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Abstract 

Cluster expansions with concentration-independent interactions have been widely used to model 

the formation energies of alloys.  In the paper “Cluster expansion and the configurational theory 

of alloys”, this practice is called into question based on the argument that a truncated cluster 

expansion with concentration-independent interactions cannot be used to represent the formation 

energy of a random alloy if the formation energy is a nonlinear function of concentration.  To 

clarify the validity of using cluster expansions with concentration-independent interactions, I 

demonstrate that this argument is not necessarily correct. 

PACS codes:  61.50.Ah, 61.66.Dk, 81.30.Bx 

 

In the paper “Cluster expansion and the configurational theory of alloys” (reference [1]) the 

validity of using cluster expansions with concentration-independent interactions for modeling 

alloy formation energies is called into question.  In this Comment I will demonstrate that the 

central claim that leads to this conclusion, that a truncated cluster expansion with concentration-

independent interactions cannot be used to represent the formation energy of a random alloy if 

the energy is a nonlinear function of concentration, is not necessarily correct. 

Cluster expansions are generalized Ising models [2, 3] that have been widely used to model 

alloys and other materials with substitutional disorder [4].  For simplicity and clarity, throughout 



this Comment I will use the example of a binary A-B alloy, in which every site on a lattice can 

be occupied by either an A atom or a B atom, but it is straightforward to extend this analysis to 

the more general case.   

In a cluster expansion the structure of an A-B alloy is mapped to a set of site variables, s , 

where   1is = +  if an “A” atoms occupies the thi  site and 1is = −  if a “B” atoms occupies the thi  

site.  For an infinite lattice, a property of the material (per unit cell) can be expanded as a linear 

combination of functions of s : 

  ( ) ( )0F V V mα α α
α

ϕ= +∑s s  , (1) 

where ( )F s  is the material property, α  are sets (a.k.a orbits) of symmetrically equivalent 

clusters of sites, mα  is the number of clusters in set α  per unit cell, and Vα  are coefficients 

known as effective cluster interactions (ECIs).  A “cluster of sites” can be any subset of sites in 

the material.  The correlation function, ( )αϕ s , is defined as 
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where the sum is over all clusters in α  and Nα  is the number of clusters in α .  It is commonly 

assumed that the infinite sum in equation (1) can be truncated to a sum over a finite number of 

terms representing spatially compact clusters with little loss of accuracy.  The remaining ECIs of 

the cluster expansion are typically fit to a set of training data (often generated using density 

functional theory [5, 6]), and the resulting expansion can be used to very rapidly predict the 

value of ( )F s  for different arrangements of atoms on the lattice. 



In reference [1], in explaining the value of using concentration-dependent ECIs in a cluster 

expansion, the author provides the example of a hypothetical Hamiltonian for a binary alloy in 

which the energy is the square of the “concentration” ( x ) of the material, i.e. 

 ( ) 2E x=s . (3) 

Here “concentration” is defined as a function of the number of A atoms ( AN ) and the number of 

B atoms ( BN ) on the lattice: 
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It is correctly demonstrated that the cluster expansion for the Hamiltonian in equation (3) is a 

sum over an infinite number of symmetrically distinct, equally-weighted pair interactions and 

thus cannot be truncated to a sum over a finite number of terms.  From this result, the following 

conclusion is drawn:   

“…therefore, functions that have a nonlinear dependence on [x] cannot be described by a finite 

sum of Fourier transform or cluster coefficients. With regard to the energy of formation of binary 

alloys, such a nonlinear dependence in concentration is always present in the energy of the 

totally disordered or random configuration.  Thus, an important and dominant component of the 

energy of formation, namely, the energy of the random alloy cannot be expressed in the form of 

an Ising-type model with concentration-independent interactions. This fact brings into question 

the validity of essentially all applications of the cluster expansion to date…” 

This result is surprising and at apparent odds with the successful application of the cluster 

expansion with concentration-independent ECIs to a variety of problems in materials science 

(see refs [4, 7-29] for some examples).  This conflict can be resolved by recognizing that there is 

a subtle but important flaw in the above argument.  It is clearly demonstrated that the cluster 



expansion fails to converge in a case where the energies of every possible arrangement of atoms, 

even well-ordered ones, are a simple nonlinear function of concentration.  However this does not 

imply that localized cluster expansions fail to converge if the energy of a random alloy is a 

nonlinear function of concentration.   

To understand the difference between these two claims, it is useful to consider a cluster 

expansion of a random binary alloy on an infinite lattice.  For a random binary alloy in the limit 

of infinite crystal size, the average value of is  at each site is x .  Because the occupancies of 

different sites are not correlated in a random material, the value of the correlation function for an 

orbit of clusters of n  sites is [29, 30]  

 ( ) nxϕ =s  . (5) 

The value of the correlation function depends only on composition and is otherwise independent 

of s , the vector of site variables.  Thus, from equation (1), the cluster expansion of a property of 

a random binary alloy per unit cell is: 
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where “sites” is the set of all orbits of single-site clusters, “pairs” is the set of all orbits of 2-site 

clusters, “triples” is the set of all orbits of 3-site clusters, etc.  Equation (6) can be used to 

express the formation energy of a random alloy in the form of an Ising-type model with 

concentration-independent interactions.  Importantly, it demonstrates that this is possible even if 

the energy is a non-linear function of concentration, in contrast to the claim of reference [1].  If 

the energy of a random alloy is a linear function of concentration, then it can be expressed by a 

cluster expansion containing only single-site terms.  If it is a quadratic function of concentration, 

then it can be expressed by a cluster expansion using up to 2-site terms.  A cubic function can be 



expressed using a cluster expansion containing up to 3-site terms, and so on.  If the cluster 

expansion is truncated, then the sums in equation (6) only need to be evaluated over the clusters 

that are included in the expansion.  For example, a simple cluster expansion that only includes 

single-site, nearest-neighbor 2-site, and nearest-neighbor 3-site interactions is capable of 

representing the formation energy of a random alloy as a third-order polynomial of the 

concentration. 

A well-known example illustrating the validity of equation (6) is the regular solution model, 

which can be used to explain a variety of observations in real-world alloys [31].  In the regular 

solution model, enthalpy of formation for a random alloy is given by 

 ( )
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4
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where ω  is a constant and x  is as defined in equation (4).   Consistent with equation (6), the 

regular solution model can be expressed as a cluster expansion containing only pair interactions 

[31].  The general cluster expansion approach can be thought of as an extension of the regular 

solution model by allowing for the inclusion of additional pair and higher-order interactions. 

It is worth exploring why a truncated cluster expansion with concentration-independent ECIs 

can accurately reproduce the energy of a random alloy in the regular solution model (equation 

(7)), but not the Hamiltonian in equation (3).  The difference is that the Hamiltonian in equation  

(3) assigns the same energy to every possible arrangement of atoms at a given composition, even 

well-ordered ones.  This is a pathological example that is, for most systems, physically 

unrealistic.  In most real-world alloys there exist well-ordered ground states with lower energy 

than a random structure, an observation that is well-described by truncated cluster expansions 

with concentration-independent ECIs.  Because truncated cluster expansions typically capture 

the most significant contributions to the total energy, they are able to accurately represent the 



energies of well-ordered ground states, completely random structures, and intermediate 

structures that are only partially disordered. 

The analysis in this Comment does not necessarily contradict an important conclusion of 

reference [1], that the quality of a cluster expansion can be improved by using concentration-

dependent ECIs.  The truncation of a cluster expansion for a physically realistic Hamiltonian 

always introduces some non-zero error into the model.  (Nature may be near-sighted, but there is 

no distance in the material at which it is completely blind.)  In many cases, the most significant 

physical interactions are sufficiently localized to make this error acceptably small; this is why 

truncated cluster expansions with concentration-independent ECIs have been successfully used 

to model many systems.  However in some situations there might be a relatively large non-local 

contribution to the property of interest, and in some such cases the use of concentration-

dependent ECIs can significantly reduce the prediction error of a truncated cluster expansion 

[32]. Concentration-dependent ECIs may also be used to reduce the number of local clusters that 

must be included in a cluster expansion to reach a sufficient level of accuracy [33, 34].  On the 

other hand, the use of concentration-dependent ECIs cannot completely resolve the well-known 

inability of truncated cluster expansions to predict the energies of long-period coherent 

superlattices, due to the anisotropy of the elastic constants [35, 36]. 
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