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Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic 13 

glasses according to the scaling power law. However, when the scaling power law is 14 

applied to liquid gallium upon compression, the results show multiple scaling exponents 15 

and the values are beyond 3 within the first four coordination spheres in real space, 16 

indicating that the power law fails to describe the fractal feature in liquid gallium. The 17 

increase in the first coordination number with pressure leads to that first coordination 18 

spheres at different pressures are not similar to each other in geometrical sense. This 19 

multiple scaling power behavior is confined within a correlation length of ξ≈14-15 Å at 20 

applied pressure according to decay of G(r) in liquid gallium. Beyond this length the 21 

liquid gallium system could roughly be viewed as homogeneous, as indicated by that the 22 

scaling exponent, Ds, is close to 3 beyond the first four coordination spheres.  23 
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In nature, many shapes exhibit fractal structures, such as clouds, trees, mountains, rivers, 1 

coastlines and so on. The existence of these fractal structures originates from the presence 2 

of disorder.1 Consequently, it is accepted that fractal structures spread into disordered 3 

condensed matter systems, such as glass and liquid systems. Recently, D. Ma et al. linked 4 

the structure of metallic glasses to the fractal network and discovered that metallic glasses 5 

have fractal characteristics within the medium-range length scale, as indicated by the 2.31 6 

power law scaling of the first peak position of the structure factor with the atomic 7 

volume.2 Subsequently, non-integral 2.5 power law scaling was discovered in metallic 8 

glasses under pressure conditions, not only in reciprocal space but also in real space, and 9 

it extended beyond the first peak, depending on the specific system.3-56 Any non-integral 10 

power corresponds to a fractal dimensionality, Df.7 Thus, the volume dependence of the 11 

first peak position for liquid alkali metals in both real and reciprocal space follows the 3 12 

power law under compressed conditions, indicating that liquid alkali metals systems are 13 

homogeneous and hence the corresponding Df is equivalent to the Euclidean dimension, 14 

De.8,9 In metallic glasses and liquid alkali metal systems, a single scaling exponent, Df, 15 

characterizes the fractal structure of the object.  16 

 17 

Due to the coexistence of metallic and covalent bonding, gallium, a rich polymorphism 18 

metal, exhibits unusual and unique physical properties. 10 - 15  It has a low melting 19 

temperature (303 K) and a high boiling temperature (2478 K) at ambient pressure, 20 

displaying a wide stability range.16 At ambient pressure, the density of liquid gallium 21 
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exceeds that of its stable solid state by approximately 3%, and this liquid metal is easily 1 

supercooled.17,18 The complex structure of the liquid gallium system under pressure 2 

conditions has been studied for many years.19,20 However, investigations into its fractal 3 

feature under pressure are rare, and hence it is not yet well understood. A little over a 4 

decade ago, it was demonstrated that the volume dependence of the first peak position of 5 

the pair distribution function (PDF) g(r) for liquid gallium deviating from the 3 power 6 

law.9 Recently, O. F. Yagafarov et al. reported that the scaling of the first four peak 7 

positions of g(r) with the atomic volume under pressure conditions presents different 8 

values in the liquid state.21 Thus, an interesting question has been raised: Could these 9 

scaling exponents describe the fractal structure of liquid gallium? In this work, we 10 

present the multiple scaling power behavior of liquid gallium and investigate whether 11 

fractal behavior exists in liquid gallium.  12 

 13 

High-energy total X-ray scattering data of liquid gallium under pressure at ambient 14 

temperature were collected at the 11-ID-B beamline at the Advanced Photon Source, 15 

Argonne National Laboratory, with an energy of 86.7 keV. A solid gallium sample with 16 

99.9999% purity was heated to a liquid state and then loaded into a T301 stainless steel 17 

gasket with a hole as the sample chamber. The supercooled liquid gallium sample was 18 

compressed up to 1.9 GPa using a diamond anvil cell, and a ruby ball was used as a 19 

pressure marker22. 20 

 21 

Raw image data were reduced using the software FIT-2D23 with masking strategy24 to 22 
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remove the diamond peaks to obtain one-dimensional scattering data. The reduced PDF 1 

G(r) and structure factor S(Q) were extracted using the PDFGETX2 program 25 after 2 

subtracting contributions from the sample environment and background, and the program 3 

performed a numerical Fourier transform of S(Q) according to 4 ܩሺݎሻ ൌ ሻݎ଴ሺ݃ሺߩݎߨ4 െ 1ሻ ൌ ଶగ ׬ ܳሾܵሺܳሻ െ 1ሿஶ଴ sinሺܳݎሻ ݀ܳ,      (1) 5 

where ρ0 is the average atomic number density, and g(r) is the PDF. The average atomic 6 

number density as a function of the pressure at ambient temperature was based on X-ray 7 

microtomography measurements in which the isothermal bulk modulus was determined 8 

to be B0 = 23.6 GPa. The experimental method used to obtain the volume measurements 9 

was described in detail in our previous study.26 10 

 11 

The structure factor S(Q) and the corresponding PDFs under various pressure conditions 12 

are shown in Fig. 1. In real space, the G(r) of liquid gallium oscillates above and below 13 

zero, and the amplitude falls off rapidly with increasing r. These oscillations provide 14 

information regarding the correlations of atomic pairs and suggest a heterogeneous 15 

density in the system according to the atomic PDFs, ρ(r) = ρ0g(r). This heterogeneous 16 

distribution of density and the decay of the PDFs in real space may correspond to a 17 

fractal structure in liquid gallium, displaying self-similarity and scale invariance.2,27 In a 18 

physical system, the self-similarity and scale invariance are limited to a finite range 19 

between upper and lower bounds. The lower scale is not less than the shortest distance 20 

between two atoms in the system. The upper scale depends on the correlation length 21 
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according to the percolation model. The correlation length ξ is the mean radius of the 1 

gyration of all the finite clusters. This length gives an idea of the average distance at 2 

which the connectivity makes itself felt. For any length scale r > ξ, a percolating system 3 

is macroscopically homogeneous. Whereas, for r < ξ, the system is not homogeneous. In 4 

this regime, the sample-spanning cluster is self-similar on average.28 Suppose the site 5 

correspond in some sense to gallium atoms of three-dimensional network. The sites are 6 

occupied when probability of finding two atoms is non-zero according to G(r). In contrast, 7 

the non-occupied sites are in opposite situation. The percolation transition is caused by 8 

variation of the occupancy of the sites or bonds leading to the appearance of the infinite 9 

cluster at the percolation threshold pc. At each pressure conditions, there is no parameter 10 

changes and hence the probability of occupancy is unchanged. Thus, the liquid gallium 11 

system can be viewed as a system that already formed infinite cluster for consideration of 12 

dense packed atomic structure of liquid gallium. In other words, the concentration p is 13 

over percolation threshold pc already. Since correlation length is finite above pc, the 14 

infinite cluster can be self-similar only on length scales smaller than correlation length. 15 

For length scales larger than correlation length, the structure is not self-similar and can be 16 

considered as homogeneous. 29,30 This correlation length can be estimated as ξ≈14-15Å 17 

at all pressures according to the decay of G(r) in liquid gallium, as shown in the Fig. 1 18 

(b). 19 

 20 
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Within the limitation of the correlation lengths, the structural unit clusters that constitute 1 

the liquid gallium system are self-similar and have scale invariance. Thus, the mass of a 2 

cluster increases with its linear dimension r according to the relation 3 ܯሺݎሻ ן  ஽೑,31                             (2) 4ݎ

where Df is the fractal dimensionility. To determine Df, a common method was employed. 5 

This method consists of covering the object in Df dimension with boxes whose volumes 6 

are taken as the unit of measurement. If ε is the side of the box, and N is the number of 7 

boxes, then the volume of the object is  8 

଴ܸ ൌ ܰ ൈ  ஽೑.32                             (3) 9ߝ

The Df dimension is determined by 10 ܦ௙ ൌ logܰ logሺ1 ⁄ߝ ሻ⁄ .33                        (4) 11 

To assume that the compression is uniform in each direction, Eq. (3) under compressed 12 

conditions can be written as 13 

௉ܸ ൌ ܰ ൈ  ௉஽೑,                              (5) 14ߝ

where VP is the volume, and εP is the counterpart of ε under pressure conditions. 15 

According to Eqs. (3) and (5), we have 16 

௉ܸ ଴ܸൗ ൌ ൫ߝ௉ ൗߝ ൯஽೑.                           (6) 17 

To link the structure of the object to the fractal dimension, let the length ri be the side of a 18 

unit box covering the object, where ri is the peak position of the PDFs in real space. Then, 19 

the scaling law in Eq. (6) is expressed as 20 
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௉ܸ ଴ܸൗ ൌ ൫ݎ௜௉ ௜଴ൗݎ ൯஽೑                          (7) 1 

Fractal dimensionality Df is a universal parameter, thus, the Df extracted from real space 2 

and reciprocal space is equivalent. By analogy to Eq. (7) in real space, we have  3 

௉ܸ ଴ܸൗ ൌ ൭ܳ௜଴ ܳ௜௉ൗ ൱஽೑                       (8) 4 

where Qi is the peak position of the structure factor. The scaling power law Eqs. (7) and 5 

(8) are consistent with the results of previous studies of metallic glasses under pressure.3-5 6 

According to the same volume compression rate and Df in Eqs. (7) and (8), the Qi should 7 

be correlated to a distance in real space. If A is a converted factor of the distance for Qi 8 

from the reciprocal space to the real space, then 2πA/Qi is the side of the covering unit 9 

box. The data points in PDF curves and structure factor S(Q) raw curves could be 10 

transformed through Eq. (1).  11 

 12 

Whether the scaling power law is suitable for liquid gallium and whether the scaling 13 

power is a fractal dimensionality remain unclear. Thus, before the determination, Ds 14 

represented the scaling power, and Df was the fractal dimensionality. In an experimental 15 

S(Q), the range of Q is finite; as a result, termination ripples in G(r) appear in the Fourier 16 

transformation. These ripples have an effect on the peak position of G(r), which further 17 

affects the value of the scaling power Ds according to Eq. (7). However, termination 18 

ripples are not a real issue if data are measured to sufficiently high Qmax values as the 19 

signal in the real S(Q) dies off because of the Debye-Waller factor.34 For liquid gallium, 20 



8 
 

the signal of S(Q) almost dies off, and S(Q) converges to unity at ca. Q = 11 Å-1 (inset of 1 

Fig. 2) in the measured data. Thus, the Qmax in this study is high enough that termination 2 

ripples have little effect on the peak position of G(r). Figure 2 shows the G(r) of liquid 3 

gallium obtained from Fourier transforming the experimental S(Q) terminated at two 4 

selected Qmax = 11 Å-1 and Qmax = 12 Å-1 under selected pressure conditions. Clearly, 5 

these two set of peak positions in G(r) are essentially the same, hence, the value of the 6 

scaling exponent Ds for liquid gallium determined in this work is precise. 7 

 8 

To examine the fractal behavior of liquid gallium in real space and reciprocal space, we 9 

applied Eqs. (7) and (8) to the liquid gallium system under compressed conditions and 10 

selected ri and 2πA/Qi as the units of measurement, respectively. The volume as a 11 

function of pressure was determined using X-ray microtomography measurements, as 12 

presented in the inset of Fig. 1 (a). In real space, the relation between VP/V0 and riP/ri0 (i > 13 

7) becomes featureless and could not be fitted because of the decay of the PDFs, whereas 14 

the featured volume scaling relations were limited within Q2 in reciprocal space. The 15 

fitting results are shown in Fig. 3, in which scaling of both riP/ri0 and Qi0/QiP with VP/V0 16 

present multiple exponents. This phenomenon is consistent with previous study in which 17 

riP/ri0 (i = 1-4) was scaled by density for the first four coordination spheres.21 The 18 

non-cubic scaling of r1 was also reported in liquid metal Bi.9 The Dsr3, Dsr4 and DsQ1 are 19 

approximately equal, indicating that the length corresponding to Q1 is between r3 and r4. 20 

This result suggests that Q1 indeed embodied a medium-range order. Likewise, the value 21 
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of DsQ2 was close to that of Dsr1 and far from that of Dsr2, indicating that Q2 indeed 1 

embodied the information of short-range order. Again, these results suggest that the 2 

scaling power determined by the real and reciprocal space are equivalent, as described 3 

above. Therefore, the following discussion will focus on the real space to simplify the 4 

argument.  5 

 6 

In conventional single scaling, Df is independent of the measurement unit; for example, 7 

Df = 2.5 is almost constant in metallic glass systems under pressure. However, in the 8 

liquid gallium system, Ds is a function of the measurement unit and decreases with the 9 

linear dimension r. Although mathematically the exponent Ds in power law fitting could 10 

be any real number which loosely links to Hausdorff dimensionality, it is generally 11 

accepted an inequality Df < De for the fractal dimensionality. Hence the scaling exponent 12 

exceeding 3 within the first coordination sphere directly indicates that the scaling power 13 

fails to describe the fractal feature in liquid gallium. To find out the reason for this failure, 14 

we examined the changes of the atom number within the first coordination sphere with 15 

pressure increased. 16 

 17 

The first coordination number (CN) at various pressures was calculated by 18 ܰܥ ൌ ׬ ܴሺݎሻ݀ݎ௥మ௥భ ,                          (9) 19 

where R(r) = 4πr2ρ(r) is the radial distribution function (RDF), and r1 and r2 define the 20 

beginning and ending positions, respectively, of the RDF peak corresponding to the 21 
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coordination shell, as shown in Fig. 4 (inset). The limits of the left side of the first peak r1 1 

can be easily determined. However, despite reducing the ripples in the RDF, the limits of 2 

the right side of the first peak r2 may fluctuate because of the contributions from different 3 

errors. The first CN is sensitive to these fluctuations, thus the value of r2 was averaged 4 

for all curves at various pressures21 for consideration of the minor changes in the first 5 

peak position and the low applied pressure in this work. Defined r1 = 2.3 Å and r2 = 3.71 6 

Å, the first CN as a function of the pressure is presented in Fig. 4, which displays that the 7 

value of CN for liquid gallium increases gradually from 11.4 to 12.1 as the pressure 8 

increases from 0 to 1.9 GPa. Previous studies on liquid gallium also reported an increase 9 

in the first CN with pressure.20,21,35-37 This automatically indicates the first coordination 10 

spheres are not similar to each other at various pressure conditions in geometrical sense, 11 

since the increased first coordination number means more atoms move into the nearest 12 

neighbor shell. The scaling power of r1 with a volume in liquid gallium is quite close to a 13 

constant and above 3, which is consequence of the increased first coordination number. 14 

The multiple scaling power for the first four peaks might result from different paces of 15 

decrease in various coordination spheres. Thus, the scaling power law in Eqs. (7) and (8) 16 

cannot be used to obtain the fractal dimensionality for liquid gallium under pressure, 17 

considering a prerequisite for both equations is that the fractal dimensionality is constant 18 

under pressure. 19 

 20 
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The fractal feature relates to the nonuniformity of the density in physical systems. In 1 

crystalline metal or alloy systems, the density is uniform and a fractal feature is absent, 2 

thus the fractal dimensionalities Df = De = 3 match the scaling power of 3. For liquid 3 

gallium, although the scaling power law fails to describe the fractal feature, fractal 4 

behavior may exist because the fitting results show that Dsr5, Dsr6 and Dsr7 are close to 3. 5 

It indicates that beyond the length scale of r5, the system could be viewed as 6 

homogeneous and the fractal feature disappears, which is consistent with the range 7 

confined by the correlation length. Notably, the fractal dimensionality is independent of 8 

the pressure when the density is homogeneous (Df = De = 3), and hence examining the 9 

homogeneous feature in liquid gallium according to Eq. (8) is appropriate. 10 

 11 

The multiple scaling power behavior illustrates that decreases in the volume and atomic 12 

distance follow the scaling power, despite its failure to describe the fractal feature in 13 

liquid gallium. This implies that the structural evolution in liquid gallium under pressure 14 

likely obeys a general rule of multiple scaling power. Furthermore, the multiple scaling 15 

power behavior in liquid gallium provides information on the contraction of the atomic 16 

distance ri (i < 8) or various coordination spheres under pressure. The greater the power 17 

Ds, the less contracted the coordination spheres should be. The Dsr1=11.2(3) is far greater 18 

than Dsri (1 < i < 8), namely, the rate of decrease in the first nearest coordination sphere is 19 

slower than those of other coordination spheres, suggesting that the decrease in the 20 

volume of liquid gallium under pressure can be mainly attributed to the shrinkage of 21 
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other further coordination spheres. Moreover, the Dsr1=11.2(3) embodies a moderate 1 

decrease in the first nearest coordination sphere, which is correlated to an increase in the 2 

first CN under compressed conditions.20,21 3 

 4 

In summary, although the scaling power law fails to describe the fractal behavior in liquid 5 

gallium under pressure, it provides important information on the changes of coordination 6 

sphere. Furthermore, based on the percolation model, fractal behavior is suggested in 7 

liquid gallium within a limited correlation length of ξ ≈14-15 Å. The multiple scaling 8 

power behavior observed in liquid gallium is supplementary to a previous discovery of 9 

single fractal dimensionality in metallic glass systems. We hope that our study could 10 

advance the research on fractal in the broad field of disordered condensed matter systems. 11 
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Captions 

Fig. 1. (a) Structure factor S(Q) and (b) reduced PDFs G(r) of liquid gallium at various 

pressure conditions. The inset of (a) shows the reconstructed 3D images from X-ray 

microtomography measurements on the volumes under the applied pressures. 

 

Fig. 2. G(r) of liquid gallium obtained from Fourier transforming the experimental S(Q) 

terminated at Qmax = 11 Å-1 (indicated by arrow) and Qmax = 12 Å-1 under 1.0 GPa. The 

inset corresponds to the experimental S(Q). 

 

Fig. 3. The relative volume VP/V0 scaling with (a) the ratio of the ith peak position ri in 

real space, where i = 1, 2, 3, 4, 5, 6 and 7, and (b) the ratio of the first and second peak 

positions in reciprocal space. 

 

Fig. 4. The first CN as a function of the pressure in liquid gallium. The inset shows the 

definition of the area under the first peak. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 

 


