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ABSTRACT 

Taking pure Mg, Mg-Al and Mg-Zn as prototypes, the effects of strain on the stacking 

fault energies (SFEs), dislocation core structure and Peierls stress were systematically 

investigated by means of density-functional theory and the semidiscrete variational 

Peierls-Nabarro model. Our results suggest that volumetric strain may significantly influence 

the values of SFEs of both pure Mg and its alloys, which will eventually modify the 

dislocation core structure, Peierls stress and preferred slip system, in agreement with recent 

experimental results. The so-called “strain factor” that was previously proposed for the solute 

strengthening could be justified as a major contribution to the strain effect on SFEs. Based on 

multivariate regression analysis, we proposed universal exponential relationships between the 

dislocation core structure, the Peierls stress and the stable or unstable SFEs. Electronic 

structure calculations suggest that the variations of these critical parameters controlling 

strength and ductility under strain can be attributed to the strain-induced electronic 

polarization and redistribution of valence charge density at hollow sites. These findings 

provide a fundamental basis for tuning the strain effect to design novel Mg alloys with both 

high strength and ductility.  
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I. INTRODUCTION 

Magnesium (Mg-based) alloys are attractive for extensive automobile [1], aerospace [2,3] 

and biomedical applications [4] due to their high strength-to-weight ratio, low density and 

biodegradability [4]. However, the trade-off dilemma between strength and ductility and the 

poor workability and formability are two longstanding bottlenecks for the development of 

novel Mg alloys. It is generally believed that the strong crystallographic anisotropy and the 

lack of slip systems of hexagonal close packed (hcp) Mg alloys [5] are the main reasons for 

the poor plasticity and ductility which identify the workability and formability, while the low 

slip resistance to dislocation movement leads to the low strength. 

Solution strengthening of Mg alloys is generally used in practice and has been well 

investigated by many research groups [6-11]. Its ability to enhance the energy barrier of 

dislocation movement without profound loss of ductility can be explained by the fact that the 

number of slip systems is not changed by alloying particular elements [12]. By introducing 

solutes, the slip resistance in the basal (0001) plane can be effectively increased, while 

simultaneously the critical stress for cross-slip from the basal plane to the secondary 

prismatic ( 0110 ) planes is decreased. For example, Al and Zn are two typical solute 

elements which are experimentally found to lower the critical stress for cross slip [13].  

In ductilizing Mg alloys, slip in both basal and non-basal planes must be active (as 

governed by the von-Mises criterion [14]) to achieve appreciable ductility. However, the 

stress required to plastically deform Mg alloys along its (easy) basal slip plane is two orders 

of magnitude lower than that of (hard) non-basal plane. To solve this problem, recent 

theoretical investigations suggest that the addition of effective solutes (e.g. the rare earth 
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elements may play a role to randomize the texture [15]) may distinctly modify the energy of 

I1 type stacking fault, and thus promote the heterogeneous nucleation of pyramidal 〉〈c+a  

dislocations, which will in turn benefit the ductility of Mg alloys [16]. Usually, the major role 

of the added different solutes is to activate more than five independent slip systems for an 

appreciable ductilization. The solute effect on the dislocation core structure and Peierls stress 

has been recently systematically studied by Pei et al. [17] and Yasi et al. [18] in order to 

underline the slip mechanism controlling the ductility. These studies have shown that 

different elements may indeed influence the slip behavior, cross slip and dislocation reaction. 

Although the introduction of an appropriate solute provides an effective pathway for 

strengthening and ductilizing Mg alloys [12,13,19-22], the strain effects must also be 

included to account for the strength and ductility of Mg alloys. At equilibrium, a pure 

geometrical analysis indicates that the plasticity should be accommodated by the slip along 

five independent slip systems activated in ascending order (i.e., the easiest slip system in Mg 

is basal slip along 〉〈 0121}0001{ , followed by prismatic slip along 〉〈 0121}0110{ , and the next 

easy slip systems are pyramidal plane type I along 〉〈 0121}1110{ and 〉〈 2311}1110{ , as well as 

type II along 〉〈 2311}2211{ [23].) due to their different critical resolved shear stresses for slip. 

Under sufficient strain, however, the plastic deformation of Mg alloys cannot be simply 

quantified by this geometrical analysis at equilibrium because the strain will not only change 

the c/a ratio but also modify the SFEs, and eventually induce different dislocation core 

structures, dislocation mobilities, and the preferred slip systems. Because all these intrinsic 

parameters are critical in governing the plastic deformation, their variations by strains will 

eventually modify the mechanical strength and ductility of Mg alloys. For example, a higher 
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value of SFE will hinder the formation of a wider dislocation core, as a result decrease the 

mobility of dislocation during the loading. Recent experiments have confirmed that (a) the 

non-basal slip systems of Mg alloys can be activated by hydrostatic pressure [24-26]; (b) 

under c-axis compression the operative modes for pure Mg are 〉〈c+a  slip on pyramidalⅡ

and significant ductilizing and hardening occur [27]; and (c) compressive pre-deformation 

changes the deformation behavior and yield strength of a Mg-Al-Zn alloy under tensile 

loadings [28]. These results suggest a necessity to investigate the effect of strain on the SFEs, 

dislocation core structure and associated Peierls stress, which are critical in strengthening and 

ductilizing Mg alloys. 

In the present study, we take the volumetric strain as a representative case to present the 

strain effect with a wide range of strain (i.e. -0.12<ΔV/V<0.13, corresponding to the pressure 

value with -5.7~3.4 GPa) to meets not only the normal loading conditions with low strain or 

stress, such as less than the tensile yield strength of pure Mg, but also those special cases, 

under which Mg alloys can support a larger strain or stress (e.g. several GPa), such as shock 

loading with high strain rate, high hydrostatic pressure within confined volume and in 

nanocrystalline state with restricted dislocation mobilities. For example, under 

one-dimensional shock loading with a velocity about 500m/s, some Mg alloys can be 

longitudinally stressed to about 3GPa [29,30], and the effect of high pressure on the 

mechanical properties of Mg alloys have been studied experimentally, with a maximum 

pressure of 6GPa [31,32]. In section 2, we shall first describe the method of first-principles 

calculation, the approach to calculate the SFEs, the semidiscrete variational PN model used 

for the determination of dislocation core structure and the calculation details of Peierls stress. 
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Afterwards, the calculated results are presented in section 3: the effect of volumetric strain on 

the SFEs is given in subsection 3.1, and the dislocation core structure and Peierls stress in 

subsection 3.2. To underline the physical origin of the strain effect, an in-depth analysis of 

electronic structure is given in subsection 3.3. Afterwards, a discussion on the strengthening 

and ductilizing mechanism in Mg alloys is given in section 4. We conclude in section 5 with a 

recap of the major conclusions drawn in this study. 

 

II. COMPUTATIONAL APPROACH 

A. First-principles calculation 

Our first-principles DFT calculations were performed using the Vienna ab initio 

simulation package (VASP) code [33] by the projector augmented wave (PAW) method [34] 

with the Perdew-Burke-Ernzerhof (PBE) version [35] of the Generalized Gradient 

Approximation (GGA) as the exchange-correlation functional. An energy cutoff of 500eV 

and 15×15×3 k-mesh gamma-centered grids were used. The SFE was tested carefully for the 

convergence as a function of the k-mesh grid (see Fig. S1 in the Supplemental Material [36]). 

The energy convergence criterion of the electronic self-consistency is chosen as 10-6 eV/cell, 

while the force convergence criterion of ionic relaxation is used, with all forces acting on the 

atoms being lower than 0.01eV/Å. The Methfessel-Paxton (MP) method [37] was used for 

the electronic self-consistency of both ionic relaxation and energy calculation with a 

smearing width of 0.01 eV.  

Table 1 lists the optimized lattice constants of pure Mg, which are in very good 

agreement with previously published experimental [38] and theoretical [39] data. The 
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calculated cohesive energy of pure Mg also agrees well with the results of previous theory 

[40], providing a further validation of the PAW pseudopotentials used for Mg alloys. 

  

B. Stacking fault energy 

The SFE describes the energy variation when two parts of a crystal are rigidly shifted 

with different fault vectors lying in a given crystallographic plane [41]; it is defined as: 

A
EEγ SF 0−= ,                                  (1) 

where ESF and E0 are the energies of the structure with a stacking fault and the perfect 

structure, respectively, and A is the area of the stacking fault plane. To calculate the SFEs, we 

built a periodic supercell containing 48 atoms (4 atoms/layer). The lattice vectors of the 

supercell are parallel to the [ 0211 ], [ 0110 ] and [0001] directions, respectively. For Mg 

alloys, a Mg atom at one faulted plane (0001) was replaced by one solute atom X (X=Zn or 

Al). Therefore, the global solute concentration is about 2.08%, which corresponds to an areal 

concentration of 25% at the faulted plane for an Mg47X alloy. In general, there are two 

approaches to calculate the SFEs by means of DFT, namely alias shear [42] and slab shear 

[43]. The former one can be complemented by an alias shear deformation of a periodic 

supercell via the Cartesian coordinate representations of atomic position, while the latter one 

requires only the movement of atomic positions within two slabs, but requires a supercell 

surrounded by a sufficiently thick vacuum to eliminate any surface effects. In our study, the 

alias shear approach was employed for the following considerations: 1) the number of 

supercell atoms is only one-half of that using the slab shear technique; and 2) the stress can 

be directly derived from the stress-strain relationship of the simulated supercell. Fig. 1a 
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illustrates the configuration of an I2 stacking fault (…ABABCACA…) that was generated 

from the perfect hcp structure by displacing the upper half of the supercell by 1/3[ 0110 ] 

while holding the bottom half fixed. The twin fault T2 (…ABABCBABA...) can be obtained 

by displacing another layer of I2 as indicated by the dotted line in Fig. 1a. In order to get the 

entire γ-surface, including unstable SFEs, only vertical movement normal to the slip plane 

was permitted during atomic relaxation. 

 In the present work, we firstly applied a series of volumetric strains on the supercell to 

study the variations of SFEs under strain. It should be noted that the volumetric strain is 

imposed by changing the lattice constants of a and c. During this procedure only the atomic 

positions were allowed to relax, with the constraint of crystallographic symmetry, and the 

SFEs were calculated employing the alias shear approach based on the relaxed strained 

supercell. 

 

C. Dislocation core structure and Peierls stress 

Three approaches are generally used to determine the dislocation core structure based on 

first-principles calculation: a solution based on flexible boundary conditions [44-46], an 

analytical solution based on dislocation dipole array [41,47], and the semidiscrete variational 

PN model evolved from the classic one by Bulatov et al. [48,49]. With the last one as our 

basis, the model assumption is that one dislocation line is parallel to the z-axis ([ 0110 ]) with 

Burgers vector b
v

=1/3[ 0211 ] (x-axis), with slip on the x-z plane. The trial displacements for 

the edge and screw components of the partial dislocations are expressed by Eq. (2) and used 

to determine the equilibrium configuration of the dislocation in pure Mg and Mg alloys [50]: 
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where xd (or zd ) is the separation between edge (or screw) components of the two partial 

dislocations, and xw (or zw ) gives the half-width of edge (or screw) components of the two 

partial dislocations. An illustration of the meaning of these qualities is shown in Fig. 2. 

Equivalently, the dislocation core structure is described by the misfit density dxxduxρ /)()( ≡ , 

and the typical profiles of ux(x), uz(x), ρx(x) and ρz(x) are shown in Fig. 2. The γ-surface was 

expanded in a 2-D Fourier series as suggested in Ref. [51]: 
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where π/bp 2= , )3(2 bπ/q=  and )2(3 43210 ccccc +++⋅−=  which could be determined by 

applying the condition: γ(0,0)=0. The unknown coefficients c1, c2, c3, c4, a1 and a2 were 

determined by fitting the γ-surface (as illustrated in Fig. 1b) with Eq. (3) and nonlinear least 

square method based on Trust-Region algorithm.  

The total energy of a dislocation Etot is expressed as the sum of the misfit energy Emit 

and the elastic energy Eel [48]: 

∑∑∑ ⋅+⋅+Δ⋅=
ij

z,iz,iijs
ij

x,ix,iije
i

izixtot ρρχKρρχKxx,uxuγE ))()(( ,         (4) 

)()( 11 −− −−= iix,ix,ix,i xx/uuρ , )()( 11 −− −−= iiz,iz,iz,i xx/uuρ ,              (4a) 
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1111112/3 −−−−−− −−++⋅= i,j,jii,j,jij,ji,iij ψψψψφφχ ,                        (4b) 

i,ji,ji,j φφψ ln2/1 2⋅= , jii,j xxφ −= ,                                 (4c) 

))1(4( -νπ=G/Ke , )4( π=G/Ks                                   (4d) 

where xi are the reference positions, Δx is the average spacing of the atomic rows in the lattice, 

G is the shear modulus and ν is the Poisson ratio. In our calculations, a same set of elastic 

constants (i.e. Ke=2.238 and Ks=1.647 (see Table 2 together with the experimental data [52] 

and other predictions from the literature [40])) was used to determine the dislocation core 

structure and Peierls stress of Mg and Mg alloys. Then, the equilibrium core structure of 

dislocation defined by the parameter ux, uz, wx and wz in Eq. (2) was obtained by minimizing 

the total energy Etot [53], and accordingly the particle swarm optimization (PSO) algorithm 

[54,55] was employed for the energy minimization in the present study. 

The Peierls stress is defined as the critical resolved shear stress required to move a 

dislocation across a crystal lattice [56,57]. To determine the Peierls stress, the method 

proposed in Ref. [56] was employed in the present study and the misfit energy in Eq. (4) is 

rewritten as 

( ) ( )∑ Δ⋅−Δ−Δ=
m

zxmit xxm,uxmuγE )()( μμμ .                (5) 

Accordingly, the Peierls stress pτ  is determined by 

{ } ( )
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b
1maxmax .                         (6) 

 

III. RESULTS 

We first determined the SFEs of the unstrained Mg and its alloys, both to serve as a 

baseline for validation of present studies and to understand the origin of the large scatter of 
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the SFEs reported in previous publications. Table 3 shows our calculated values of stable 

SFEs (
2I
γ ,

2Tγ ) and unstable SFEs (
2UIγ ,

2UTγ ) of pure Mg and its alloys, compared with 

previous calculated literature values [6-12,17,40,58-61]. For the stable SFE 
2I
γ  of pure Mg, 

the experimental values vary from 50mJ/m2 to 280mJ/m2 [8], mostly owing to the uncertainty 

in experiments such as the conditions, methods, sample purity and assumptions in the 

analysis. Although most theoretical SFEs lie between 20.1-48.2mJ/m2 for pure Mg (see Table 

3), a large scatter still exists relative to the precision of DFT total energies, which are 

generally within ±1meV/atom. Therefore, we have checked the convergence in the 

calculation of SFEs with respect to the variations of the density of the k-point mesh grids and 

different choices of cutoff energy, both of which are critical for high-precision energy 

calculations. By a careful comparison, we found that the difference of the calculated SFEs in 

past studies was mostly due to their different k-mesh grid points, as a lower k-mesh grid will 

generate a larger scatter in the calculated SFEs (see Fig. S1 in Supplemental Materials [36]). 

Given these considerations, we used a relatively high density of k-mesh grids (15×15×3) and 

a high cutoff energy of 500eV in our following calculations; our calculated stable SFE 
2Iγ  

of pure Mg is about 33.85mJ/m2, which is very close to the reported value by high precision 

calculation methods. 

 

A. Effect of strain on the SFEs and twinnability 

We now study the effect of volumetric strain on the stable SFEs (
2Iγ ,

2Tγ ) and unstable 

SFEs (
2UIγ ,

2UTγ ). Fig. 3 presents the variations of the stable and unstable SFEs of pure Mg 

and Mg-Zn under volumetric strain, ranging from ΔV/V=-0.12 to 0.13. It is shown that for all 
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four types of SFEs, the variations of SFEs with respect to the volumetric strain show strong 

similarity, i.e. the SFEs monotonically decrease with increasing ΔV/V, but they remain 

positive. By multivariate regression analysis, the dependence of the stable and unstable SFEs 

on the volumetric stain can be well described by a polynomial fit 

322 )()()()/( V/V+dV/V+cV/V=a+bmmJγ ΔΔΔ with the second derivative 0)( 22 >ΔV/Vγ/dd  

(the fitting coefficients are provided in Table S1 in the Supplemental Material [36]). These 

observations indicate that volumetric compression has a greater influence on the SFE values 

than volumetric tension. It should be noted that a similar effect (i.e. cubic polynomial fit 

between the SFEs and volumetric strain) has also been reported for fcc copper [43], 

suggesting that this could be a generic volumetric strain effect, independent of crystal 

structure. In order to quantitatively account for the correlation between the applied strain and 

the resultant pressure, the hydrostatic pressure is calculated and shown in Fig. 3a and c. A 

continuous increase from -5.7GPa to 3.4GPa is observed for pure Mg, and from -5.3GPa to 

3.6GPa for the Mg-Zn alloy, as ΔV/V increases from -0.12 to 0.13. 

Using the calculated stable SFEs (
2Iγ ,

2Tγ ) and unstable SFEs (
2UIγ ,

2UTγ ), the 

twinnability of pure Mg and its alloys is characterized by the following ratio [6,8]: 

22

22

IUT

IUI
ratio γγ

γγ
Λ

−
−

= .                              (7) 

A larger value of ratioΛ  indicates a greater tendency towards the formation of twins. Fig. 3b 

and d present the change of ratioΛ  under volumetric strain. At equilibrium (ΔV/V=0.00), it is 

seen that the ratioΛ  value of pure Mg (0.741) is larger than that of Mg-Zn alloy (0.678), but 

they are both much smaller than that of the Mg-Al alloy (0.800), indicating that the solute 

atom Al can promote twin formation, while the Zn atom decreases the potency to form a twin 
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in Mg-based alloy. As shown in the microstructures of the as-rolled Mg-1.5Zn and Mg-3Al at 

room temperature, Mg-3Al exhibits more extensive twinning as compared with Mg-1.5Zn 

[62], which indicates a greater tendency towards the formation of twins in Mg-Al alloys as 

compared with Mg-Zn alloy. This agrees well with our calculated result. 

Under volumetric strain, the ratioΛ  increases rapidly from 0.708 to 0.788 for pure Mg, 

while for Mg-Zn, the ratioΛ  increases gradually from 0.678 to 0.686, as the strain ΔV/V 

changes from -0.12 to 0.13. These results indicate that a volumetric expansion promotes twin 

formation in pure Mg and Mg alloys. A similar trend of the effect of volumetric strain on 

SFEs and twinnability has also been observed in Mg-Al alloy; we refer to Fig. S2b in the 

Supplemental Material [36] for details. 

 

B. Dislocation core structure and Peierls stress under strain 

The dislocation core structure governs the dislocation mobility and ultimately the 

mechanical strength and ductility of materials. For instance, the planar core of dislocations in 

hcp and fcc metals determines their plastic flow propagation following the Schmid law, while 

the compact nonplanar core of bcc metals is known to be responsible for their violation of the 

Schmid law, exhibiting a tendency to three-way non-planar dissociation or polarization, 

implying a large Peierls stress that makes the screw dislocations difficult to move [63,64]. In 

addition, the core structure of misfit dislocations at heterostructure interfaces has also been 

found by MD simulations to play a critical role in determining dislocation nucleation and 

dissociation, transmission of lattice dislocations across the bimetal interface, and the 

interfacial sliding [65-67]. In terms of tuning the dislocation core structure, both experiments 
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and theoretical investigations [63] have shown that not only the impurities or alloying 

elements but also an application of external stresses can significantly alter the dislocation 

core structure and consequently its properties. However, although there have been some DFT 

studies of the Peierls barrier for various metals, they have been limited to zero-stress 

situations and do not provide information about the stress dependence of the Peierls potential. 

Therefore, in this section, we shall take Mg and Mg alloys as illustrations to show the 

significant strain effect on dislocation core structures and Peierls stresses. 

We begin with the calculations of the dislocation core structure at equilibrium 

(ΔV/V=0.00) by means of the semidiscrete variational PN model as described in Section 2. 

Fig. 2 presents the calculated dislocation core structures at equilibrium of pure Mg and Mg 

alloys with both edge and screw components; the calculated dislocation core structure 

parameters ( xd , zd , xw  and zw ) at equilibrium are provided in Table 4, showing good 

agreement with previously reported experimental and theoretical values [17,68]. It is seen 

that the derived values of /bdx  are almost equal for pure Mg (7.50) and the Mg-Zn alloy 

(7.60), but they are much smaller than that of the Mg-Al alloy (9.74). Such a difference can 

be attributed to the lower value of the stable SFE 
2Iγ for the Mg-Al alloy (22.50mJ/m2) as 

compared to those for pure Mg (33.85mJ/m2) and Mg-Zn alloy (31.64mJ/m2) (see Table 3). 

We next study the effect of strain on the dislocation core structure and the calculated 

results for pure Mg are presented in Fig. 4. The relevant key points are summarized below:  

a) Under volumetric strain in dilatation or compression, the variation of dx/b with 

respect to the strain follows a exponential function as ( )V/V/b=Adx Δ⋅ αexp , where 

A=7.729 and α=4.49 (see Fig. 4a).  
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b) There are linear relationships between the calculated value of /bwx  and the applied 

volumetric strain with a proportional slope of )/(/)( VVd/bwd x Δ =1.32 (see Fig. 

4b). 

In an illustrative atomic-scale representation, Fig. 4c and d present the misfit densities 

and the pressure fields around dislocation cores [69] under various volumetric strains, 

respectively. As defined in Ref. [69], the pressure field around dislocation cores is expressed 

that  

∑
= ++−

+⋅
−
+−=

2

1
22 ))(sign()(

)(sign 
2)1(3

)1(),(
i eei

e

wyydx
wyybGyxp

νπ
ν ,               (8) 

where de1=dx/2, de2=-dx/2, we=wx, G is the shear modulus and ν is the Poisson ratio. The 

atoms shown in Fig. 4d are color coded to distinguish the localized stress around the 

dislocation core. It is clearly seen that two partial dislocations (denoted by “⊥”) are separated 

by a planar stacking fault in between. A large strain dependence is found for the dislocation 

core parameters, ranging from 4.82 to 16.67 for the stacking fault width dx/b and from 0.41 to 

0.77 for the partial core width /bwx ; these ranges are almost equal to those reported for 20 

different Mg alloys at equilibrium (3.03 to 19.18 for dx/b, and 0.55 to 0.72 for /bwx [17]), 

indicating that strain has an even equally profound effect on the dislocation core structure 

with the chemical effect of solutes. Such results suggest potential foundations for the 

modification of strength and ductility of Mg and Mg-based alloys by strain engineering, i.e. 

preparing Mg alloys at different strain states. For instance, Yamashita et al. [70] verified 

experimentally that severe plastic deformation can improve the mechanical properties (e.g. 

strength and ductility) of Mg alloys. Therefore, it is expected that severe plastic deformation 

with specific constraint may provide an effective solution of strain engineering to improve 
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the mechanical properties of Mg alloys.  

As described in Section 2.3 and illustrated in Fig. 5a, the Peierls stress is defined as the 

critical resolved shear stress for a dislocation moving through the lattice from one 

symmetrical configuration to another equivalent symmetrical configuration [56,57,71]. Fig. 

5b presents our calculated dependence of the Peierls stresses of pure Mg and Mg alloys under 

volumetric strain. The logarithm of the Peierls stress ln(τp) of pure Mg and Mg alloys shows a 

linearly decreasing trend with increasing strain, following a slope of =Δ )())(ln( V/V/dd pτ

-18.74 for pure Mg. Therefore, the Peierls stress τp can be approximated as an exponential 

relationship with the volumetric strain, and a general conclusion can be drawn for the strain 

effect on Peierls stress such that a compressive strain leads to a strain strengthening effect, 

while a tensile strain causes strain softening.  

Under volumetric compression, the Peierls stress of the dislocation lying in the basal 

plane increases, which may eventually promote the activation of non-basal slip systems and 

consequently ductilize Mg and Mg alloys. These conclusions agree well with the 

experimental observations that the non-basal slip systems can be activated by hydrostatic 

pressure [24-26]. Although the strain effect on the Peierls stress is found to be far more 

profound than the chemical effect of solutes by the analysis of data published in Ref. [17], we 

would like to emphasize that both the strain strengthening and solute strengthening play 

important and potentially complementary roles in strengthening and ductilizing Mg alloys, 

since the solute atoms may provide an additional “pinning” effect due to the 

solute/dislocation interactions [18]. 
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C. Electronic origin of the strain effects  

Based on previous studies [8-12], it is believed that the charge density distributions 

could provide a physical explanation for the SFEs of pure Mg and Mg alloys. To clarify the 

strain effect on the polarization and charge transfer, we have calculated the valence charge 

density difference (VCDD) which is defined as: 

( ) ( ) ( )XMgρXMg=ρXMgρ nscsc 474747 −Δ ,                   (9) 

where ρsc(Mg47X) is the charge density after reaching electronic self-consistency and 

ρnsc(Mg47X) is the charge density prior to electronic self-consistent calculation, i.e. 

representing a summation of atomic charge densities (or the non-interacting charge density). 

Fig. 6 (a-c) illustrates the VCDDs of pure Mg under different volumetric strains. It is seen 

that the charge density decreases with the increasing volumetric strain at hollow sites 

(indicated by the red dashed circle in Fig. 6) which may provide a basis for the effect of strain 

on SFEs, as the denser VCDD produces a stronger bonding of Mg-Mg [8]. 

To underline the strain effect of Mg alloys, Fig. 6 also presents the calculated VCDDs of 

Mg-Zn (Fig S3 for Mg-Al in the Supplemental Material [36]) under different volumetric 

strains. It can be seen that under the volumetric strain, the VCDD decreases with increasing 

strain for both Mg-Zn and Mg-Al alloys at hollow sites, producing a same effect on the Mg 

alloys as on pure Mg. Comparing the VCDDs of pure Mg and Mg alloys at the unstrained 

state (ΔV/V=0.00), it is found that Zn and Al solute atoms decrease the VCDD at the circled 

region in red, being responsible for the lower value of SFEs for the Mg-Zn and Mg-Al alloys 

as compared to those of pure Mg (see Table 3). By comparing the chemical effect of solute 

and the strain effect on the VCDD, it can be concluded that the chemical effect may 
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effectively change the shapes of VCDD isosurface, while the strain effect will enhance the 

magnitude of the isosurface, indicating a general rule that a higher SFE corresponds to more 

profound electronic polarization induced by compressive strain. 

 

IV. DISCUSSION 

In general, the solute strengthening provides an effective strengthening pathway for the 

development of novel Mg alloys which can potentially resolve the trade-off dilemma between 

strength and ductility and the poor workability and formability. In Mg alloys, solute atoms 

can disturb the charge density (“chemical factor”) and produce a local strain field (“strain 

factor”) due to the different atomic radii between Mg and solute atoms, which are two 

supposed reasons for the solute effect on the SFEs. The local strain caused by solute atoms is 

equivalent to the external strain by changing the lattice geometry. For example, Liu et al. [12] 

found that the activation of slip systems is closely related to the change of the local ratio of 

c/a by different solute elements, being responsible for the solute strengthening and/or 

ductilizing. Shang et al. [8] has recently found an approximate linear relationship between the 

SFEs and the equilibrium volumes of Mg alloys by different alloying elements, which raises 

an interesting question whether the change of SFEs can be partially attributed to the strain 

effect. Our results, that a local compressive strain will promote larger SFEs whereas lattice 

dilatation will generate smaller SFEs, provide a novel view on the contribution to SFEs by 

solute introduction.  

Although the study of the strain effect on the SFEs could offer insights into the “strain 

factor” of the solute effect on the SFEs and the mechanism of solute strengthening as the size 
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misfit in the model of solute strengthening [18,69,72], thus far however, the effect of an 

external strain is absolutely ignored. As seen in the preceding sections, an external strain 

plays an important role on the SFEs and dislocation core structures. The strain effect cannot 

be ignored in experimentally achievable strains such as under high pressure, in high strain 

rate deformation, shock loading [73] and severe plastic deformation (SPD) processing. For 

example, the effect of super-high pressure on the mechanical properties of Mg alloys has 

been studied experimentally, with a maximum pressure of 6GPa [31,32]. At such high strain, 

the SFEs can change by ~40% relative to those at zero-strain, which consequently produces 

an ~340% increase of Peierls stress from 8.4MPa to 36.7MPa, and ~30% variation of 

dislocation core structure. 

As shown in Fig. 7a, a strong inverse relationship between the /bdx  and the stable SFE 

2Iγ  is found for Mg and Mg alloys. It is, however, not a simple linear relationship as 

proposed for fcc metals in Ref. [74,75] using a DFT-informed PFDD model. The correlation 

fits well with the exponential function as 

)exp()exp(
22 IIx γBγA/bd βα −⋅+−⋅= ,                    (10) 

where A=23.92, B=0.09051, α=-0.03841 and β=0.05522. Meanwhile an inverse linear 

relationship between the logarithm of the Peierls stress ln(τp) and the dislocation width ( /bwx ) 

(Fig. 7b) is obtained by fitting the formula 

B/bAwxP +=)ln(τ ,                            (11) 

where A=-13.73 and B=9.031. This provides a variant of the well-known formula

( )αξ/bAp −= expτ  [56], where A and α are constants and ξ  is the dislocation half-width and 

approximatively equal to the xw  in Eq. (11). Furthermore, the value of /bwx  is found to 
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have a strong correlation with the unstable SFE 
2UIγ  (Fig. 7c), and the fitting function for 

Mg and Mg alloys is generally expressed as  

)exp(
2UIx γA/bw α−⋅= ,                         (12) 

where A=1.24 and α=-0.00921. This logarithm of the Peierls stress ln(τp) can also show an 

exponential correlation with the unstable SFE 
2UIγ  (Fig. 7d), and the formula is obtained as 

BγA UIP +−⋅= )exp()ln(
2

ατ ,                       (13) 

where A=-17.03, B=9.031 and α=-0.00921. With these relationships, one may simply predict 

the Peierls stress of Mg alloys even under strain. It is generally accepted that Mg alloys with 

high basal and low non-basal unstable SFEs will have higher both strength and ductility than 

those of pure Mg, because the high and low Peierls stresses on the basal plane and on 

non-basal planes, respectively, will benefit the activation of non-basal slip system, aiding 

both strengthening and ductilizing of Mg alloys. 

In summary, the effect of strain on the SFEs, dislocation core structure and Peierls stress 

can be particularly important for understanding the mechanical behavior of metals in high 

pressure experiments, severe plastic deformation and shock-loading conditions [73]. 

Therefore, our results may provide an additional contribution and pathway to solve the 

tradeoff between strength and ductility based on the dependence of SFEs on external 

parameters such as strain. 

 

V. CONCLUSIONS 

We have performed comprehensive investigations on the effect of volumetric strain on 

the SFEs, dislocation core structure and Peierls stress of Mg and Mg alloys based on DFT 
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calculations and the semidiscrete variational PN model. The results are summarized as 

follows: 

(1) Strain can affect the values of SFEs, making them either larger or smaller, and thus 

changing the twinnabilities of pure Mg and Mg alloys. The SFEs and twinnability of 

Mg-Zn and Mg-Al alloys will be changed by volumetric strain in a similar manner to 

pure Mg.  

(2) In general, a narrow (wide) dislocation core will decrease (increase) the mobility of 

dislocation. The dislocation core structure and Peierls stress may be significantly 

modified by strains as the variation of SFEs, which could promote the activation or 

operation of non-basal slip system, in agreement with experimental results. 

(3) Besides of external strain, the strain may also be imposed by the introduction of solute 

atoms in experiments, therefore the strain effect on the SFEs found in the present study 

may provide a novel view on the “strain factor” of the solute effect by the introduction of 

local strain fields that was assumed based on experimental observations.  

(4) General exponential relationships are proposed between the dislocation core structure, 

the Peierls stress and the stable or unstable SFEs, which provides a foundation for further 

experiments. For instance, the separation distance between two partials shows a universal 

exponential relationship with the stable SFE
2Iγ , while the Peierls stress is exponentially 

dependent on the unstable SFE
2UIγ .  
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TABLES 

TABLE 1. The calculated lattice constants a and c (in Angstroms) and cohesive energy Ec 

(eV/atom) of pure Mg together with other theoretical values [38-40]. 

 Refs. 
Lattice constants 

Ec 
a c 

pure Mg 

This work 3.195 5.172 -1.50 

Exp. [38] 3.21a 5.21a  

Cal. [40] 3.221 5.178 -1.44 

Cal. [39] 3.19 5.17  

a These experimental values are acquired at 298K. 
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TABLE 2. The calculated elastic constants cij, the derived Hill average bulk moduli BH, shear 

moduli GH and Young’s moduli EH (all in GPa), and the Poisson ratio νH of pure Mg, which 

are the input parameters for the semidiscrete variational PN model, together with the 

experimental data and other theoretical values [40,52]. 

Material c11 c12 c13 c33 c44 BH GH EH νH Ke Ks 

hcp Mga 69.12 21.84 20.01 70.84 16.37 36.98 20.70 52.34 0.264 2.238 1.647 

hcp Mgb 59.5 26.12 21.8 61.55 16.35 35.55 17.21 44.45 0.292 1.934 1.370 

hcp Mgc 63.1 22.2 22.7 66.3 22.6 36.4 21.5 53.8 0.254 2.293 1.711 

a This work. 

b Exp. [52], and these experimental values are acquired at 298K. 

c Cal. [40].  
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TABLE 3. The calculated stable SFEs (
2Iγ ,

2Tγ ) and unstable SFEs (
2UIγ ,

2UTγ ) of pure Mg 

and Mg alloys together with previous theoretical values (in mJ/m2). xg (%) and xSF (%) are the 

global solute concentration and the areal concentration within the stacking fault plane, 

respectively. 

Mg-X xg xSF 
2Iγ  

2UIγ  
2Tγ  

2UTγ  NOTE 

Mg   33.85 93.57 41.36 114.46 This work，alias shear, GGA-PBE 
  20.1 95.8 38.2 120.3 CASTEP, slab shear, GGA-PW91 [40] 
  26.1 94.9 37.1 111.2 VASP, alias shear, GGA-PBE [8] 
  36 92 39 111 VASP, slab shear, GGA-PBE [7] 
  30.0  40.0  VASP, alias shear, GGA-PBE [10] 
  29.1    ANNNI framework [12] 
  33  42  VASP, CINEB [6] 
  33.8 87.6   VASP, slab shear, GGA-PW91[11] 
  21.4    VASP, slab shear, GGA-PBE[59] 
  21 88   VASP, slab shear, GGA-PW91[60] 
  33.8 87.6 40.2 154.3 VASP, slab shear, GGA-PW91 [58] 
  48.2    VASP, slab shear [9] 
  35.4    VASP, slab shear [61] 

Al 2.08 25 22.50 87.62 38.01 108.26 This work, alias shear, GGA-PBE 
1.04 8.33 24.8  36.0  VASP, alias shear, GGA-PBE [8] 
2.08 25 21  32  VASP, slab shear, GGA-PBE [7] 
0.69 8.33 29.7  37.1  VASP, alias shear, GGA-PBE [10] 
1.67 50 23  42  VASP, CINEB [6] 

0.78 6.25 33.6    VASP, slab shear [9] 

Zn 2.08 25 31.64 85.43 39.77 106.43 This work, alias shear, GGA-PBE 
1.04 8.33 25.5  37.2  VASP, alias shear, GGA-PBE [8] 
2.08 25 37  43  VASP, slab shear, GGA-PBE [7] 
0.69 8.33 26.2  37.6  VASP, alias shear, GGA-PBE [10] 
0.93 11.11 35.1 94.2   VASP, slab shear, GGA-PW91[11] 
0.78 6.25 30.8    VASP, slab shear [9] 
2.08 25 35    VASP, alias shear [17] 
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TABLE 4. The geometrical parameters of dislocation core structure and the calculated Peierls 

stress (τp) in MPa of pure Mg and Mg alloys together with other predictions from the 

literatures at equilibrium (with ΔV/V=0.00). 

Solute dx/b wx/b dz/b wz/b τp NOTE 

Mg 7.50 0.54 7.56 0.58 8.40 This work, DFT 

7.00 0.68 7.18 0.60 1.15 Ref. [17] DFT 

    6.73a Exp. [68] 

3.06 0.45 2.90 0.38 22.9 Ref. [17] EAM 

Al 9.74 0.54 9.79 0.58 3.94 This work, DFT 

Zn 7.60 0.56 7.65 0.62 2.61 This work, DFT 

6.94 0.64 7.11 0.52 2.53 Ref. [17] DFT 

a This experimental value is based on yield stress data at 0K. 
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FIGURES 

FIG. 1. (Color online) (a) Schematic illustration of the perfect lattice, basal stacking fault I2, 

and twin stacking fault T2 configurations generated via the alias shear. The letters A, B and C 

represent different stacking sequences of (0001) planes, which are identified by blue, pink 

and olive symbols respectively, with the stacking fault being highlighted in red. The solid and 

open circles represent the atomic coordinates at 0 and ½ along [ 0211 ] direction, respectively, 

and the dotted line indicates the stacking fault position. (b) The full γ surface of pure Mg for 

the basal (0001) plane. (c) The calculated SFE profiles of pure Mg, Mg-Al and Mg-Zn along 

the [ 0211 ] direction to indicate the stable SFEs (
2Iγ and

2Tγ ) and unstable SFEs (
2UIγ and

2UTγ ). 
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FIG. 2. (Color online) (a) A schematic to illustrate the dissociation of a perfect dislocation 

into two partials. The 1b
v

, 2b
v

 and 3b
v

 are the Burgers vectors of perfect dislocation and the 

p1b
v

, p2b
v

and p3b
v

are the Burgers vectors of partial dislocation. The  xp3,b
v

, z p3,b
v

,  xp1,-b
v

and z p1,-b
v

 are the components of p3b
v

 and p1-b
v

 along x and z-axes, respectively. (b-f) The 

dislocation core structure of pure Mg (black curve) and Mg alloys (pink curve for the Mg-Al 

alloy and blue curve for the Mg-Zn alloy) at equilibrium. The separation xd  (or zd ) 

between the edge (or screw) components of the two partials is defined as the distance 

between the two peaks, and the width xw  (or zw ) of the edge (or screw) components of a 

partial dislocation is the full width at half maximum approximately, as shown in this figure. 
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FIG. 3. (Color online) The calculated stable and unstable SFEs, the pressure, and the 

twinnability for (a-b) pure Mg and (c-d) Mg-Zn as a function of volumetric strain. It is found 

that the dependence of the stable and unstable SFEs on the volumetric stain can be well 

described by a polynomial fit. 
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FIG. 4. (Color online) The (a) distance ( bdx / ) and (b) width ( bwx / ) between the edge 

components of a dislocation under different volumetric strains. (c) The misfit density and (d) 

the pressure field (in GPa) produced by the dislocation under different volumetric strains. It is 

seen that, under volumetric strain in dilatation or compression, the variation of bdx /  with 

respect to the strain follows the exponential function, while the calculated value of bwx /  is 

linearly dependent on the applied volumetric strain. 
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FIG. 5. (Color online) (a) A schematic to represent the dislocation movement from one 

symmetrical configuration to another equivalent symmetrical configuration. (b) The 

logarithm of Peierls stress under different volumetric strains for pure Mg and Mg alloys, 

which shows a linearly decreasing trend with increasing strain. 
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FIG. 6. (Color online) Contour plots of the valence charge density difference (VCDD) of 

pure Mg and Mg-Zn alloy under the volumetric strains: (a, d) ΔV/V=-0.12, (b, e) ΔV/V=0.00 

and (c, f) ΔV/V=0.13 respectively. The unit of VCDD is electrons/Bohr3, and the thin black 

line corresponds to the isosurface of 0.0018electrons/Bohr3. It is illustrated that the charge 

density decreases with the increasing volumetric strain at hollow sites (indicated by the red 

dashed circles). 
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FIG. 7. (Color online) The relationship between the dislocation core structure, the Peierls 

stress and the SFEs. The black, pink and blue points correspond to pure Mg, Mg-Al alloy and 

Mg-Zn alloy, respectively, and the red solid lines are calculated by the relationships Eq. 

(10)-(13), indicating that there are general exponential relationships between the dislocation 

core structure, the Peierls stress and the stable or unstable SFEs.  

 

 

 

 


