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We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal
made by periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such
as air. The description is based on a nonlocal theory of sound propagation in stationary ran-
dom fluid /rigid media that was proposed by Lafarge and Nemati [Wave Motion 50, 1016 (2013)].
This scheme arises from a deep analogy with electromagnetism and a set of physics-based postu-
lates including, particularly, the action-response procedures, whereby the effective density and bulk
modulus are determined. Here, we revisit this approach, and clarify further its founding physical
principles through presenting it in a unified formulation together with the two-scale asymptotic
homogenization theory that is interpreted as the local limit. Strong evidence is provided to show
that the validity of the principles and postulates within the nonlocal theory, extends to high fre-
quency bands, well beyond the long-wavelength regime. In particular, we demonstrate that up to
the third Brillouin zone including the Bragg scattering, the complex and dispersive phase velocity of
the least-attenuated wave in the phononic crystal which is generated by our nonlocal scheme agrees
exactly with that reproduced by a direct approach based on the Bloch theorem and multiple scat-
tering method. In high frequencies, the effective wave and its associated parameters are analyzed

by treating the phononic crystal as a random medium.

I. INTRODUCTION

The field of phononic crystals (PCs) for acous-
tic/elastic waves [1, 2], which has been developed in anal-
ogy to the concept of photonic crystals related to elec-
tromagnetic (EM) waves [3], has been a subject of inten-
sive theoretical and experimental investigations over the
past two decades [4-7]. PCs are periodic arrangement
of solid/fluid inclusions embedded in a host solid/fluid
material, configured to control and manipulate acous-
tic/elastic wave propagation that can exhibit band gaps
forbidding propagation. The existence of the forbidden
bands or band gaps in phononic materials, usually dis-
played in w-k (angular frequency-wave vector) space, is
due to Bragg scattering which at specific frequencies,
namely band-gap frequencies, leads to destructive inter-
ferences. Indeed, the solid/fluid periodic inclusions act
as scatterers in the medium.

PCs are studied and applied across broad and various
research areas, such as sound isolation [7-10], wave guid-
ing [4, 11], nanoscale thermal control [6], and quantum
information processing [12]. Depending on the research
area and the size of materials and devices made by the
PCs, the wave frequency in these materials is ranging
from sonic/audible frequencies (kHz) for sound proofing
to ultrasonic imaging (MHz), hypersound (GHz) in op-
tomechanics, and thermal applications (THz) [6]. Re-
spectively, the material size characterized by its period-
icity L covers the scale from the centimeter to millimeter,
micrometer and nanometer.

We distinguish ordinary PCs, with periodic Acoustic
Metamaterials (AMM), in that the particular wave con-
trol features of PCs are produced by the spectral bands
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through Bragg scattering, that occurs when the effective
wavelength A propagating in the material is close to the
period L. Bragg’s spectral bands depend essentially on
the periodic arrangements of the structural units. In con-
trast, the unusual macroscopic properties of the AMMs
originate in local resonances leading ultimately to one or
more negative effective-medium parameters such as den-
sity, bulk modulus, and elastic modulus; when A is sev-
eral times larger than L. The AMM’s properties rely on
the internal structure of a single periodic unit including
its topology and constituent materials, that characterize
localized resonances. In order to design materials that
exhibit the required macroscopic properties, we need to
employ an appropriate effective-medium theory.

Effective-medium theories aim at establishing
macroscale equations that govern the effective dy-
namics of a medium at the scale of measurement
with heterogeneities at micro-level. These equations
typically include the field equations and constitutive
relations, where the latter characterize and are specific
to the medium.  Within effective-medium theories,
homogenization techniques are employed for upscaling
or coarse-graining the microscale properties, either
rigorously, phenomenologically, or approximately. As a
result, microscale information such as micro-topology,
densities, bulk moduli, volume fraction of the medium
constituents are encoded in a few effective parameters at
macro-level, where the medium is assumed to be homo-
geneous. However, describing the effective properties of
PCs and AMMs is generally restrictive within classical
homogenization theories. The long-wavelength resonant
behaviors of AMMSs are often not captured, and the
Bragg scattering in PCs, is commonly thought to escape
a macroscopic description as this phenomenon occurs
for small wavelengths on the order of the period. Efforts
have been made to capture local resonances in AMMs



with elastic materials, by coherent potential approxima-
tion (CPA) [13] that is based on minimizing scatterings
in the long-wavelength limit. An enhanced scheme has
been developed to obtain the effective properties of the
same type of materials in a broader frequency-band, by
matching the lowest-order scattering amplitudes that
arise from the unit cell, with that of the homogenized
material (metasolid) [14]. Although, it was known that
nonlocal effects were relevant in EM materials as a
small correction when the wavelengths reduce, these
effects have been also found to be impactful in EM
metamaterials [15] and AMMs [16] at long-wavelengths.
Nonlocal homogenization approaches were formulated to
derive broadband effective EM parameters, by averaging
the response of an appropriate distribution of sources
[17], or by using CPA method in the long-wavelength
regime [18].

Here, we study the special case of heterogeneous two-
phase media with a motionless non-deformable solid and
a viscothermal fluid. The medium forms a connected
fluid phase which is the seat of the wave propagation. At
long-wavelengths A > L, the standard approach to define
an effective medium and compute its effective properties,
is based on the two-scale asymptotic method of homoge-
nization for periodic media (see, e.g., [19, Appendix A]).
We show that, at the leading order, the results corre-
sponding to this approach can be directly found from the
simplifying assumption to take partially temporal disper-
sion effects into account, but unreservedly ignore spatial
dispersion effects [20]. It means that the field dynamics
at one location retains (partially) a memory of the field
values at the same location, but is not affected by the
neighboring values. In other words the medium behaves
locally in space, by the virtue of which this approach is
called here ‘local theory’. In the absence of the spatial
dispersion, we clarify that this theory presents a trun-
cated scheme that can only be applied to the materials
without widely different characteristic pore sizes. There-
fore, it cannot describe the behavior of AMMSs, since
exhibiting local resonances at long-wavelengths in rigid
solid /fluid media requires widely different characteristic
pore-sizes to be involved in the building block, e.g, ma-
terials made of Helmholtz resonators [16, 21]. This ap-
proach has been extended to describe fluid/solid media
with Helmholtz structures, but at the cost of separating
the fluid region into different portions, in which different
asymptotic expansions and rescaling are performed [22].

Furthermore and in particular, since the long-
wavelength condition must be satisfied within the lo-
cal approach, this theory fails to describe Bragg scat-
tering in PCs; which is related to the core subject of
this paper. To devise a macroscopic theory allowing for
both temporal and spatial dispersion, and applicable re-
gardless of the geometry and wavelength sizes, we follow
a deep EM analogy within a Maxwellian nonlocal the-
ory. This nonlocal theory is formulated to describe the
wave propagation in stationary random media, such that
the macroscopic fields are defined through application of

ensemble-averaging operators over microscopic fields, ei-
ther directly or indirectly. The theory can also be applied
to the special case of periodic media, by considering that
the ensemble of realizations is obtained by the random
translation of one reference periodic sample. However,
this application of the nonlocal approach implies an am-
biguity that originates in the particular choice of the pe-
riodic structural unit. Indeed, the reference period can
be an arbitrary number of the irreducible period. We
will refer to this type of media as the oxymoron ‘peri-
odic random’, to emphasize that although these media
are random and therefore they are subject to the appli-
cation of the nonlocal theory, they keep their periodic
nature.

For solid/solid stationary-random composites or pe-
riodic random media, a general nonlocal form of the
macroscopic equations has been proposed by Willis [23].
Within the same effective-medium formulation, effective
parameters have been calculated by different techniques,
in 1D [24], 2D [25], and 3D [26, 27]. Interestingly, it
turns out that the nonlocal Maxwellian description of
fluid/rigid media that we discuss here, involves equa-
tions of the same form as those of Willis, but without
the coupling terms. The absence of these coupling terms
is due to the different ways of defining the macroscopic
fields from microscopic fields, although both schemes
have non-asymptotic character and employ ensemble-
averaging concept.

In this paper, using the macroscopic equations of the
Maxwellian nonlocal theory as well as a correspond-
ing action-response homogenization method to compute
the constitutive nonlocal operators, we describe accu-
rately 1D nonlocal dynamics of PCs composed of two-
dimensional periodic array of rigid cylinders permeated
by air as a viscothermal fluid (Fig. 1). We demonstrate
that the nonlocal approach enables us to characterize the
material, that is regarded as the ensemble of random
translations of one periodic sample, through a complex
density and bulk modulus, or effective phase velocity and
impedance, of an effective fluid in a broadband regime in-
cluding the high-frequency range where the wavelength
is as small as the periodicity of the PC (A ~ L). We
refer to this effective fluid as a phononic fluid, in con-
trast to metafluids whose properties are based on local
resonances. The validity and precision of the calcula-
tions are verified when the results, based on the effective-
medium theory are compared with those produced by a
completely different Direct Bloch-wave Approach (DBA)
treated by Multiple Scattering (MS) method that in-
corporates the viscothermal losses. Comparison of the
phase velocity of the least attenuated mode computed by
nonlocal theory via the action-response problems, with
that obtained by the source-free DBA through calcula-
tion of Bloch wavenumber, shows remarkable agreement
between the two schemes.

The results related to the local approach or two-scale
asymptotic homogenization method are also provided to
present the validity domain of the latter. It is impor-



FIG. 1. Two-dimensional array of rigid cylinders with iden-
tical radius R, embedded in a viscothermal fluid (air). The
nearest neighbours in this lattice are distanced with the length
L. The reference periodic cell considered is shown by the
square of length L.

tant to note that the nonlocal theory is able to predict,
for a given frequency, several modes propagating and at-
tenuating in the material, with each of which different
frequency-dependent effective parameters are associated.
Here as mentioned above, we are investigating only the
material properties related to the least attenuated mode;
the higher order modes will be studied in a forthcom-
ing paper. To our knowledge, this is the first time that
a dissipative phononic (sonic) crystal is precisely char-
acterized by its effective properties in a large frequency
range extending over Bragg’s regime covering the entire
first and second Brillouin zones, thereby the concept of
phononic fluids is introduced. This is a breakthrough
step towards bridging the physics of waves in materials at
microsale and at homogeneous macro-level, noting that
it has been commonly presumed impossible to achieve an
effective medium when the microstructure is not below
the scale of measurement.

In the following, Sec. II recalls the microscopic gov-
erning equations for the linear acoustics. In Sec. TITA,
the local and nonlocal approaches of the macroscopic the-
ory are presented in a unified formulation. The action-
response problems involving partial differential equations
(PDESs) to achieve the effective parameters, are reviewed
for local theory in Sec. III B, and for nonlocal theory in
Sec. IITC. Sec. IV is devoted to the calculation of the
phase velocity in the PC based on DBA via MS method
that accounts for viscous and thermal effects. The results
generated by local and nonlocal approaches, and DBA
are reported in Sec. V, followed by concluding remarks
and discussions on future research prospects in Sec. VI.

II. MICROSCOPIC EQUATIONS

In a heterogeneous rigid solid/fluid system, as the PC
represented in Fig. 1, the governing equations consist
of bulk-fluid equations, and solid/fluid boundary condi-

tions. At the microscopic scale, the linear equations gov-
erning the dynamics of small-amplitude disturbances in
a homogeneous viscothermal fluid come from linearized
balance equations of mass, momentum and energy, the
constitutive relations, and a general state equation of the
fluid. These governing equations describe the small devi-
ations of thermodynamic pressure p, density p, tempera-
ture T', velocity v, and entropy s, from their rest state py,
0o, To, vo = 0, and sg, up to the terms of first order. In
the framework of classical irreversible thermodynamics
[28, 29], the two constitutive relations are those of Stokes
and Fourier. They are written as

o = 2 (eij - %(V'”)(Sw‘) + ((V.v)di; (1a)
q = —KVT (1b)

Stokes’s law, is a linear isotropic relation between the
components of the viscous shear stress o/ ;- and strain rate
eij = 5(0ivj+0;v;), where §;; is the Kronecker symbol, n
and ( are the first and second viscosity of the fluid. The
heat conduction Fourier’s law is a corresponding relation
between g the heat flow and the temperature gradient,
with k the coefficient of thermal conductivity.

Using Stokes’s law (1a), the conservation equations of
mass, and momentum in the bulk fluid V/ for a fluid
particle yield [30, 31]

ob

E—i—V-v:O (2a)
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where b = p'/po, p' the density deviation. For conve-
nience, we denote the pressure deviation as well as the
absolute pressure, by p. When we expand the thermo-
dynamic equations of state, p = p(p,s) and T = T(p, s)
near the rest state up to the first term, and making use
of the thermodynamic identities (9p/0s), = —poBo/cp,
(0T /0p)* = BoTo/pocy, & = (Op/dp)* where ¢y repre-
sents the adiabatic sound speed, B9 = pold(1/p)/0T],
and ¢, = Tp(0s/0T), are the coefficient of thermal ex-
pansion and the specific heat at constant pressure, that
are evaluated at the fluid rest sate, then we can write the
state equations as : p' = (1/c)p — (poBoTo/cp)s’, and
T = (ToBo/pocy)p’ + (To/cp)s’, respectively. Omitting
s’ in the latter equations leads to the expression of the
state equation

YXxop = b+ BoT (3)

where xo = py*(9p/dp)® is the coefficient of adiabatic
compressibility at rest state, v = ¢,/c, the relative spe-
cific heats at constant pressure and constant volume, in-
volved in the thermodynamic identity v—1 = 82T,/ pocy,
and 7 is a simpler notation for the excess temperature T".

The linearized energy balance equation is reduced to
the linear heat transfer equation [30, 31], poTods’ /Ot =
kV?27, where the left side is obviously the quantity of



heat gained per unit volume, and for writing the right
side, Fourier’s law (1b) is used. This equation com-
bined with the aforestated expression of the state equa-
tion T = T'(p, s), leads to the following form of energy
balance equation

or dp
ponE = BOTOE +kV3r (4)

which complements governing equations (2-3) in the bulk
fluid.

In the (rigid) solid phase region V*, energy balance
equation is reduced to p*cj(97° /Ot) = k* V7%, where p*
is the constant solid density, 7° solid excess temperature,
and x® solid coefficient of thermal conductivity. On the
fluid/solid interface 0V, we have the conditions of conti-
nuity of the excess temperature 7 = 7° and the heat flux
V1 = k°V7°. We admit that the coefficient of ther-
mal conductivity of the solid is much larger than that
of the fluid x* > k, and the heat capacity at constant
pressure of the solid part is much larger than that of the
fluid part, i.e., (1 — ¢)p°c, > ¢pocy; where ¢ is the fluid
filling fraction (porosity). The latter assumptions com-
bined with the Fourier heat diffusion in the solid, and the
temperature and heat flux continuity relations, generally
result in the vanishing of the fluid excess temperature at
the fluid /solid boundaries. In addition, we assume no-slip
condition on the fluid/(rigid) solid interface. The bound-
ary conditions for the velocity and excess temperature on
VY are finally written as

v =0, T=0 (5)
Equations (2), (3) and (4) with boundary conditions (5)
establish the governing microscale equations on the field
variables v, b, p and 7.

III. LOCAL AND NONLOCAL THEORIES:
PHONONIC FLUIDS

We summarize here the Maxwellian local and nonlocal
macroscopic acoustics associated with a given macroscop-
ically homogeneous fluid/rigid random medium. Then
the local and nonlocal action-response problems for de-
termining the effective-medium parameters within the re-
spective schemes are stated.

We consider that the medium occupies the whole space
and is assumed to be macroscopically homogeneous in
ensemble-averaged sense. We imagine that we are given
infinite number of samples w of the medium from a prob-
ability space €2, the ensemble of which defines the homo-
geneous macroscopic medium. In each realization w, the
medium is composed of two regions: the void (pore) re-
gion Y/ (w) which is a connected region permeated by the
fluid, and the complementary solid-phase region V*(w);
the pore-wall region or fluid/(rigid) solid interface is de-
noted by 0V(w). The characteristic function of the pore

region is defined by

1, reViiw)
. (6)
r eV (w)

Microscopically, the fields are of the form a(¢, r;w) and
the dynamics of the system is governed by the equations
(2-5) with V/,V* and V replaced by V/(w), V*(w) and
V(w). The ensemble-average operation at position 7 is
denoted equivalently by (..)(r) or (..(r)), that gives the
expectation value of the micro-field at the same position.
For instance, (I)(r) = (I(r)) is the porosity ¢, giving
the probability that the position r lies in the fluid, over
an infinite number of realizations. Since we assume the
solid motionless and thermally inert, (Egs.(5)), all mi-
croscopic fields a(t, r; w) that specify the fluid motion in
V/(w), can be by convention extended to be zero in the
solid V*(w). The macroscopic mean A(t,r) of the field
a(t,r;w) is defined through A(t,r) = (a(t, r; w)).

We study here the case of periodic random media with
the 2D PC depicted in Fig. 1 as the reference configu-
ration. The random PC is the ensemble of realizations
obtained by random translation of this reference config-
uration in the x and y direction. Thus w can be re-
garded here as (wy,w,) with w, and w, random variables
uniformly and independently distributed in [—L/2, L/2].
The characteristic function of the pore region is then in-
terpreted as I(r;w) = I(r —w) = 1 if » — w is in the
fluid region, and equals 0 if 7 — w is in the solid region
of the reference configuration.

We analyze acoustic waves propagating perpendicular
to the cylinders in the direction of principal xz-axis, con-
necting the nearest neighbors in the lattice, whose unit
vector is e,. In what follows, as the macroscopic nonlocal
theory is presented in the form of Maxwellian acoustics,
we present the macroscopic equations of local theory in
a Maxwellian form as well, in order to compare the two
frameworks and clarify further their respective proper-
ties. Also, ensemble-average conception is employed for
both nonlocal and local schemes [32].

A. Macroscopic equations: local and nonlocal

The macroscopic or effective-medium equations in lo-
cal and nonlocal approaches include field equations that
are general and valid for all media, and constitutive re-
lations involving effective parameters, here effective den-
sity and bulk modulus operators, that are specific to each
medium depending on the type of the fluid and the geom-
etry of the solid structure. These equations are written
in analogy to Maxwell equations in electrodynamics. The
macroscopic condensation and velocity are defined as the
direct ensemble-averages B = (b) and V = (v), where
V = Ve, in the present 1D macroscopic longitudinal
wave propagation along principal z-axis.

Since the velocity vanishes on the cylinder walls, the
following direct commutation relation between averaging



and divergence operators holds: (V -v) = V -
V .V = 9V/0x [33]. Thus, the Eq.
averaged to yield

(v) =

(2a) is directly

B v _, o
ot oz
This equation is the counterpart of the EM equation
0B/0t+ V x E = 0, that is obtained in the same direct
way from its respective microscopic equation. We name
‘Lorentz’ fields, the two quantities V' and B, that are,
like their EM counterpart E and B, the direct averages
of the microscale fields. We note that the Lorentz fields
are all true tensors, i.e. tensors of weight zero [34], when
we write the above EM equation in a tensorial form and
make appear the antisymmetric second-order tensor Bj;,
such that, e.g., B12 = Bj3. Here, the acoustic analogue of
B;j is a scalar, because we study the propagation along
a single principal axis.

The averaged form of Eq. (2b) will be written in a for-
mal indirect manner. We rewrite the starting microscale
equation (2b) in the form

ov 1 .
_— = — b
PO Xo Vb+J (8)

where j is introduced as
1
j=-Vp+x5 ' Vb+nViv+ <C+ §77) V(V-v) (9

and we average it to get

ov
Po5r = —Xo 'VB+J (10)

where the expression
J={j) —xo" (V1) (11)

is obtained by using the commutation relation (Vb) —
V (b) = — (bVI) (see Egs. (51) and (53) in Ref. [35]).
Now, a way to effect formally the mean operation defining
J in (11), suggests itself, by noting that the equation (10)
is analogous to the following macroscopic EM equation
in a material medium in absence of external charges or
electric currents

eog—f =uy'VxB-J (12)

where €y and po are the electric and magnetic permit-
tivities in vacuum, and J is the EM current associ-
ated with the macroscopic motion of the particles, in-
duced by the macroscopic EM field perturbation in the
medium. Following Lorentz [38], in macroscopic EM
framework, this induced bulk current is formally decom-
posed into a temporal derivative and a spatial deriva-
tive term: J = OP /0t + V x M, where P and M are
EM polarizations. Substituting this equation in (12),
yields 0D/0t = V x H, with D = ¢FE + P and
H = x, !B — M. Similarly, in our acoustic context,

we assume that the induced bulk force J = Je, in (11),
can undergo the same type of formal decomposition

orP oM
= 4= 1

4 ot + ox (13)
Substituting the above equation in (10), yields

oD OH

-z 14

ot ox (14)
with

D=pyV-P H=x,'B-M (15)

The fields D and H thus introduced, will be the effec-
tive acoustic momentum and effective acoustic pressure
at the macroscopic scale. As in EM, we assume the ex-
istence of constitutive laws P = X,V and M = X, B,
that relate the ‘polarizations’ P and M, to the Lorentz
fields V and B, where X, and X, are convolution oper-
ators, such that in the most general manner, we have
P(t,x) = fioo dt' [da'x,(t — t',x — 2)V(¢',2") and
M(t,z) = ffoo dt' [ da'xm(t — ¢/, — 2')B(t',2"). The
time invariance and macroscopic spatial homogeneity of
the system result in the dependence of the kernels on the
differences t — ' and  — 2’. Then, we are led to com-
plete the field equations (7) and (14) by the following
constitutive relations

D=5V, H=x"'B (16)
where p = pof —%p and Y 7! = xalf — Xm, With I the
identity operator. Explicitly, these are the nonlocal con-
stitutive equations

D(t,z) = /t dt’/dw’p(t —thx—2" V(' 2') (17a)

¢
H(t,x) = / dt’ / de'x 't —t',x —2')B(t',2’)(17b)

stating that the fields D and H at a given time ¢ and
position x depend on the fields V' and B at all previous
time and all points of the space.

We assert that the EM fields H, D, P and M, and
acoustic fields H, D, P and M, that are tensor densities
of weight -1 [37] (substituting for H and M the corre-
sponding antisymmetric tensors), further differ from the
Lorentz fields in that they are mot the direct average of
corresponding microscale fields. This will be justified be-
low in the acoustical case. In what follows these are called
‘Maxwell’ fields to be distinguished with Lorentz fields.

The constitutive laws express the Maxwell fields in
terms of the Lorentz fields. The relation (17a) is writ-
ten in the most general form. Indeed, it is useless to
add an extra convolution term to the right hand side of
this equation, for relating D(¢,x) to values of the other
Lorentz field, i.e., B(t',z’). Because the fields V and B
are related by the field equation (7), the effect of such
an additional term is already incorporated in (17a) that



includes the temporal and spatial dispersion in a general
manner. The second constitutive relation (17b) is also
written in the most general form. Because of Eq. (7),
there is no need to add an extra convolution term to the
right hand side of Eq. (17b), for connecting H (¢, r) with
the values of V(¢', 7). Similar type of arguments can be
found in [43] §103, in the context of electrodynamics. We
note that the additional terms, which are not required in
our framework, are of the same nature as the Willis cou-
pling terms [23], which relate acoustic mean momentum
(here, D) to mean strain (here, B), and also, acoustic
mean stress (here, H) to mean velocity. That is, if we
wanted to consider the Willis coupling terms in the struc-
ture of our equations, it turns out that they would be set
to zero.

The general equations (17) in the Fourier space are
written as

D(w, k) = p(w, k) V(w, k)
H(w, k) = x ' (w, k) B(w, k)

provided that

(18a)
(18b)

dw dk _—
plt,e) = [ 5257 plw, k) emirtike
21 2
dw dk S
—1 o G -1 —iwt+ikx
X (t,CL')— o o X ( 7k)e

Because of the medium homogeneity with respect to time
and space, D(w, k) is related to V(w, k), and H(w, k) is
related to B(w, k), for the same values of w and k.

Now, while the Eqs. (9), (11) and (13), uniquely fix
the induced density field J, they are not determining
the related polarization fields P and M independently.
Thus, the fields H and D are also defined ambiguously,
as yet. To fix all Maxwell fields, and thereby also, the
operators, we need an additional condition. Based on
physical considerations inspired by the EM analogy and
the thermodynamic concept of generalized susceptibili-
ties [36, 43], we postulated [35] that the field H should
be identified by the acoustic part of energy current den-
sity (or acoustic energy flux) S = Se, = (pv), by setting
the ‘Poynting-Schoch’ energetic relation, as follows

(pv) = H(v) (20)

The vector S = HV plays the role of an acoustic ‘Poynt-
ing’ vector analogous to its counterpart in EM. This re-
lation (20) gives the relevant ‘macroscopic part H’ in the
microscale pressure field p. As p is the thermodynamic
excess pressure, and pv is interpreted as the acoustic en-
ergy flux, it may be viewed as a thermodynamic relation.
This relation supports our previous assertion that, unlike
the Lorentz fields, the Maxwell field H is generally not
the direct average of a corresponding microscale field. In
particular, H is not exactly the mean pressure in the fluid
(p) /0.

By (indirectly) fixing the field H, the condition (20)
also (indirectly) fixes all other Maxwell fields. Indeed, M
derives from H and B, using the second equation of (15);

P derives from M and J, using Eq. (13); and finally, D
derives from P and V', by the first equation of (15). The
nonlocal relations (17) completed by the definition (20)
provide a coherent framework to take fully into account
the temporal and spatial dispersion.

As in EM, the spatial dispersion effects can
be very small in the long-wavelength limit.
In that case, the mnonlocal constitutive rela-
tions can be practically indistinguishable from
local constitutive relations, that are expressed as
t
D(t,a:):/ dt'p(t —t") V(' ) (21a)
i
H(t,x):/ dt'x 't —t') B(t,x) (21b)

We see in the above relations that temporal dispersion
effects are taken into account in the sense that the fields
D and H at a given position z and time ¢ depend on the
history of the fields V' and B at the same position. How-
ever, as we will explain below, the temporal dispersion is
admitted in a limited way and is purely linked with the
viscous and thermal losses. The time invariance of the
system results in the dependence of the density and bulk
modulus kernels on the time-difference ¢t — ¢’. Therefore,
we can write Egs. (21) in Fourier space, as

D(w,z) = p(w) V(w, x)
H(w,z) =x Y(w) B(w,x)

provided that
d _
plt) = [ 52 pley et

dw
—1
)= | =
X () 2ﬂ_X

(22a)
(22b)

—1 (w) e—iwt

The above relations correspond to an approximate
modeling in long-wavelength regime, which is meaningful
to consider only when the geometries are sufficiently sim-
ple, without the involvement of very different pore sizes.
This simplification makes the formalism fail to describe
local-resonance behavior in the medium, because it as-
sumes that, in the limit A > L, the fluid motion at the
pore scale can be viewed divergence-free:

Vov=0 (24)

In other terms, the microscopic divergence is assumed to
be on the order of the macroscopic divergence, which is
taken to be zero in the limit e = L/A — 0. In fact, as
spatial nonlocality is simply ignored, the time nonlocality
is not completely described, in the sense that the latter
originates only in dissipative processes that occur with
delays. Indeed, if we remove the viscothermal losses and
assume local behavior so that the fluid is incompressible
at the pore scale [Eq. (24)], then the response of the
fluid to an excitation should be instantaneous. Thus,
the density and compressibility kernels become propor-
tional to the Dirac delta: p(t —t') = poasod(t —t') and



x Nt —t') = xg'0(t —t'), where the geometric con-
stant ao, > 1 is known as tortuosity [39], which describes
an apparent increase in the inertia of the incompressible
ideal fluid that is forced into the tortuous pore network.
Therefore, in this case, no temporal dispersion manifests.
This demonstrates that the dispersion within the limit of
Egs. (21) is wholly linked to the losses.

In presence of the losses, the simplifying assumption
that, in the long-wavelength limit the fluid appears as
incompressible at microscale, enables the separation of
viscous/inertial and thermal/elastic effects. Hence, ac-
cording to local theory, the viscous and inertial effects
are encoded in the frequency-dependent effective den-
sity p(w) [39], and the thermal and elastic effects are
described by the effective bulk modulus y = (w) [19]. It
can be shown that, when the frequency is considered as a
complex quantity, because of the fluid incompressibility,
the poles and zeros of these functions are on the nega-
tive imaginary axis of the frequency [19, 39, 40]. On the
real frequency axis this leads to monotonic variations of
these functions, excluding in particular resonant behav-
iors [41, 42], and expressed by simple and robust models
of p(w) and x~!(w), in terms of certain geometrical pa-
rameters.

To elucidate further why the fluid incompressibility at
the pore scale requires a simple material geometry, sup-
pose that we want to estimate the order of magnitude
of the fluid divergence V - v at micro level. Let v be
a characteristic amplitude of the velocity. Since the ge-
ometry is assumed to be simple, the period L is also a
valid estimate of the characteristic pore length. While,
for a general compressible fluid motion, the magnitude of
the micro-level divergence can be estimated as v/L, we
know that in our system the correct order of the mag-
nitude of this quantity should be v/A. As the order of
magnitude of v/\ relative to v/L is e(= L/\), and the
local asymptotic approach is in the limit ¢ — 0, it is clear
that the fluid moves in an incompressible manner at the
pore scale [Eq. (24)]. Likewise, to estimate the order
of magnitude of the fluid pressure gradient Vp at micro
level, let p be a characteristic amplitude of the pressure
represented in the form of p = P 4 dp, where P = (p) /¢
(not to be confused with polarization field with the same
notation P) is the mean fluid pressure that varies at the
macroscopic scale, and dp is a pressure deviation with
zero mean value. Therefore, we have Vp ~ P/X\+ dp/L.
If the fluid is compressible, ép ~ P, and Vp ~ P/L, while
in our system Vp ~ P/\. This means that dp/L ~ P/\,
i.e. the deviation amplitude dp compared to the mean
value P is very small, of the order €. Consequently, in
the long-wavelength limit ¢ — 0, there is no gradient for
the pressure (and its time derivative); the pressure profile
can be regarded as uniform at the pore scale

YV (9p/0t) =0 (25)

The above equation will be used later, in particular, for
the evaluation of xy~!(w) in local theory. Finally we note
that, in local theory, because the pressure deviation is

negligibly small, dp ~ eP < P, in Eq. (20), p can
be replaced by its mean value in the fluid P = (p) /¢
and extracted from the average operator. This imme-
diately leads, in this special case, to the identification
H=(p)/¢p=0P.

In the above discussion, we have interpreted the lo-
cal constitutive relations as if there is not any differ-
ence between the cell period L and the characteristic
pore lengths. Only with this feature, the application of
the two-scale asymptotic homogenization method is jus-
tified. In general, when widely different characteristic
pore lengths are present, the scale separation parameter
¢ becomes ill-defined owing to the arbitrariness in the
choice of micro level characteristic length. In that case,
Helmholtz structures exhibiting local resonances may ap-
pear in the medium, and the nonlocal description will be
required in general [16]. Another case requiring the non-
local description is when the long-wavelength condition
A > L is no longer satisfied, meaning that the fluid mo-
tion is no longer divergence-free at the pore scale, and in
particular, Bragg scattering may appear.

Contrary to the approximate local framework, the gen-
eral relations allowing for spatial dispersion, provide at
the same time, the correct and untruncated description of
temporal dispersion. Particularly, in a lossless medium,
the temporal dispersion effects do not completely disap-
pear, that is, the fluid does not respond instantly to an
excitation, due to its compressible motion at the pore
scale [44, Sec. SI.

In summary, the definitions of the macroscopic Lorentz
fields based on microscopic fields; combined with the
Lorentz and Maxwell fields equations (7) and (14); along
with either the constitutive local relations (21) or non-
local relations (17); and finally the Poynting thermody-
namic relation of acoustic energy flux (20), establish a
closed form, uniquely defined system within local ap-
proach or nonlocal approach, respectively. However, only
the nonlocal system takes the full account of the micro-
scopic equations, and therefore, applies without restric-
tions on geometries and frequencies. In the following, we
will present the recipes to obtain the local effective func-
tions p(w) and x~!(w) involved in Eqgs. (22), and the
nonlocal effective functions p(w, k) and x~*(w, k) intro-
duced in Egs. (18), based on the knowledge of microscale
properties.

B. Determination of local effective parameters

The procedure to obtain effective properties of the
medium in local theory derives based on the two assump-
tions that there is a scale separation (A > L), and also
the fluid motion may be viewed as divergence-free at the
micro level. Based on our previous considerations, we
can directly write the two independent action-response
problems, the solution of which determine the frequency-
dependent density and bulk modulus. Hereafter, for con-
venience, we omit systematically the symbol Re[ ], in



writing the fields in the form Re[fe~%!].

To compute the local effective density p(w) for a given
real-value frequency, we consider the following action-
response problem. Coherent with the assumption of
the fluid incompressibility at microscale, when a har-
monic bulk force F(t) = Fye ™! where Fy = Fye,,
with constant Fy, is applied to the fluid, or equiva-
lently when a uniform harmonic macroscopic pressure
drop —V P(t) = Fye ! is applied, we need to solve the
following system in each realization w (i.e. each random
positioning in space without rotation of the PC sketched
in Fig.1)

Vo=0 (26a)

—iwpov = —Vp +nV3v + Fy (26b)
in V/(w)

v=0 (27)

on OV(w), where the fields are the amplitudes of
the response solutions in the form of v(t,r;w) =
v(w,mw)e ™ and p(t,r;w) = p(w,r;w)e . The
local theory’s characteristic assumption (26a) leads to
the Laplacian form of the viscous terms in Eq. (26b)
and is consistent with Fp treated as a spatial constant.
Indeed, in the above action-response problem, the sum
—Vp + Fy embodies —Vp in the source-free wave prop-
agation problem. In line with our previous discussion on
the fluid incompressibility in local theory (Sec. IITA),
Fy and p correspond to —V P and Jp, respectively. As
we neglect spatial dispersion, i.e., the dependence of the
medium properties on the spatial inhomogeneity of the
macroscopic acoustic fields, it is consistent to treat Fy as
a spatial (pore) constant.

We can find unique amplitude fields v(w,r;w) and
p(w, r;w), that are response solutions to Eqs. (26-27).
In our periodic PC, these solutions are periodic with pe-
riod L in a-direction [45]. The equations (26-27) in the
reference configuration can be obtained by the aforemen-
tioned two-scale asymptotic homogenization method at
the leading order of the asymptotic expansions [46, 47].
Averaging the response field v(w, r;w) over the realiza-
tions, the local density for the effective fluid is given by

Fy

V@) -

plw) =
We note that, owing to the construction of the ensemble,
exactly the same mean value V (w) is obtained by solving
(26-27) in one single realization, and then, volume aver-
aging the response velocity in one unit cell; this is the
procedure within the aforementioned standard homoge-
nization.
To compute the local effective bulk modulus x~!(w) at
a real w, we apply an excitation in the form of a heating
rate at constant pressure Q(t) = Qoe” !, where Qg is
a constant, or equivalently the material is subject to a
uniform time harmonic pressure, such that SoTp0p/0t =
Qoe_m. This results in the following action-response

problem for the amplitude of the excess temperature field
T(t,rw) = 7(w, r;w)e”w!

—iwpoc,T = KV 2T + Qo (29)
in V/(w)

=0 (30)
on 0V (w). There is a unique amplitude field 7(w, r; w)

response solution to Eqs. (29-30), which is L-periodic.
This action-response problem in the reference configura-
tion can also be obtained at the leading order within the
classical asymptotic homogenization [19]. Tt is based on
the physical assumption that the pressure field is a slowly
variable quantity that may be viewed in first approxima-
tion as equal to the mean pressure. This assumption is
incorporated in (29) in the very fact that @ is taken
as a spatial constant. In fact, Qo embodies the term
BoTpOp/Ot in the wave propagation problem, and it is
consistent to treat QO as a spatial constant: as we saw
earlier, the divergence-free nature of the motion leads
to BoToV(Op/ot) = 0 [Eq. (25)]. Once the solution
field 7 is found, the factor p’ analogous to the previ-
ous p is given as p'(w) = —Qo/iwT (w), where T' = (7).
In the framework of the local theory, the following di-
rect relation exists between the two functions p’ and y:
xX(w) = éxo [y — (v = Dpocp/p'(w)] [44, Sec. SII]. Thus,
the local bulk modulus for the effective-fluid medium is
obtained as

iwpocyT (w) !

Qo

Again, the ensemble average () can be performed here
by solving in one single realization, and then, volume
averaging the response temperature in one unit cell; this
is the procedure given by the classical homogenization.

In the local effective fluid, for a given frequency w,
there is only one single normal mode that can propa-
gate in the positive x direction. With this single mode
is associated a local wavenumber k;(w) that verifies the
following local dispersion relation

plw)x(w)w?® = k7 (32)

such that Tm(k;) > 0. The frequency-dependent complex
phase velocity ¢(w), and complex impedance Z(w) are
immediately written as

, Z(w) = [plw) x ()]

X 'w=o¢"x" |7+ (r=1) (31)

1/2

(33)

C. Determination of nonlocal effective parameters

The procedure to obtain effective properties of the
medium in nonlocal theory can be viewed as a general-
ization of the preceding local action-response problems,
which accounts for the physical fact that, once the fields



vary in time, they also necessarily vary in space. Thus,
once external fields varying with respect to time as e ~**
are introduced, we should consider that they include spa-
tial variations as well. We can extract one given Fourier
component e*** of these spatial variations.

The Fourier coefficients p(w, k) and x~*(w, k) in (19)
are directly related to the macroscopic (averaged) re-
sponse of the permeating fluid subjected to a single-
component (w,k) Fourier pressure term P(t,z) =
Poe~wttike that is added to the pressure, either in the
Navier-Stokes equation (2b) to obtain the nonlocal ef-
fective density, or to the Fourier equation (4) to obtain
the nonlocal effective bulk modulus [35]. In the former
action-response problem, the excitation performs inho-
mogeneous (variable in time and space) work per unit
volume and time and in the latter it pumps an inhomo-
geneous amount of heat per unit volume and time. The
two systems of equations to be solved in each realization
are written as follows. In the fluid region V/(w):

0b

E—FV-v:O (34a)
ov 2
poat— Vp+nViv+ ..
1 o
+ << + gn) A\v4 (V . 'U) + Foeflthrzkac (34b)

Added for determination of density

0 0 .
pocp—T = ﬁoTo—p +KV2r + Qoe witikz (34c)
ot ot (S

Added for determination of bulk modulus

YXop = b+ BoT (34d)

On the fluid/solid interface 0V (w):
v =0, T7T=0 (35)
iwt+ikr _

The excitation amplitudes are written as: Fye™
—VP and Qoe_in_ilm = BoTo(aP/at), with P =
Poe~wttike that are independent of the realization. It
is important to emphasize that the excitation variables
w and k are set as independent variables.

The solutions to the above systems for the response
fields p, b, 7, and components of v, take the form
p(t,rw) = p(w, k, r;w)e” %2 and so on, where the
amplitudes are periodic functions of x, and proportional
to the excitation amplitude Py. However, these solu-
tions are not unique in the sense that the period can
be chosen as any integer multiple of the irreducible pe-
riod L. In what follows we exclude this ambiguity by
taking the period as equal to the irreducible period, i.e.
requiring the amplitudes of the solutions to be periodic
with period L . Once the above systems are solved in-
dependently in each realization, we use the fundamen-
tal relation (20) to write P(v) = (pv), where P(t,z) =
P(w, k)e~ ™k ig the macroscopic part of the pressure
response p(t,r;w), whose amplitude is determined by
P(w, k) = {{p(w, k, r;w)v(w, k,r;w)) €.} /V(w, k).

For determination of p(w,k), we use the Fourier
transform of Eq. (14). Applying Eq. (18a),

and postulating that the addition of the two parts
P and Py establishes the field H, gives rise to the
nonlocal density of the phononic fluid, which is valid for
any w, and k:

k

plw, k) = m

[P(w, k) + Po] (36)

We note that, owing to the construction of the ensemble,
exactly the same mean values V(w, k) and P(w, k) are
obtained by solving (34-35) in one single realization, and
then making the averages () by volume integration in
the chosen periodic unit cell.

In order to get the response fields p(w,k,r) and
v(w, k, ) in the reference configuration and perform the
cell averages, we explicitly solve in the reference unit cell
the PDEs relating only the amplitude fields, that are peri-
odic functions over the unit-cell boundaries. These PDEs
are given in [44, Sec. SIII].

For determination of x~!(w,k) we use the Fourier
transform of Eq. (17b). As before, admitting that
the field H is built upon adding the two contribu-
tions P and Py, yields P(w, k) + Py = x 1 (w, k) B(w, k).
Here, the field B has yet to be identified based on mi-
croscale dynamics. We postulate that it is composed of
two parts, B = B + By: one non-isothermal response
part B(w, k) = (b(w, k,r;w)) that originates in the field
b(t,r;w) = b(w, k, m;w)e k% of the action-response
problem (34-35), and the other is an isothermal con-
stant contribution, that can be directly written by av-
eraging the isothermal term vy oPo, i-€., Bo = (vx0Po) =
dvxo0Po, where ¢ is the porosity of the PC. The construc-
tion of B in such a manner by these two independent
parts has been suggested through following the opera-
tion of the theory in a homogeneous viscothermal fluid
without any solid inclusions [35]. Therefore, the nonlocal
bulk modulus of the phononic fluid is expressed as

1
m [P(w, k) + Po] (37)

-1

X (wv k) - B(
Averaging the amplitudes v(w, k, r;w) and b(w, k, r; w),
or product of amplitudes p(w, k, 7; w)v(w, k, 7; w) can be
performed equivalently over the unit-cell average in the
reference configuration. Here also, in order to get the
response fields, we solve the PDEs relating only the am-
plitude fields [44, Sec. SIII], that are periodic functions
over the unit cell boundaries. Contrary to the case of
local theory, here, since we take into account spatial dis-
persion, several normal mode solutions might exist, with
fields varying as e~ !t  Solutions must satisfy the
following nonlocal dispersion equation

plw, k)x(w, k)w? = k? (38)

which is easily derived from the Maxwellian macroscopic
equations. That is, with each frequency w, several nor-
mal modes complex wavenumbers ky(w), Im(k,) > 0,
n = 1,2, ..., solution to the nonlocal dispersion equa-
tion (38), may be associated. Furthermore, with each



wavenumber £k, are associated a frequency-dependent
density and bulk-modulus, such that

pn(w) = pulw, kn(@)], X5 (W) = x5 W, k()] (39)

Therefore, the phase velocity and impedance of the nor-
mal mode n are written as

-, Zn(w) = [pa(w) X ()]

kp(w)’

1/2 (40)

cn(w) =
The fact that at each frequency w, we obtain sev-
eral normal modes propagating and attenuating in the
medium, with wavenumbers k,(w) (equivalently phase
velocities) constants of the medium, and other effective
parameters, is a direct consequence of the nonlocal de-
scription. The interpretation of these wavenumbers is
immediate: because our ensemble of random realizations
is made of the random translation of one periodic sample,
the above wavenumbers must coincide with the so-called
Bloch wavenumbers associated with the periodic geome-
try. In this paper, we focus only on the least attenuated
mode n = 1, and its associated effective parameters. The
results produced by the local and nonlocal theories and
respective upscaling procedures will be illustrated in Sec.
V. They will be evaluated by performing an independent
direct computation of the complex wavenumber (or phase
velocity) of the least attenuated Bloch wave propagating
in the reference PC.

IV. DIRECT BLOCH-WAVE APPROACH (DBA)

Here, we aim to obtain the phase velocity of the least
attenuated Bloch wave propagating in the 2D fluid/solid
reference PC illustrated in Fig. (1), solving directly the
source-free microscopic equations (2-5). Achieving the
Bloch wavenumber kp(w) as eigenvalue of the medium,
through DBA, is fundamentally different from the way
we obtain this quantity based on local and nonlocal the-
ories, via Eq. (32), and Eq. (38). These theories define
in an appropriate manner, the effective susceptibilities of
the media (effective density, bulk modulus), that concern
macroscopic response of a medium to an applied field.
Within these theories, procedures are established to de-
termine the way in which the effective density and bulk
modulus can be obtained based on micro level ’action-
response’ problems. Once the effective parameters are
obtained, the effective wavenumbers can be achieved,
thus, in an indirect fashion. In contrast, as DBA is not
based on a macroscopic theory it cannot by itself define,
independently, the effective susceptibilities of the mate-
rial.

For the simple fluid/solid geometry illustrated in Fig.
(1) a precise and relatively simple calculation of the pos-
sible Bloch wavenumbers k;, (w) is feasible by the MS ap-
proach [48]. We sketch here the generalization of the MS
approach developed in [49] for a lossless host fluid and
the same geometry to the present case of a viscother-
mal fluid. The details of calculations are given in [44,
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Sec. SIV]. The fluid motion corresponding to the source-
free equations (2-5), can be described in terms of three
velocity potentials: the acoustic potential ¢®, entropic
potential ¢¢ and vorticity potential @ such that

V=V (¢"+¢°) +V x 1 (41)

The vorticity potential ¢ has just one component, which
is directed along the z-axis and is denoted by ¢V. In
harmonic regime, three independent Helmholtz equations
[V?+ (k%)?] 6> =0, a=ae,v  (42)
must be satisfied in Y/, where (k*)?, a = a, e, v, are the
squared wavenumbers associated with acoustic, thermal
and viscous waves, respectively. The former two (k¢)?
and (k°)? are the opposite-sign of the small and large
solutions A\; = A% and A2 = \¢ of Kirchhoff-Langevin’s
dispersion equation (see Eq. (14) in [50]), and the latter is
(k?)? = iw/v, where v = n/po is the kinematic viscosity.
It is easy to express the excess temperature in terms of
potentials, for instance, by using (41), (42) and Eq. (12¢)
in [50]:
K Tw
PoCy N Ae

BoT K w4 4

(v hied a € (43
R R )l (43)
The boundary conditions at the solid-fluid interface for
the potentials arise from the fact that the displacement

u and excess temperature fields vanish on 9V

u =0, 7=0 (44)

These boundary conditions establish the relationship be-
tween the potentials, such that a wave carried by one
potential is scattered in the three types of waves through
interacting with the solid cylinders.

In this paper we are not concerned with the terms of
minor importance related to the intrinsic bulk fluid atten-
uation. Thus, as a simplification we set —\* = (k%)? =
(w/co)?, that is, we neglect the damping of the acoustic
mode. As it is explained in [44, Sec. SIV], this simplifi-
cation leads to slowly convergent Hankel series that can
however be replaced by rapidly convergent Schlémilch se-
ries. Moreover, we also neglect the higher order terms
governing the attenuation of entropic waves, and set as
another simplification —\¢ = (k°)® = iwpocy/k. Con-
sistent with the first simplification, we have to remove
the thermal conductivity term in the first parenthesis in
(43). After straightforward calculation using the ther-
modynamic identity v — 1 = TpBcd/cp, the following
relation is obtained 7 = (TpBo/cp)iwd™ + (pocp/Bok)PC.

Considering one row containing an infinite number of
cylinders, as is shown in Fig. 2, we expand the potentials
in terms of right and left going plane waves

o0
d5(r) = Y (Agre™iT 4 agreT ki)
n=-—oo

Z (Azrgeikz.(r—Lew) +Azge—ikz.(r—Lem))

n=—oo

Pr(r) =



The ingoing or outgoing of the four types of amplitudes A
are illustrated in Fig. 2. The index « refers to the type a,
e, or v of potential field. It is clear that the periodicity of
the potential fields with respect to y-coordinates implies
that for each n the y-component of the wavevectors kg
must be ky, = 2mn/L, thus (k*)* = (kg,)? + (2nn/L)>.
Another symmetry consideration of the problem is based
on the fact that we are interested only with the solutions
leading to a fluid motion symmetric around each cylin-
der. This restriction implies that the fields ¢* and ¢ are
even functions, and ¢¥ an odd function, of y coordinates.
Thus, regarding the terms in the above equations, after
combining the up and down components n and —n, there
will appear a y-dependence in the form of cos(2mny/L)
for acoustic and entropic potentials, and in the form of
sin(2mny/L) for vorticity potential. To account explic-
itly for this symmetry in the notation, we replace the
above equations by the following condensed form of the
potentials

o5 (r) = ch(y) (Aarna iknaT 4 Aanae—ikgmm)
n=0

or(r) = in{(y) (AZ,? thns(@=L) Azge*iki’:,(wm)
n=0

cos (2mny/L), a=a,e

h Co(y) =
where €1 (y) {sin (2mny/L), a=wv

Also, we note that with each n, a, and w, we may as-
sociate a characteristic incidence angle 0¢, such that
k*sin(0Y) = 2wn/L, and k*cos(0S) = k2,. For the
acoustic type a = a, this angle is real when the frequency
is such that 27n/(k*L) < 1. Tt is complex and equal to
m/2 — i€ at higher frequencies, with £ > 0 ensuring that
Im(k%,) > 0. For the entropic and vorticity types, this
angle is complex, which is chosen to satisfy Im(k2,) > 0.

The first step in the calculation is to obtain the reflec-
tion and transmission properties of the row of cylinders,
or the following scattering matrix, which relates the out-
going waves to the ingoing ones

(3%) - (11;» ?) (iﬁ) (47)

Ap” A
where Ay = | A;° ], AJLr = AJLre
Ay AJL“J

and so on for the vectors Aar and A} . Each of the vectors
AT ALY A7, and Ay contains the whole ensemble
of plane wave amplitudes with o = a, e, v, each of which
is indexed by n. The reflection and transmission matri-
ces R and T, respectively, thus have elements of the type
Rg‘f and T8, where the indexes on the right refer to in-

pn
going waves and those on the left to outgoing waves. The

11

Aj

ol

NSl

O O O

0 L

FIG. 2. One row of infinite number of rigid cylinders.

presence of different elements results from the interac-
tions and transformations of different kinds of potentials
into one another, via boundary conditions (44).

To compute R and T, and thereby construct the scat-
tering matrix, the analysis of the scattering problem is
divided in different elementary parts, that are combined
in the end. The detail of the calculation, leading to the
expressions of the scattering matrix elements Rg‘ff and
T is given in [44, Sec. SIV].

At this point, reflection and transmission properties of
one row are entirely determined. Now, we consider an
infinite number of rows separated by the distance L (Fig.
1). We make use of the concept of scattering matrix
introduced for an arbitrary row, and apply the Bloch
condition for this case of periodic medium. We have

(5)-(5)

where kp denotes the Bloch wavenumber to be deter-
mined. The use of scattering-matrix relation (47) and
the Bloch condition (48) leads to the following eigenvalue
problem

EHE) - G@E) w

where 0 and I are the zero and identity matrices, respec-
tively.

Since at this stage the reflection and transmission ma-
trices R and T are known, we are able to solve the above
eigenvalue problem numerically. In this manner we get
the complex eigenvalues 1 = e*2L that determine the
possible Bloch wavenumbers kp. For each eigenvalue p
there must be an eigenvalue u~! corresponding to the
opposite sign of kg, i.e., the reversed direction of propa-
gation. We restrict the solutions to forward propagation
by imposing |u| < 1 and Im(kg) > 0. Note that the real
part of the wavenumber is defined only modulo 27 /L.
Customarily, this indeterminacy issue is resolved by re-
quiring that —7/L < Re(kp) < w/L, i.e., the wavenum-
ber is chosen to lie in the ‘first Brillouin zone’. With each
frequency w there might be associated, in the first Bril-
louin zone, different mode solutions kg, n = 1,2,3, ...,
labeled by ascending order of the values of Im(kp ,,), and



characterized by complex phase velocities

w

- kB.,n(w) (50)

Cn (W)

Here, however, we study the least attenuated mode n =
1, propagating in the positive = direction, and find it
convenient to express its wavenumber kp = kp 1(w) as a
continuous function of frequency, that becomes zero when
the frequency tends to zero. The wavenumber kp(w) that
is defined in this manner, will not always remain in the
first Brillouin zone. As it will be shown in the next sec-
tion, when the frequency increases sufficiently, the real
part of the wavenumber may be found in the interval
[7/L,2m/L] (or upper), which means that it passes into
the second (or higher) Brillouin zone. The same con-
vention will be applied regarding the selection and pre-
sentation of the wavenumbers in nonlocal theory, where,
obviously, the same issues arise.

V. ILLUSTRATION OF THE RESULTS AND
DISCUSSIONS

In this section, we present the results produced by local
theory, nonlocal theory, and DBA, concerning the prop-
agation of the least attenuated mode in 2D PCs made of
a square lattice of rigid cylinders embedded in air, that
acts as a viscothermal fluid.

For the least attenuated wave, we have computed the
effective macroscopic parameters based on local and non-
local theories, that include frequency-dependent phase
velocity, density, bulk modulus, and impedance. By
DBA, based on the quasi-exact MS method, the phase
velocity of the least attenuated Bloch wave is calculated.
This serves as a measure for the domain of validity of the
local and nonlocal effective-medium theories. The re-
sults are shown in a large frequency range for the poros-
ity @ = 0.9. With a fixed periodicity L = 10 pm, the
radius of the cylinders R = L[(1 — ¢)/x]2 is equal to
1.78 pm. The present topology that we study here does
not exhibit local resonances, thus we expect the local the-
ory to cover long-wavelength (A > L) frequency-band.
The nonlocal approach is expected to be valid over the
entire frequency band, without any constraint. Beyond
the long-wavelength regime, the macroscopic wave and
respective properties that are outcomes of the nonlocal
theory, should be viewed as the ensemble-average of the
propagation in the ensemble of media that is generated by
the random translations of the reference PC illustrated
in Fig. 1. Within the long-wavelength regime, based on
both local and nonlocal approaches, theses waves can be
equivalently regarded as a result of averaging micro-fields
over the reference unit cell. In this frequency regime,
the latter also holds true within the local theory, i.e.,
the macroscopic propagation can be interpreted through
ensemble, or unit-cell averaging operations. Finally, the
the results provided by DBA concerns the propagation of
the Bloch wave in the reference PC. This direct approach
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provides, in principle, the dispersive Bloch wavenumber
(or phase velocity) without defining procedures to obtain
effective constitutive parameters.
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FIG. 3. Real and imaginary parts of the phase velocities of
the least attenuated wave according to local theory, nonlocal
theory and DBA for ¢ = 0.9. The frequency domain of the
validity of the local theory is shown. The Brillouin zones
are determined following the values of the real part of the
wavenumber.

The fluid properties for all computations are indicated
in Table I. One of the objectives of the present theo-
retical analysis is to describe both viscous and thermal
losses precisely from the basic microscale equations, in
effective-medium approaches, as well as in DBA. Air,
that is taken to be the the host fluid, produces mean-
ingful viscous, as well as thermal, losses. The general
thermodynamic identity v — 1 = 8371,/ pocp, shows that
the deviation of v from unity is a second order effect on
the thermal expansion coefficient . For air which is
a gas, Bop ~ 1/T, is not especially small and v ~ 1.4,
while for a liquid, like water, By is close to zero; what
implies that 7 is very close to 1. In this case, the values

of the adiabatic bulk modulus X(;(}z diab) and isothermal
-1

bulk modulus Xo(isoth) 1€ Very close to each other, since

in general, X(;(deb) = Wxa(isoth)' Therefore, thermal ex-



changes have practically no effects. Here, because v — 1
is of order one, thermal losses can be comparable to vis-
cous losses. Indeed, the thickness of the thermal bound-
ary layer 8, = (2k/pocpw)? is on the same order as the

thickness of viscous boundary layer 6, = (2n/ pow)%.

As regards the small dimension of our unit cell, it has
not been chosen for a special use in practice or a particu-
lar experimental investigation, but as a proof of concept.
In fact, the impact of the dissipation on the results can be
shown in a more pronounced way, when the size of the cell
is decreased, and thereby the viscous and thermal losses
are enhanced in the medium. We note that for a given
value of the normalized frequency Q = koL /7 = wL/com,
where kg is the wavenumber in air, decreasing the scale by
a factor a, results in decreasing the thickness of boundary
layers by only y/a. Therefore, at a given 2, a decrease in
the size of the structural unit leads to the increase of the
unit-cell space occupied by the boundary layers; that is,
9,1/ L augments like \/a. Consequently, decreasing the
structural size, will enforce the viscous and thermal ef-
fects, at a given value of normalized frequency. As it was

(a) Velocity Divergence (b)
2 2
l1.5 15
1 >‘ 1
0.5 0.5
.0 0
(c) Pressure (d)
2 2
15 15
1 1
0.5 0.5
0 0

FIG. 4. Field distribution for velocity divergence (a, b) and
pressure (c, d). Normalized velocity divergence (a), and pres-
sure (c), at normalized frequency koL/m = 0.1 in the domain
of validity of the local theory, where A > L. Normalized
velocity divergence (b), and pressure (d), at normalized fre-
quency koL/m =1 in Bragg’s regime.

mentioned before, the local theory that does not allow
for the special dispersion, predicts a single wave prop-
agating in the medium. To obtain the equivalent-fluid
parameters according to local theory, we solved by FEM
the two sets of equations (26-27), and (29-30), indepen-
dently, in a unit cell including a single cylinder (Fig.1).
Then, the frequency-dependent local density p(w) and
local bulk modulus x~*(w) are given through Eqs. (28)
and (31), respectively. The effective local phase velocity,
that is calculated via local dispersion equation (32), is
given by the left equation in (33), and the effective local
impedance is achieved by the right equation in (33).

To obtain the nonlocal frequency-dependent parame-
ters, the functions p(w, k) and x~!(w, k) were first com-
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puted through solving independently, by FEM, the equa-
tions (S6-S7) and (S8-S9) in [44, Sec. SIII]. Based on
these functions of imposed independent values of w and
k, the frequency-dependent wavenumber k;(w) associ-
ated with the least attenuated normal mode was ob-
tained by solving the nonlocal dispersion equation (38).
The latter was solved by a Newton-Raphson scheme: we
varied frequency step by step, taking as initial value
for ki(w) at a given frequency, the solution value ob-
tained at the preceding frequency. Only for the start-
ing frequency wyp in the range of interest, we have cho-
sen the value kp1(wo) with a 10% discrepancy, where
kg1 that refers to Eq. (48) is the least attenuated
Bloch wavenumber produced by DBA based on the MS
method. This immediately results in the nonlocal phase
velocity in Eq. (40). The frequency-dependent effective
density plw, k1(w)] = p1(w), and effective bulk modulus
X Hw, k1(w)] = x7(w), of the corresponding principal
normal mode, are then calculated by replacing k = k1 (w)
in the aforementioned excitation terms in Egs. (34b) and
(34c). Subsequently, the nonlocal impedance in (40) was
computed. We have performed all FEM computations,
using FreeFem++ [51], an open-source PDE solver. The
weak form of the equations to be solved is firstly needed
in order to implement the FEM simulations through this
solver. Adaptive meshing was employed to deal with
strong field variations in the medium.

We see in Fig. 3 that the real and imaginary parts
of the phase velocity computed by nonlocal theory (40)
via Newton’s method converge exactly to the real and
imaginary parts of Bloch phase velocity (50) which have
been computed by the completely different DBA, in a
very wide frequency range. The frequency range starts
at koL/m = 0.05 corresponding to Ao = 40L, and ends
at koL/m = 2, where the wavelength in air is equal to
the periodicity, i.e., A\g = L. The effective wavelength,
according to either nonlocal theory or DBA is A\ ~ 33L
at the starting frequency, and is A ~ L at the ending
point of the frequency band. The frequency band covers
short waves up to those with wavelengths as small as the
periodicity A ~ L. This includes the region where band
gaps would appear in absence of viscothermal losses. In
fact, based on the real part of the effective wavenum-
ber (see Fig. S2 in [44]), we specify in Fig. 3 that the
nonlocal theory predicts accurately the dispersive phase
velocity, at least, for the whole first and also the entire
second Brillouin zones. Here, the ‘first Brillouin zone’ is,
by definition, bounded by 0 < |Re(k)| < 7/L. Thus, (see
Fig. S2 in [44]) the normalized frequency koL /7 associ-
ated with this zone lies in 0 < kgL/m < 1. Regarding
the ‘second Brillouin zone’ n/L < |Re(k)| < 2n/L, we
indicate in the Fig. 3 that its corresponding frequency
band is limited by 1 < koL /7 < 1.8. The rapid variations
around koL/m = 1 correspond to the location of the first
band gap. This may be viewed as a Bragg cell resonance,
which occurs when the length of the cell is around /2.
We see that for all frequencies, in the presence of dissipa-
tion, the propagation is possible, however, it slows down
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TABLE 1. Fluid (air) properties used in all computations.

Po To co n ¢ K X0 Cp g
(kg/m?®) (K) (m/s) (kg/ms) (kg/ms) (W/mK) (1/Pa) (J/kgK)
1.2 293 343 1.8 x 107 0.6n* 2.6 x 1072 7.1x10°° 1005 1.4
& This quantity is ignored in MS method.
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FIG. 5. Real and imaginary parts of (a) effective density, (b) effective bulk modulus, and effective (c¢) impedance of the least
attenuated wave according to local theory, and nonlocal theory, for porosity ¢ = 0.9.

around ‘Bragg frequencies’ through destructive interfer-
ences. In fact, losses do not allow for perfect destructive
interferences.

In contrast, phase velocities predicted by the local the-
ory cease to be valid above a certain frequency. As it
was mentioned in Sec. III, this is due to the fact that
the validity of the effective-medium parameters gener-
ated by the local theory is bounded up to the frequencies
satisfying the condition that the fluid motions remain
incompressible [Eq. (24), for the purpose of determin-
ing the microscopic velocity pattern], and the pressure
field remains uniform [Eq. (25), for the purpose of de-
termining the excess temperature pattern], at microscale.
For this reason, in the validity domain of the local the-
ory the macroscopic pressure can be simplified as the
direct average of the microscopic pressure in the fluid
H = (p)/¢ = P = p, instead of the general relation
that is set in nonlocal theory: H = (pv) / (v) [Eq. (20)].
These characteristics are illustrated in Fig. 4 present-

ing the divergence of the microscopic velocity normalised
by its macroscopic value, and the microscopic pressure
field normalized by its macroscopic part H, at two rep-
resentative frequency points, koL/m = 0.1 on the left,
which is seated in the validity domain of local approach,
and koL/m = 1 on the right, which recognizably belongs
to a region of Bragg scattering and rapid variations of
the microscopic field patterns, where the local descrip-
tion is in error. Real parts of (V.v)/(V.V) and p/H
are plotted, in order to depict non-complex values. It is
clearly illustrated that, as the local theory remains valid
the microscopic velocity divergence and pressure are dis-
tributed closely around their macroscopic values, which is
a small quantity and a pore constant respectively, owing
to the long-wavelength condition. On the contrary, when
the frequency is in Bragg’s regime, the microscopic ve-
locity divergence and the pressure are widely distributed
around their macroscopic values. As such, the local the-
ory fails to describe correctly the dispersive phase veloc-



ity for about one third of the first Brillouin zone, and the
entire second Brillouin zone (Fig. 3). It is valid up to
the frequency koL/m ~ 0.3, where the real part of the
wavenumber Re(k) ~ 10° [1/m] (see Fig. S2 in [44]).

Figs. ba-5c¢ show the nonlocal density, bulk modulus,
and impedance, as well as those based on the local the-
ory, in functions of frequency. The local theory describes
correctly the effective parameters only in the frequency
range up to koL/m ~ 0.3, where A\g = 10L, and A\ = 7L,
which covers only the lower one third of the first Brillouin
zone.

We have performed the same computations for the
case of ¢ = 0.7 (R = 3.1 pum), and observed also ex-
cellent agreement between the nonlocal theory and MS
method. For the more concentrated medium (¢ = 0.7)
the discrepancies between local theory and DBA predic-
tions are larger and commence at lower frequency. In-
deed, it is known that in PCs, when the medium be-
comes more concentrated, the band gaps occur through
larger frequency intervals (see, e.g. [4]) and the scatter-
ing phenomena become more influential. Although, our
analysis concerned a 2D PC, the present nonlocal ap-
proach and its equations presented therein permits easily
to consider three-dimensional medium, e.g., with spher-
ical inclusions, as long as the propagation is along an
existing principal symmetry axis. This is only a com-
putational issue. The reason that in this paper we re-
stricted our study to the propagation along a principal
symmetry axis, is that in this condition, the ‘Poynting-
Schoch’ quantity (pv) [Eq. (20)] lies in the direction of
(v), and thus, H is a scalar field. For an arbitrary di-
rection of propagation, a generalization could be possi-
ble, which would extend the definition of the macroscopic
fields, action-response problems, and constitutive opera-
tors. Contrary to local, where indeed this generalization
can be easily performed by tensor analysis, in nonlocal
theory, because the Fourier components of the constitu-
tive kernels are k-dependent, a distinctive direction is
generated. This feature, inherent to nonlocal approach,
can engender new dynamics and mechanisms in the effec-
tive medium. This can be interesting, but require further
studies.

VI. CONCLUDING REMARKS

We have shown that the exploited Maxwellian non-
local approach fully describes the effective dynamics of
a (rigid) solid/fluid phononic crystal, in terms of a an
equivalent fluid with nonlocal properties at macroscale.
Within this framework, the medium is treated as the en-
semble of random translations of the crystal. In particu-
lar, this effective fluid allowing for short waves, accounts
also for the Bragg scattering phenomena; by virtue of
which, introducing a new class of effective media that
can be referred as phononic fluids. In addition, for
the phononic fluids, we have precisely and from the mi-
croscale equations, taken into account both viscous and
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thermal losses.

In order to demonstrate the above, we studied at the
macroscopic level, 1D sound propagation in a 2D PC,
made of periodic arrays of parallel rigid cylinders that
are embedded in a viscothermal fluid. To investigate
properly the macroscopic dissipative dynamics of the
medium, the nonlocal and local approaches are presented
in a unified formulation analogous to EM Maxwell equa-
tions. The temporal and special dispersion dispersion
effects are incorporated in the constitutive relations in
the same fashion as in EM. In-depth analysis is provided
to situate here the classical homogenization given by the
two-scale asymptotic expansion method of homogenisa-
tion for periodic media, that is interpreted as a truncated
local homogenization. To compute the local and nonlo-
cal effective-fluid parameters, procedures within local and
nonlocal approaches, involving action-response problems,
were summarized respectively. The dispersion equations
related to local and nonlocal schemes are used to yield
the frequency dependent effective wavenumbers as eigen-
values of the medium accordingly.

Furthermore, a different approach based on Floquet-
Bloch theorem (DBA) was implemented to calculate the
Bloch waves, by solving directly and analytically the
source-free microscopic equations via multiple scattering
method. This quasi-exact method that takes into ac-
count the viscothermal effects, has been used to spec-
ify the validity domain of the effective-fluid schemes.
Based on the local and nonlocal approaches, we have
computed the frequency-dependent effective parameters
associated with the least attenuated wave. Comparisons
were made between the quasi-exact DBA results related
to phase velocity of the normal mode and those produced
by the effective theories, in an air-filled medium. This
showed remarkable agreement between the nonlocal the-
ory and multiple scattering method for all frequencies,
and demonstrated the range of validity of the local ap-
proach. We demonstrated that the nonlocal theory pre-
dicts accurately the effective-medium parameters for the
entire first and second Brillouin zones, while the local
theory is valid only for the lower one third of the first
Brillouin zone. As such, the nonlocal approach has been
validated to describe correctly the effective parameters of
the phononic fluid in frequency-bands, where the effective
wavelength is equal to the periodicity, and thereby strong
Bragg scattering occur. We also discussed and illustrated
the important role of the microscopic distribution of the
velocity-divergence of the fluid, that is indeed linked with
the microscopic pressure profile, as the micro-level origin
of the macroscopic spatial dispersion, and also its essen-
tial role to allow for full macroscopic temporal dispersion.

Although, we studied the properties associated to the
least attenuated mode, the extension of this work to ex-
plore higher-modes’ properties can bring novel applica-
tions to control waves in metafluids. In addition, the
nonlocal theory is expected to directly extend to the case
where the separated inclusions in the fluid host are elastic
solid, and the perturbation is considered to originate in



the fluid. For the propagation along the principal lattice
axis, the macroscopic equations remain in the same form
with, obviously, modified kernel functions. To obtain the
modified kernel functions, one can easily complete the
micro-level action-response equations (34), by including
the governing equations of the solid inclusions, as well
as replacing the boundary conditions (35), by the ap-
propriate new ones at the (elastic) solid/fluid interfaces.
The forcing terms would not change in the fluid host and
would be set to zero in the solid. In this case, comparison
of the results of the nonlocal theory with those given by
the layer-multiple-scattering method [52] would be fea-
sible. Similarly, nonlocal properties of media made up
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of inclusions in the form of gas bubbles in a liquid host
could be studied.
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