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We report on the observation of magnon thermal conductivity κm ∼ 70 W/mK near 5 K in the
helimagnetic insulator Cu2OSeO3, exceeding that measured in any other ferromagnet by almost
two orders of magnitude. Ballistic, boundary-limited transport for both magnons and phonons is
established below 1 K, and Poiseuille flow of magnons is proposed to explain a magnon mean-free
path substantially exceeding the specimen width for the least defective specimens in the range
2K < T < 10 K. These observations establish Cu2OSeO3 as a model system for studying long-
wavelength magnon dynamics.

I. INTRODUCTION

Spin-mediated heat conduction in ferromagnetic ma-
terials has been of interest for decades, but a dearth
of suitable ferro- or ferrimagnetic insulators exhibiting
magnonic heat conduction has limited investigation [1–
8]. The most widely studied example is yttrium-iron gar-
net (YIG), for which a small magnonic thermal conduc-
tivity is well-established at low temperatures. Magnon
heat conduction and energy exchange between magnons
and phonons have attracted renewed attention recently
because of their importance for the burgeoning fields of
spin caloritronics [9] and magnon spintronics [10] wherein
thermally-driven spin currents induce electrical signals.
Essential to the development of related technologies is a
deeper understanding of magnon heat conduction and
magnon-phonon interactions generally, and identifying
suitable materials for realizing practical devices.

Here we report magnon thermal conductivities κm ∼
70 W/mK near 5 K in single crystals of the helimagnetic
insulator Cu2OSeO3, far exceeding those observed previ-
ously in any other ferro- or ferrimagnets (including YIG).
Distinguished in applied magnetic field, both the magnon
and phonon (κL) thermal conductivities exhibit ballistic
behavior below 1 K, with mean-free paths (mfps) limited
by the specimen boundaries and κm ∝ T 2, κL ∝ T 3.
At T > 1 K, κm for clean specimens increases substan-
tially faster than ∝ T 2 and reaches values twice as large
as expected from spin-wave theory. We consider both
magnon-phonon drag and Poiseuille flow of magnons as
potential mechanisms for this enhancement, and present
analysis supporting the latter.

Cu2OSeO3 is a cubic material [11, 12] (space group
P213), consisting of a three-dimensional distorted py-
rochlore (approximately fcc) lattice of corner-sharing Cu
tetrahedra. Inequivalence of the copper sites and strong
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magnetic interactions within tetrahedra lead to a 3-up-
1-down, spin S = 1 magnetic state [13, 14] that per-
sists above the long-range magnetic ordering temper-
ature [15, 16]. Weaker interactions between tetrahe-
dra lead to their ferromagnetic ordering below TC ≃
58 K. Dzyaloshinsky-Moriya interactions induce a long-
wavelength, incommensurate helical spin structure and
promote a Skyrmion lattice phase [17, 18] near TC that
has attracted considerable attention. At low temper-
atures the low-field state is helimagnetic wherein the
atomic spins rotate within a plane perpendicular to the
helical axis with a wavelength λh ≃ 62 nm; mutliple do-
mains with helices aligned along 〈100〉 directions charac-
terize this phase. At H & 300 Oe the helices of individual
domains rotate along the field to form a single-domain,
conical phase in which spins rotate on the surface of a
cone. Further increasing the field narrows the conical
angle until H & 1 kOe where the ferrimagnetic, collinear-
spin state emerges.

II. EXPERIMENTAL METHODS

Phase pure, single crystals of Cu2OSeO3 were grown
by chemical vapor transport [19]. Cu2OSeO3 powder was
first synthesized by three stoichiometric (2:1 CuO:SeO2)
heat treatments at 600 ◦C, each followed by quenching
and grinding. The resulting powder was placed in an
evacuated fused-silica tube with a temperature gradient
of 640 ◦C - 530 ◦C, with NH4Cl as the transport addi-
tive. After six weeks, single crystals with typical sizes
of 75-125 mm3 were seen, and seed crystals were also
added to increase yield. Purity of single crystals were
verified by magnetization and X-ray diffraction experi-
ments, showing reproducibility of physical property be-
havior and good crystallinity.

Specimens were cut from single-crystal ingots, oriented
by x-ray diffraction, and polished into thin parallelop-
ipeds. We focus in this work on specimens with heat
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FIG. 1. (a) Thermal conductivity measured along [111] for three specimens (at H = 0) labeled by their transverse dimensions
ℓ0. (b) Magnetic field dependence of thermal conductivity (left ordinates) and average specimen temperature (right ordinates)
at two temperatures for ℓ0 = 0.15 mm. Also shown in the upper panel is dM/dH at 1.9 K. Here H is the internal field, i.e.
corrected for demagnetization. The gray shading delineates the different spin phases. The lattice contribution κL is identified
as the high-field saturation value of κ for T = 0.67 K, and κm in the helical, conical, and collinear phases as differences (vertical
arrows and dashed lines) (c) Low-T data for the same three specimens from (a) at H = 0 (circles) and H = 50 kOe (triangles).
The solid lines are linear-least-squares fits. (d) κL and κcon

m vs. ℓ0 at T = 0.70 K for the three specimens from (a).

flow along the [111] direction and perpendicular mag-
netic field applied along [11̄0] for which our data is most
extensive. Data for other orientations of heat flow and
applied field will be presented elsewhere [20]. A two-
thermometer, one-heater method was employed to mea-
sure the thermal conductivity in applied magnetic fields
up to 50 kOe. Specimens were suspended from a Cu heat
sink with silver epoxy and affixed with a 1 kΩ chip heater
on the free end. A matched pair of RuO bare-chip sen-
sors, calibrated in separate experiments and mounted on
thin Cu plates, were attached to the specimen through 5
mil. diameter Au-wire thermal links bonded to the Cu
plates and specimen with silver epoxy. Measurements
were performed in a 3He “dipper” probe with integrated
superconducting solenoid.

A total of 5 different crystals were studied with trans-
verse dimensions, ℓ0 ≡ 2

√

a/π (a is the cross-sectional
area) ranging from 0.15-0.60 mm. Three of these (ℓ0 =
0.15, 0.31, 0.60 mm) are the primary focus of this work.
A fourth crystal for which data is less complete, was cut
from the same ingot as ℓ0 = 0.15 mm and appears in
Fig. 2. Data for the fifth crystal appears in Appendix D,
Fig. 7.

III. RESULTS AND DISCUSSION

A. Zero-field thermal conductivity

Figure 1 (a) shows κ(T ) for H = 0 on three crys-
tals labeled by their transverse dimension (ℓ0). No-
table is the magnitude which reaches ∼ 400 W/mK (for
ℓ0 = 0.60 mm) at the maximum near T = 8 K, excep-
tional for a complex oxide. κ is also strongly sample
dependent for T < 10 K, scaling with ℓ0 at the lowest
T , but not in the region of the maxima. As we discuss
further below, the latter feature is attributable to differ-
ing point-defect concentrations to which κL is sensitive
near its maximum. Here we note the likely defects are Se
vacancies (common in Se compounds [21]) and numer-
ical modeling of κL (Appendices D, E, Fig. 6) implies
vacancy concentrations per f.u. of 5.6×10−4, 1.6× 10−3,
and 4.1 × 10−3 for the specimens with ℓ0 = 0.15 mm,
0.60 mm, and 0.31 mm, respectively.

We assume the measured thermal conductivity to be
a sum of lattice (phonon) and magnon contributions,
κ = κL + κm, valid in the boundary scattering regime
(T . 3 K as discussed below) when the phonon-magnon
relaxation time (τph−m) exceeds, but is comparable to,
the phonon-boundary scattering time (τb) [22]. Assum-
ing the q = 0 relaxation to be representative of the
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magnon system, an estimate, τph−m ∼ 3 × 10−8 s at
30 K, can be inferred from intrinsic ferromagnetic res-
onance linewidths [23]. Since the magnon density de-
clines as T 3/2, τph−m should increase to ∼ 10−7− 10−6 s
at T . 3 K where τb = ℓ0/vph ∼ 10−7 s (using
vph ≈ 2 km/s); thus the assumption is justified.

B. Ballistic lattice and magnon thermal

conductivities distinguished in applied field

The magnetic field dependence of κ through the vari-
ous spin phases [Fig. 1 (b)], allows for distinguishing κL

and κm. The key features of κ(H): (1) abrupt changes
of κ at the phase boundaries, (2) a suppression of κ with
increasing field in the collinear phase and saturation at
the highest fields (50 kOe) and lowest T . Behavior (2) is
typical of κm in ferro- and ferrimagnets [2–8] – spin-wave
excitations are depopulated (gapped) for fields such that
gµBH ≫ kBT (Fig. 4 in Appendix A shows that the field
at which κ(H) saturates corresponds to gµBH/kBT ≃ 6).
With [24] g ≃ 2.1 the magnon gap is ∼ 0.14 K/kOe, such
that κ(50 kOe) ≃ κL for T . 1.2 K.

We find κL ∝ T n [triangles, Fig. 1 (c)] with n = 2.7−3,
consistent with phonon mfps limited by the specimen
boundaries [Fig. 1 (d)] and nearly diffuse scattering.
The Casimir expression for diffuse scattering, boundary-
limited thermal conductivity can be used to determine
the phonon mean-free path [25],

κL =

(

2π2

15

)(

kBT

~

)3

kB〈v−2〉ℓph

where 〈v−2〉 = [(1/3)(1/v3LA + 2/v3TA)]
2/3 is the Debye

averaged sound velocity and ℓph is the phonon mean-
free path. A fit of the low-T κL(T ) data [Fig. 1 (c)]
to the form κL = AT n yields A = 1.52, 2.32, 5.62 and
n = 2.96, 2.80, 2.70, respectively, for the specimens with
ℓ0 = 0.15, 0.31, 0.60 mm. The power of T slightly less
than 3 is common in insulators [26], indicating some
specularity to the boundary scattering. Consistent with
observations, the ℓ0 = 0.60 mm specimen (n = 2.70)
was polished on one of its large faces with finer abra-
sive (1 µm) than the other specimens (5 µm). Longi-
tudinal and traverse sound velocities for the [111] di-
rection from ultrasonic measurements [27] are vLA ≃
3.3 km/s and vTA ≃ 1.85 km/s, respectively. Com-
bining these parameters in the above equation yields
ℓph ≃ 0.16, 0.24, 0.59 mm, in good agreement with the
effective transverse dimension of the specimens.

The corresponding κm in the helical and conical phases
computed by subtraction [vertical arrows and dashed
lines, Fig. 1 (b)], are ∝ T 2 for T ≤ 1 K, consistent with
constant magnon mfps (Fig. 2; κcol

m is omitted for clar-
ity). For boundary-limited spin-wave heat conduction we
have [1],

κm =
ζ(3)k3Bℓm
4π2~D

T 2,
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FIG. 2. (a) κhel
m = κ(H = 0) − κ(H = 50kOe) (triangles,

right ordinate) and ∆κ = κcon
m − κhel

m (circles, left ordinate).
(b) κm in the conical phase (circles) for the specimens from
(a). Error bars reflect uncertainties in the determination of κL

from the Callaway model (Appendix D, Fig. 6). Also shown
are κm data for YIG (squares) from Ref. 8.

where ζ(3) ≃ 1.202. A fit of the κcon
m (T ) data

[Fig. 2 (b)] at T < 1 K to the form BT 2 gives B =
1.25, 2.3, 2.6 W/mK3, respectively, for the specimens
with ℓ0 = 0.15, 0.31, 0.60 mm; the equation above implies
ℓm ≃ 0.14, 0.25, 0.28 mm, consistent with observations in
Fig. 1 (d).

The ballistic character of the magnon transport in the
T 2 regime is further corroborated by using kinetic theory
to convert κcon

m (or κcol
m ) to magnetic specific heat (Cm)

and then comparing the latter to expectations of spin-
wave theory. We have Cm = 3κm/(vmℓm), where vm =
(2/~)Dq, D = 52.6 meV Å2 is the spin-wave stiffness [28]
(the dispersion at low energy is well-described [29] by
E = Dq2). The dominant magnons for boundary-limited
κm have [30] qdom = (2.58kBT/D)1/2 such that vm ≃
1040T 1/2 m/s. Assuming diffuse scattering of magnons
at the crystal (or domain) boundaries, the computed Cm

for all crystals agrees well with linear spin-wave theory
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(Appendix B, Fig. 5).
A transfer of energy from the spin system to the lat-

tice as the magnon gap opens is implied, given the near-
adiabatic conditions of the specimens during measure-
ment. The corresponding increase in the average tem-
perature of the sample (Tavg) in the high-field regime
[solid curves, right ordinates in Fig. 1 (b)] should reflect
only a fraction of the total spin energy, since much of it
must be distributed within thermometers, thermal links,
and heater. As a further self-consistency check on our
analysis, this fraction is determined (Appendix C) to be
∼ 4% (30%) at T = 0.67 K (5.2 K).

C. Determining the magnon thermal conductivites

at higher T

Given that the phonon mfps are boundary-limited at
T ≤ 1 K, the abrupt increase in κ at the helical-conical
transition [H ≈ 250 Oe in Fig. 1 (b)] must be attributed
to an increase in κm associated with the approximate
doubling of ℓm noted above. It is significant that this
jump, ∆κ = κcon

m − κhel
m [Fig. 2 (a)], exhibits the same

∝ T 2 behavior for magnon boundary scattering at low T
as found for both κhel

m and κcon
m computed by subtracting

κL (Fig. 2). Since ∆κ is independent of any assumptions
regarding κL, it validates the implicit assumption that
κL is independent of field.

At T > 1.2 K where the applied field is insufficient
to fully suppress κm, ∆κ represents a lower bound on
κcon
m [Fig. 2 (b)] since we expect κL < κhel

m as is clear in
the data of Fig. 1 (b) at T = 5.2 K. Very similar results
for ∆κ(T ) were found for a specimen with [110] heat flow
and perpendicular field along [11̄0], thus a large κm is not
restricted to the [111] direction [20]. The sharp decline
of ∆κ at T & 7 K, and its disappearance for T & 12 K,
indicate that κm has a maximum at T ∼ 5 − 6 K and
becomes negligible for T & 12 K. The latter is supported
by recent spin-Seebeck measurements [31] indicating a
sharp decline in spin-polarized heat current in the same
temperature regime.

To estimate κcon
m at higher T , this behavior of κm and

the low-T κL are exploited as strong constraints on calcu-
lations of κL(T ) at T ≥ 1.2 K using the Callaway model
(Appendix D, Fig. 6). This procedure, dictates the error
bars on κcon

m in Fig. 2 (b) and, as noted above, provides
estimates of specimen defect (Se vacancy) concentrations
(Appendix E).

D. Anomalous T dependence for κm and possible

Poiseuille flow

A most striking feature of both ∆κ(T ) and κcon
m (T ),

aside from unprecedented magnitudes, is their increase,
for the two least defective specimens, with a substan-
tially higher power of T than ∝ T 2 at T ≥ 1 K (Fig. 2).
An additional contribution to Cm from spin-wave "optic"

modes cannot be expected in this temperature regime
since those sufficiently dispersive to contribute to κm

have energies exceeding 25 meV [28]. We are aware of
only two possible mechanisms that can potentially ex-
plain this observation: (1) magnon-phonon drag, (2)
Poiseuille flow of magnons. Theory suggests that for
momentum-independent magnon relaxation time τm, an
additive phonon-magnon drag contribution should take
the general form [32], κdrag ∼ (1/3)CLv

2
mτm ∝ T 4τm,

thus offering a stronger T dependence. The relevant
magnon-phonon interactions are normal, momentum-
conserving processes.

A more intriguing alternative is that magnons undergo
Poiseuille flow, predicted 50 years ago for both phonons
and magnons [33, 34, 36], but observed only for phonons
and only in exceptionally clean materials (e.g. crys-
talline 4He [37]). When the mfp for normal scatter-
ing (ℓN ) is much shorter than both the transverse di-
mension (ℓ0) and the mfp for bulk resistive scattering
processes (ℓR), quasiparticles undergo many momentum-
conserving scattering events before losing their momen-
tum at the specimen boundaries. Under the stringent
conditions ℓN < ℓ0/2 < (ℓN ℓR)

1/2, the effective mfp ap-
proaches that for a particle undergoing random walk with
step size ℓN , mfp∼ ℓ20/4ℓN ≫ ℓ0. We pursue this sce-
nario further since all of the relevant scattering rates for
magnons have been computed [35, 36] for a Heisenberg
ferromagnet in the low-T regime, and interactions with
phonons which underlie phonon-drag are predicted to be
significantly weaker.

Forney and Jäckle [36] calculated rates for normal and
umklapp magnon scattering and elastic magnon-impurity
scattering (non-magnetic defects). The expressions con-
tain three parameters (Appendix F), two of which are
set by the lattice constant and exchange coupling. The
only remaining free parameter is the defect concentra-
tion. Figure 3 (a) shows the relevant mfp’s employed
for the least defective crystal (ℓ0 = 0.15 mm). The con-
ditions for Poiseuille flow are met in the shaded region.
κcon
m is computed [solid curves, Fig. 3 (b)] from the ki-

netic theory expression with a mfp described by an inter-
polation formula [eq. (F1)] that yields the conventional
resistive scattering length well outside the Poiseuille win-
dow, ℓBR = (1/ℓ0 + 1/ℓ3U + 1/ℓ4U + 1/ℓi)

−1, and tends
toward ℓ20/ℓN within the Poiseuille regime. Interpola-
tion is controlled by “switching factors” [34, 38] related
to the ratio ℓN/ℓR (Appendix F and Fig. 8). The data
are well-described by the model (with defect concentra-
tions 12, 22, 62 ppm for ℓ0 = 0.15 mm, 0.60 mm, and
0.31 mm), though the computed maxima for the more
defective specimens deviate from experiment, a conse-
quence of the Poiseuille window being shifted to lower T
as the impurity scattering mfp decreases. This may sig-
nal inadequacy of the magnon-impurity scattering model,
perhaps because spin defects in the present system may
be associated with Se vacancies as suggested by a cor-
relation between the defect concentrations inferred for
magnons and phonons (Appendix F, Fig.9).
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FIG. 3. (a) Magnon mean-free paths for scattering from the model of Ref. 36 (see Appendix F for details). Subscripts refer to
3-magnon and 4-magnon normal (3N, 4N) and umklapp (3U, 4U) processes, elastic impurity scattering (i), and total resistive
scattering (R). The Poiseuille conditions (see text) are met in the shaded region. (b) κcon

m (T ) for the three crystals from Fig.’s
1 and 2 with linear scaling. The solid curves are model predictions for elastic defect concentrations (from top to bottom):
12 ppm, 22 ppm, 62 ppm. The dashed curve for the ℓ0 = 0.15 mm specimen represents the spin-wave contribution alone
without Poiseuille enhancement. Inset: magnon mfps from the model, normalized by low-T boundary-limited values, for each
specimen.

IV. SUMMARY

Our observations reveal Cu2OSeO3 to be a model sys-
tem for further study of long-wavelength magnon dynam-
ics, e.g. our proposal that magnons undergo Poiseuille
flow implies that magnon “second sound” might also be
observed. Since both the conical and collinear-phase
magnon heat conductivities are similar in magnitude, he-
lical magnetism is evidently not the origin of its unusu-
ally large κm. Since long-wavelength magnons play a
prominent role in the spin-Seebeck effect [8, 9] the re-
sults presented here also make it possible to investigate
interfacial spin-current transfer using calibrated magnon
heat currents and to explore the possible role of the spin
phases on transfer efficiency.
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Appendix A: Additional low-T κ(H) data

Figure 4 shows additional low-T κ(H) data showing
suppression of the magnon contribution at high fields
where we infer κ = κL. We also plot the field Hsat at
which κ becomes field-independent against temperature.

Appendix B: Magnetic specific heat computed from

κm

As noted in Ref. 28, the Cu4 tetrahedra of Cu2OSeO3

approximate an fcc lattice, the primitive cell of which
is 4 times smaller than that of the simple cubic
cell. Thus the standard low-temperature form of the
magnetic specific heat per volume becomes, Cm =

(0.113/4)kB (kBT/D)
3/2 (this factor of 1/4 also appears

in expressions for the spin-wave thermal conductivity).
Values of Cm (as described in the text) were computed
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from the measured κcol
m (or κcon

m ) using kinetic theory and
ℓm = ℓ0 for the four crystals from Fig. 2 (a), with the
exception of the ℓ0 = 0.60 mm crystal for which we used

T. Adams et al., PRL 108, 237204 (2012)
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bols are the same as those from Fig.’s 1-3). The dashed line
is a T 3 fit to the measured specific heat data at T < 20 K,
and the dash-dotted line represents the specific heat for an
fcc magnetic lattice, converted to molar units for Cu2OSeO3

using 1 mol=5.35 × 10−5m3.

ℓm = 0.34 mm based on the effective length inferred from
Fig. 1 (d). Theory and experiment agree well (Fig. 5).

Appendix C: Energy transfer from spins to lattice at

high field

We estimate the fraction of total spin energy trans-
ferred to the lattice of the ℓ0 = 0.15 mm specimen at
T = 0.67 K, upon gapping out the spin waves in maxi-
mum field [Fig. 1 (b)], as Q/um where Q = CL∆T is the
heat transferred per volume, computed from the lattice
specific heat (CL) and change in Tavg induced by applied
field (∆T ), and um is the total energy per volume in the
spin system,

um =
D

16π2

(

kBT

D

)5/2

Γ(5/2)ζ(5/2; 1),

Γ(5/2) = 3π1/2/4 and ζ(5/2; 1) ≃ 1.341. With ∆T =
0.043 K (Fig. 1b) and using the T 3 fit to the measured
specific heat (dashed line, Fig. 5) to compute CL, we find
Q = 0.14 J/m3 and um ≃ 3.8 J/m3, such that Q/um ≈
0.036. At T = 5.2 K a similar analysis yields Q/um ≈
0.30.
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Appendix D: Calculations of κL(T )

The Callaway model [39], incorporating its recent up-
date [40], was employed to compute κL(T ) for each of
the crystals, with parameter ranges restricted by the fol-
lowing constraints: (1) κL fits the low-T , high-field data
(where κL is inferred directly) and the T ≥ 12 K, zero-

field data (where κm is inferred to be negligible by the
vanishing of ∆κ), (2) the maximum in κcon, computed by
subtracting κL from κ measured at the conical-collinear
transition, should occur at T ≈ 5− 6 K where ∆κ has its
maximum, (3) κL . κ(H = 50kOe).

The integral expression for κL is,

κL =
kB
2π2v

(

kB
~

)3

T 3

[

∫ ΘD/T

0

x4ex

(ex − 1)
2
τC(x, T )dx

](

1 +
τC(x, T )/τN (x, T )

τC(x, T )/τR(x, T )

)

,

with f(T ) =

∫ ΘD/T

0

x4ex

(ex − 1)
2
f(x, T )dx

/

∫ ΘD/T

0

x4ex

(ex − 1)
2
dx,

where v is the Debye averaged sound velocity (see above),
ΘD = (~v/kB)(6π

2N/V )1/3 the Debye temperature,
x = ~ω/kBT the reduced phonon energy, τ−1

C (x, T ) =

τ−1

N (x, T ) + τ−1

R (x, T ), and τ−1

N (x, T ) and τ−1

R (x, T ) are
phonon scattering rates for normal (momentum conserv-
ing) and resistive (momentum non-conserving) processes,
respectively. τ−1

R (x, T ) included terms for scattering
from boundaries, other phonons (Umklapp scattering),
and point-like defects (Rayleigh),

τ−1

R (x, T ) = v/ℓph +Ax2T 4 exp

(

−ΘD

bT

)

+ Cx4T 4,

where ℓph = ℓ0 is the boundary-limited phonon mean-free
path and A, b, C are constants. The normal scattering
rate was taken to have the same frequency dependence
as for Umklapp scattering [40], but without the expo-
nential T dependency, τ−1

N (x, T ) = γAx2T 4, with γ a
constant. A broad range for γ was explored in the fitting
and it was found that only for γ ≤ 1/50 were the con-
straints satisfied. γ = 1/50 implies a normal scattering
rate that begins to exceed that for Umklapp scattering
at T . 10 K. Phonon-magnon scattering was assumed to
be substantially weaker than other scattering.

Fig. 6 shows κ(H = 0, T ) data for the three speci-
mens from Fig. 1 along with two κL curves for each (solid
and dash-dotted curves). These curves border the ranges
(shading) defined by the constraints noted above. Data

TABLE I. Ranges of scattering parameters from Callaway
modeling of κL.

ℓ0 (mm) v(km/s) A(104 K−4) b C(K−4)

0.15 2.06− 2.15 1.8− 2.0 6.6− 6.9 10− 15

0.31 2.15− 2.35 1.5− 1.8 6.0− 6.6 80− 110

0.60 2.06 − 2.3 1.75 − 2.0 6.3− 6.6 34− 40

T (K)

0 5 10 15

κ
 (

W
/m

K
)

0

100

200

300

400

FIG. 6. κ(H = 0, T ) for the three specimens shown in
Fig. 1 (solid circles) and computed κL (solid and dash-dotted
curves) for two parameter sets for each specimen. Solid curves
(from top to bottom, with the same units of Table I): v = 2.06,
A = 1.87, b = 6.35, C = 36, γ = 1/100; v = 2.06, A = 1.9,
b = 6.76, C = 10, γ = 1/50; v = 2.35, A = 1.72,b = 6.35,
C = 90, γ = 0. Dash-dotted curves (from top to bottom):
v = 2.15, A = 1.77, b = 6.6, C = 37, γ = 1/100; v = 2.06,
A = 1.87, b = 6.7, C = 14.5, γ = 0; v = 2.35, A = 1.5,
b = 6.35, C = 110, γ = 0.

points for κm in Fig. 2 (b) correspond to the middle of
these ranges with error bars equal to the width of the
shaded region. A summary of the scattering parameters
is provided in Table I.

In Fig. 7 we compare κ(T ) at H = 0 for the most
defective ℓ0 = 0.31 mm specimen from Fig.’s 1-3 with
a less defective crystal having the same ℓ0. Consistent
with expectations, Callaway-model parameter sets for κL
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FIG. 7. κ(H = 0, T ) for two crystals with ℓ0 ≃ 0.31 mm in log-log scaling (left) and linear scaling (right). Open circles are for
the same crystal from Fig.’s 1-3. Solid curves are produced using the Callaway model using (in units from Table I) v = 2.35,
A = 1.72, γ = 1/50 and: (upper curve) b = 6.4, C = 26; (lower curve) b = 6.2, C = 80.

(solid curves, right panel) differ principally in the defect
concentration (C).

Appendix E: Estimate of Se vacancy concentration

from point-defect fitting parameters for κL

Interpreting the point-defect phonon scattering rate
(Table I above) as entirely due to Se vacancies, the va-
cancy concentration can be estimated using [42],

τ−1

d =
n

7

9a3

4πv3

(

MSe

M

)2

ω4,

where n is the concentration of vacancies on the Se
sublattice, a = 1.22 Å is the Se atomic radius, v =
2060 m/s is the sound velocity, and MSe/M ≃ 2.05

is the ratio of the Se mass to the average mass. Us-
ing values C = 13, 37, 95 K−4 from Table I for the
ℓ0 = 0.15, 0.60, 0.31 mm crystals yields concentrations
per f.u., 5.6× 10−4, 1.6× 10−3, 4.1× 10−3, respectively.

Appendix F: Magnon scattering rates and modeling

of Poiseuille flow

Forney and Jäckle [36] computed the thermally av-
eraged 3-magnon and 4-magnon normal (3N , 4N) and
umklapp (3U , 4U) scattering rates and magnon-impurity
scattering rate (i) for a quadratic magnon dispersion
within the Born approximation, valid for small impurity
concentration, T ≪ TC and T ≫ kB∆, where ∆ is the
energy gap (∼ 12 µeV for Cu2OSeO3):

τ−1

3N = 2.6S
kB
~
T 2

dT
−3/2
e T 1/2, τ−1

4N = 6.1× 10−4 kBT
4

S2~T 3
e

,

τ−1

3U = 1.4× 103
SkBT

2

d

~(TeT )1/2
exp (−12Te/T ), τ−1

4U =
2

S2

kBT
3/2

~T
1/2
e

exp (−12Te/T ), τ−1

i = 0.4c
kB
~

kBT
5/2

T
3/2
e

,

where

Td =
(gµB)

2

kBa3
, Te =

2SJ

kB
.

We initially re-scaled the values Td = 0.012 K and
Te = 1.0 K employed in Ref. 36 for EuS (TC = 16.5 K)
using the ratio of lattice constants and TC (as a surrogate
for J). These gave Td = 0.004 K and Te = 3.5 K. Subse-

quently we settled on Te = 4.2 K which provided better
agreement with the data for the least defective specimen.
The scattering rates were adopted without modification
with the exception of the exponent of the Umklapp scat-
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FIG. 9. Nonmagnetic defect concentration for magnons from
the model fitting vs. Se vacancy concentration inferred from
Callaway fitting of κL.

tering rates (we used 10 rather than 12 as above) and
the prefactor of τ−1

4U (we decreased it by a factor 380).
As noted in Ref. 36, these changes put our four-magnon
Umklapp scattering rate in better agreement with that
computed by Schwabel and Michel [41], and produced
better agreement with the data. With these modifica-
tions, the only remaining adjustable parameter was the
impurity concentration (c).

The scattering rates were incorporated into an inter-
polation formula for the magnon thermal conductivity
using the function described in Ref. 38 and derived by
Alvarez and Jou [43]:

κm =
1

3
Cmvm

[

ℓBR(1− Σ) + ℓRF (Leff )Σ
]

, (F1)

F (Leff ) =
1

2π2

(

Leff

ℓ

)2





√

1 + 4π2

(

ℓ

Leff

)2

− 1



 ,

where Σ = 1/(1 + ℓN/ℓR), Leff = πℓ0/(2
√
2), ℓ ≡√

ℓN ℓR, ℓR = (1/ℓ3U + 1/ℓ4U + 1/ℓi)
−1, and ℓBR =

(1/ℓ0 + 1/ℓR)
−1. We used Σ2 in place of Σ in the above

expression as it provided a better interpolation → 0 at
low-T (Fig. 8).

The impurity scattering concentrations (c) employed
to produce the curves in Fig. 3 correlate with those found
for phonon-defect scattering (Fig. 9) in the Callaway
analysis of κL (Table I).
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