetic pathway proposed here cre-
ates a non–equilibrium initial condition that could initiate a
photo—induced non–adiabatic phase transition. The “soft”
energy bands of composite fermion quasi–particles make it
easier to obtain a quasi–instantaneous insulator to metal and
AFM to FM transitions as compared to bare electrons adia-
batically decoupled from the spin background. In the latter
case, due to the electronic order within a single zig–zag FM
chain, the mechanism must rely on a more elaborate lattice
motion [45] in order to close the energy gap. In addition, a
complex energy landscape, possibly with multiple local min-
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ima due to the elastic lattice potential UL(Q) [28, 54], should
facilitate the phase transition mechanism proposed here, e.g.
by creating metastable states. The insights from our theory–
experiment results and our proposed “sudden quench” mecha-
nism based on the “soft” quasi–particle energy bands may also
prove useful for revealing the crucial many–body processes in
other intertwined electronic phases, as the proximity of mag-
netic states appears ubiquitous with unconventional supercon-
ducting and exotic electronic phases in strongly correlated
electronic materials [16]. In the long run, new insights can
be gained by applying complementary ultrafast spectroscopy
techniques, especially in the terahertz [57] and infrared spec-
tral regions [58], and by combining spin and charge quan-
tum fluctuations with quasi–equilibrium free energy and self–
energy effects.

This work was supported by the Army Research Office un-
der award W911NF-15-1-0135 (laser spectroscopy), and by
the European Union’s Seventh Framework Programme (FP7-
REGPOT-2012-2013-1) under grant agreement No. 316165
(theory). The initial exploration was also supported in part
by the National Science Foundation Contract No. DMR-
1055352.

[1] D. S. Chemla, and J. Shah, Nature 411, 549 (2001).
[2] V. M. Axt, and S. Mukamel, Rev. Mod. Phys. 70, 145 (1998).
[3] M. E. Karadimitriou, E. G. Kavousanaki, K. M. Dani, N. A.

Fromer, and I. E. Perakis, J. Phys. Chem. B 115, 5634 (2011);
M. E. Karadimitriou, E. G. Kavousanaki, I. E. Perakis, and K.
M. Dani, Phys. Rev. B 82, 165313 (2010).

[4] T. Li, A. Patz, L. Mouchliadis, J. Yan, T. A. Lograsso, I. E.
Perakis, and J. Wang, Nature 496, 69 (2013).

[5] T. Papenkort, T. Kuhn, and V. M. Axt, Phys. Rev. B 78, 132505
(2008); R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H.
Terai, Z. Wang, and R. Shimano, Phys. Rev. Lett. 111, 057002
(2013).

[6] J. Bigot, M. Vomir, and E. Beaurepaire, Nature Physics 5, 515
(2009).

[7] P. C. Lingos, J. Wang, and I. E. Perakis Phys. Rev. B 91, 195203
(2015); M. D. Kapetanakis, P. C. Lingos, C. Piermarocchi, J.
Wang, and I. E. Perakis, Appl. Phys. Lett. 99, 091111 (2011);
M. D. Kapetanakis, I. E. Perakis, K. J. Wickey, C. Piermarocchi,
and J. Wang, Phys. Rev. Lett. 103, 047404 (2009).

[8] M. Porer, U. Leierseder, J.-M. Mnard, H. Dachraoui, L. Mouch-
liadis, I. E. Perakis, U. Heinzmann, J. Demsar, K. Rossnagel,
and R. Huber, Nature Materials 13, 857 (2014).

[9] E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
[10] Y.M. Sheu, S.A. Trugman, L. Yan, J. Qi, Q.X. Jia, A.J. Taylor,

and R.P. Prasankumar, Phys. Rev. X 4, 021001 (2014).
[11] H. Ichikawa, et. al., Nature Mat., 10, 2929 (2011).
[12] M.Fiebig, K. Miyano, Y Tomioka, and Y Tokura, Science 280,

1925 (1998).
[13] D. Polli, M. Rini, S. Wall, R. W. Schoenlein, Y. Tomioka,

Y. Tokura, G. Cerullo, and A. Cavalleri, Nature Mat. 6, 643
(2007).

[14] M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura,
R. W. Schoenlein, and A. Cavalleri, Nature 449, 72 (2007).

[15] G. C. Milward, M. J. Calderón, and P. B. Littlewood, Nature

433, 607 (2005).
[16] A. Patz, T. Li, S. Ran, R. M. Fernandes, J. Schmalian, S. L.

Budko, P. C. Canfield, I. E. Perakis, and J. Wang, Nat. Com-
mun. 5, 3229 (2014).

[17] S. G. Ovchinnikov and V. V. Valkov, Hubbard Operators in
the Theory of Strongly Correlated Electrons, Imperial College
Press (London, 2004).

[18] A. E. Ruckenstein and S. Schmitt-Rink, Phys. Rev. B 38,
7188(R) (1988).

[19] V. M. Loktev and Yu. G. Pogorelov, Low Temp. Phys. 26, 171
(2000).

[20] T. V. Ramakrishnan, H. R. Krishnamurthy, S. R. Hassan, and
G. Venketeswara Pai, Phys. Rev. Lett. 92, 157203 (2004); O.
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APPENDIX

The quantum kinetic equations of motion for the spin–
dependent local populations are obtained by using the Hamil-
tonian Eq.(6) as follows:

∂tρ
α
i (M) = 2 Im

∑
σ′=±1

Fσ′(M)×

∑
lα′

Vα′α(l − i)〈

[
cos

(
θl − θi

2

)
ê†α′σ′(l)− σ

′ sin

(
θl − θi

2

)
ê†α′−σ′(l)

]
êασ′(iM)〉, (34)

∂tρi(m) = −2Im
∑
α

∑
σ′

Fσ′(m+
σ′

2
) ×

∑
lα′

Vα′α(l − i)〈

[
cos

(
θl − θi

2

)
ê†α′σ′(l)− σ

′ sin

(
θl − θi

2

)
ê†α′−σ′(l)

]
êασ′(i,m+

σ′

2
)〉. (35)

The above equations are exact in the limit JH → ∞ and de-
scribe the dynamical coupling of site i to the rest of the lattice,

driven by the charge flucuations described byHhop(t), Eq.(8).
This inter–site coupling is determined by the (exact) equation
of motion
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FIG. 2. (Color online) Time–dependent changes in the populations of
the local configurations |iαM〉 (upper panels) and |im〉 (lower pan-
els) of the two AFM sites i=1,2 discussed in the text for population
lifetime T1=1ps and different dephasing times T2: (a)–(b): T2=50fs,
(c)–(d): T2=15fs, (e)–(f): T2=8fs. The spin quantization axis was
taken parallel to the equilibrium spin direction in site 1.
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Quantum spins (S=3/2), (b), (d): Classical spins (S →∞).

i∂t〈ê†βσ̄(j) êασ(iM)〉 − [εασ(i)− εβσ̄(j)] 〈ê†βσ̄(j) êασ(iM)〉

=
∑
lσ′

∑
α′β′

Vα′β′(l − j) cos

(
θl − θj

2

)
〈[ê†βσ̄(j), êβ′σ′(j)]+ ê

†
α′σ′(l) êασ(iM)〉

−
∑
lσ′

∑
α′β′

Vα′β′(i− l) cos

(
θl − θi

2

)
〈ê†βσ̄(j) êβ′σ′(l) [ê†α′σ′(i), êασ(iM)]+ 〉

+
∑
lσ′

∑
α′β′

Vα′β′(l − j)σ′ sin

(
θl − θj

2

)
〈[ê†βσ̄(j), êβ′−σ′(j)]+ ê

†
α′σ′(l) êασ(iM)〉

+
∑
lσ′

∑
α′β′

Vα′β′(i− l)σ′ sin

(
θl − θi

2

)
〈ê†βσ̄(j) êβ′−σ′(l) [ê†α′σ′(i), êασ(iM)]+〉, (36)

which involves four–particle density matrices of Hubbard
operators. The differences from the familiar equations of
motion for e–h coherence of bare electrons in weakly–
correlated systems [1, 2] arise from the composite fermion
anti–commutators [ê†α′σ′(i), êασ(iM)]+, Eq.(2). The latter
deviate from fermion behavior due to the suppressed popu-

lation of the higher magnetic Hubbard band states with total
spin J=S−1/2, which leads to the coupling of higher density
matrices and a many–body hierarchy if the bosonic on–site
fluctuations in Eq.(2) are strong.

In the deep insulating limit, spin exchange is primarily de-
termined by charge fluctuations between neighboring atoms
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The pronounced difference in quantum spin canting between a quasi–
electron and a quasi–hole correlates with the difference in their en-
ergy dispersions shown in Fig. 3.

[20, 21]. Separating such short–range inter–site correlation in
Eq.(36) we obtain

i∂t〈ê†βσ̄(j) êασ(iM)〉 − [εασ(i)− εβσ̄(j)] 〈ê†βσ̄(j) êασ(iM)〉

=
∑
σ′

∑
α′β′

Vα′β′(i− j) cos

(
θi − θj

2

) [
〈êβ′σ′(j)ê†βσ̄(j) ê†α′σ′(i) êασ(iM)〉 − 〈ê†βσ̄(j) êβ′σ′(j) êασ(iM) ê†α′σ′(i)〉

]
+
∑
σ′

∑
α′β′

Vα′β′(i− j)σ′ sin

(
θi − θj

2

) [
〈êβ′−σ′(j)ê†βσ̄(j) ê†α′σ′(i) êασ(iM)〉 − 〈ê†βσ̄(j) êβ′−σ′(j) êασ(iM)ê†α′σ′(i)〉

]
+
∑
l 6=i,j

∑
σ′

∑
α′β′

Vα′β′(l − j) cos

(
θl − θj

2

)
〈[ê†βσ̄(j), êβ′σ′(j)]+ ê

†
α′σ′(l) êασ(iM)〉

−
∑
l 6=i,j

∑
σ′

∑
α′β′

Vα′β′(i− l) cos

(
θl − θi

2

)
〈ê†βσ̄(j) êβ′σ′(l) [ê†α′σ′(i), êασ(iM)]+ 〉

+
∑
l 6=i,j

∑
σ′

∑
α′β′

Vα′β′(l − j)σ′ sin

(
θl − θj

2

)
〈[ê†βσ̄(j), êβ′−σ′(j)]+ ê

†
α′σ′(l) êασ(iM)〉

+
∑
l 6=i,j

∑
σ′

∑
α′β′

Vα′β′(i− l)σ′ sin

(
θl − θi

2

)
〈ê†βσ̄(j) êβ′−σ′(l) [ê†α′σ′(i), êασ(iM)]+〉. (37)

where the last four terms describe the coupling of the quan-
tum dimer consisting of neigboring sites (i, j) with the rest
of the lattice. The time–dependent local spin dynamics dis-
cussed in Section III was obtained by factorizing the product
of on–site operators (local populations) between sites i and j

on the rhs of the above equation and neglecting the long–range
coherence arising from their coupling to the environment sites
l 6= (i, j). We thus obtain the following equation of motion
that describes the charge–spin fluctuations between neigbor-
ing sites:

i∂t〈ê†βσ̄(j) êασ(iM)〉 − [εασ(i)− εβσ̄(j)] 〈ê†βσ̄(j) êασ(iM)〉 = Vαβ(i− j)Fσ(M)×[
δσ,σ̄ cos

(
θi − θj

2

)
+ σδσ,−σ̄ sin

(
θi − θj

2

)] ∑
M ′

F 2
σ̄ (M ′)

[
ραi (M) ρj(M

′ − σ̄

2
)− ρi(M −

σ

2
) ρβj (M ′)

]
. (38)

Eqs.(34), (35), and (38) provide a closed system of equations
of motion. They define quantum master equations for describ-

ing the local spin dynamics in a real–space picture that treats
both on–site and nearest–neigbor spin and charge correlations.
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FIG. 5. (Color online) Calculated energy levels as function of lattice displacement, EJT=εJTQ, for different spin canting angles θ. The
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(adiabatically–decoupled classical spins, S → ∞). Lower panel: Composite fermion quasi–particles (strongly–coupled quantum spins,
S=3/2). εJT = 1.6t0.

Such an approximation gives the results of Fig. 1(c) and Fig.
2, while recovering the effective inter–site FM exchange in-
teraction of Refs. [20, 21]. Unlike for the standard double ex-
change model [37], the latter FM interaction is obtained in the
insulating limit with JT lattice distortions. Here such short–
range FM correlation is modified away from equilibrium by
the coupling of a strong laser field, which controls the charge
transfer across the JT energy barrier. The product of local pop-

ulations that enters on the rhs of Eq.(38) depends on the laser
excitation and describes a population–inversion nonlinearity
and nonlinear saturation, whose effect on the spin dynamics
and short–range FM correlation is seen in Fig. 1(c).

In the opposite limit of itinerant quasi–particles, we trun-
cate the hierarchy of equations of motion by factorizing the
four–particle density matrices of composite fermions that en-
ter in Eq.(36):

〈[ê†βσ̄(j), êβ′σ′(j)]+ ê
†
α′σ′(l) êασ(iM)〉 = 〈[ê†βσ̄(j), êβ′σ′(j)]+〉〈ê†α′σ′(l) êασ(iM)〉, (39)

where j 6= l, i. The above mean field approximation ne-
glects fluctuations in the composite fermion anticommuta-
tor [ê†βσ(j), êβ′σ′(j)]+ as in the Hubbard–I approximation
[17, 42] and results in Eq.(18). The difference from bare elec-
trons is described by the deviations of the composite fermion

quasi–particle anticommutators nασ(i), Eq.(19), from their
fermionic values, which is due to the suppression of the pop-
ulations of the J=S− 1/2 total spin configurations during the
electronic motion by the strong Hund’s rule exchange interac-
tion JH .
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FIG. 6. (Color online) Effect of FM correlation on the lattice depen-
dence of the energy gap of Fig. 5. (a) bare electrons, increasing θ,
(b) composite fermion quasi–particles, increasing θ, (c) composite
fermion quasiparticles, increasing ∆Jz .
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(a)

(b) (c)

FIG. 7. (Color online) (a) Femtosecond–resolved ∆R/R for 1.55eV
pump/probe excitation, plotted on a log–scale. Dashed lines high-
light two distinct components of bi–exponential decay. (b)-(c): Com-
parison of normalized ∆R/R for high and low pump fluences at tem-
peratures (b) 30K (below the AFM transition) and (c) 300K (above
the CO/OO and AFM transitions)
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(a)

(b)

FIG. 8. (Color online) Detailed temperature dependence of the fs–
resolved ∆R/R, shown on a log–scale together with the pulse auto-
correlation (shade) for (a) 300K, 220K, 180K and 160K above the
AFM transition temperature ; (b) 140K, 100K, 60K and 30K below
the AFM transition temperature. The distinct τ fs and τps relaxation
components are marked for the 30K trace (blue lines).

FIG. 9. (Color online) (a)-(c): Ultrafast ∆R/R dynamics for degen-
erate 1.55eV pump/probe photoexcitation. (a): 2D dependence on
pump fluence and time delay at 30K; (b): peak amplitude as function
of pump fluence; (c): temporal trace at pump fluence of 3.8mJ/cm2

marked in (a). (d)–(f): Same ∆R/R plot as above, but for non–
degenerate photoexcitation with 1.55eV pump but 3.1eV probe.
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FIG. 10. (Color online) Dependence of spin and charge dynamics
on photoexcitation intensity. (a): Photoinduced fs magnetization
∆M extracted from magneto–optical ellipticity signal ∆ηk at 200fs
(green rectangle). Inset: Comparison of ∆ηk and ∆θk (Kerr ro-
tation) dynamics for 5.6mJ/cm2 (red) and 0.8mJ/cm2 (black). Both
signals show the same “sudden” fs jump above an intensity threshold,
which we thus attribute to photoinduced magnetization during 100fs
timescales (arrow). All error bars are within the markers. (b): Am-
plitudes of fast component Afs (black dots), slow component Aps
(red dots), and Asum= Afs+ Aps (inset) of our bi–exponential fit of
∆R(t)/R. (c): Fraction F=Afs/Asum (blue rhombus) and the two
distinct relaxation times (inset) as function of pump intensity.
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