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The pair density wave (PDW) superconducting state has been proposed to explain the layer-
decoupling effect observed in the La2−xBaxCuO4 compound at x = 1/8 (Phys. Rev. Lett. 99,
127003). In this state the superconducting order parameter is spatially modulated, in contrast
with the usual superconducting (SC) state where the order parameter is uniform. In this work,
we study the properties of the amplitude (Higgs) modes in a unidirectional PDW state. To this
end we consider a phenomenological model of PDW type states coupled to a Fermi surface of
fermionic quasiparticles. In contrast to conventional superconductors that have a single Higgs
mode, unidirectional PDW superconductors have two Higgs modes. While in the PDW state the
Fermi surface largely remains gapless, we find that the damping of the PDW Higgs modes into
fermionic quasiparticles requires exceeding an energy threshold. We show that this suppression of
damping in the PDW state is due to kinematics. As a result, only one of the two Higgs modes is
significantly damped. In addition, motivated by the experimental phase diagram, we discuss the
mixing of Higgs modes in the coexistence regime of the PDW and uniform SC states. These results
should be observable directly in a Raman spectroscopy, in momentum resolved electron energy loss
spectroscopy, and in resonant inelastic X-ray scattering, thus providing evidence of the PDW states.

I. INTRODUCTION

In the conventional theory of superconductivity by
Bardeen-Cooper-Schrieffer (BCS),1 the Cooper pairs
have a zero center of mass momentum and the super-
conducting (SC) order parameter is uniform in space.
In this paper we will examine the physical properties of
pair-density-wave (PDW) SC states, SC states whose or-
der parameters have finite momentum, which generically
are non-uniform. PDW states are phases in which super-
conducting and charge-density-wave (CDW) and/or spin-
density-wave (SDW) orders are intertwined.2–4 PDW
SC states have been proposed2 to explain many experi-
mental features of a family of cuprate high-temperature
superconductors (HTSC), notably La2−xBaxCuO4 near
doping x = 1/8 and the observed dynamical layer de-
coupling of transport properties5,6 (both at zero and
with finite magnetic fields), and the La2−xSrxCuO4

materials in the underdoped regime at large enough
magnetic fields.7–10 Evidence for PDW-type SC states
has also been found in the heavy-fermion material
CeRhIn5 at high magnetic fields.11 Charge and spin
stripe phases, both static or “fluctuating”, have been ob-
served experimentally in HTSC materials for quite some
time,12 including the more recently observed CDWs in
YBa2Cu3O6+x

13–22, in Bi2Sr2CaCu2O8+δ,
23–28, and in

HgBa2CuO4+δ.
29 Whether PDW type phases arise in

HTSC other than the lanthanum materials is presently
not known. However, the recent observation of a mod-
ulation of the superfluid density deep in the d-wave SC
phase of Bi2Sr2CaCu2O8+δ by scanned Josephson tun-
neling microscopy30 supports that possibility. The pur-
pose of this paper is to establish theoretically spectro-

scopic properties of PDW phases that (hopefully) will
help to identify these states.

Non-uniform SC states have a position-dependent com-
plex spin-singlet order parameter field ∆(r) of the form:

∆(r) = ∆0(r)+∆Q(r)eiQ·r +∆−Q(r)e−iQ·r + . . . (1.1)

For simplicity, here we consider only states with unidi-
rectional order with ordering wave vector Q. The gen-
eralization to more complex types of ordered patterns is
straightforward. SC states with an order parameter of
the form of Eq.(1.1) were first considered long ago by
Fulde and Ferrell31 (FF) and Larkin and Ovchinnikov32

(LO). These authors showed that in a BCS model with
a Zeeman coupling to a uniform external magnetic field
it is possible to have a SC state with Cooper pairs con-
densing with a finite center of mass momentum.

Here we will focus on SC states with a finite ordering
wave vector Q of the form of Eq.(1.1), arising in the
absence of an external magnetic field. Thus, although
the form of the order parameters is the same as in the
FF and LO states, the symmetry of the system is different
since time reversal invariance is not explicitly broken. In
Eq. (1.1) we denoted by ∆0(r) the order parameter for
an uniform SC, and ∆±Q(r) are the components close
to the ordering wave vector ±Q. A multi-component
order parameter of the form of Eq.(1.1) can describe the
following phases: a) a uniform SC state if ∆0 6= 0 and
∆±Q = 0, b) an FF-type state if ∆0 = ∆−Q = 0 but
∆Q 6= 0, c) a PDW SC state if ∆0 = 0 and |∆Q| =
|∆−Q| 6= 0, and d) a striped SC phase if ∆0 6= 0 and
|∆±Q| 6= 0. The PDW SC is a time-reversal invariant
LO state (with wave vector Q), and the FF state is a SC
(with wave vector Q) with a spontaneously broken time-
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reversal invariance. The PDW state has two complex
order parameters, ∆±Q(r), whereas the FF state has one
complex order parameter field ∆Q(r).

The recent interest in the PDW state was motivated as
a symmetry-based explanation2 of the dramatic layer de-
coupling effect discovered first in La2−xBaxCuO4

5,6 and
shortly thereafter in underdoped La-based cuprate SC
in magnetic fields.9,33,34 Since then there has been an
extensive effort on exploring the phenomenological con-
sequences of this state and of its possible microscopic ori-
gins. A Landau-Ginzburg theory of the PDW state gives
a compelling description of the observed phenomenology
of La2−xBaxCuO4,2,3,5,35 and of La2−xSrxCuO4 in mag-
netic fields as a consequence of the symmetry of this SC
state in a material with an LTT crystal structure. One
important feature of the PDW state is that it is natu-
rally intertwined with a charge ordered state with wave
vector K = 2Q (the same relation that is seen between
the CDW order and the SDW order in LBCO). Several
important predictions follow from the structure of the
Landau-Ginzburg theory.4,35,36 One of them is the ex-
istence of three types of topological excitations: 1) SC
vortices, 2) half-vortices bound to single dislocations of
the charge order, and 3) double dislocations of the charge
order. An extension of the Kosterlitz-Thouless theory to
a system with these topological excitations leads to the
prediction of a complex phase diagram which embodies
the notion of intertwined orders resulting from the pro-
liferation of the topological defects.36 An interesting re-
sult is the prediction of a possible charge 4e SC state
in the phase diagram and a hc/(4e) flux quantization in
the PDW state. An extension of the Landau-Ginzburg
theory with finite magnetic fields has shown that PDW
states may arise in the vortex cores of the mixed phase,37

as suggested by the observation of the layer-decoupling
effect9 in the same regime where earlier neutron scat-
tering experiments found a magnetic-field induced SDW
order.8

On the other hand, in spite of some significant recent
progress, the microscopic origin of PDW-type states re-
mains a challenging problem. At the root of these prob-
lems is the fact that SC states that condense at finite
wave vector cannot arise as weak-coupling instabilities
of a Fermi liquid and, hence, cannot be reliably de-
scribed by mean-field BCS theory. Thus, although mean-
field theory does allow for PDW states to occur,38–40

the required critical couplings are typically larger than
the bandwidth. Hence, these SC states can arise more
naturally in regimes of strong correlation. Indeed, an
infinite projected entangled paired states (iPEPS) sim-
ulation of the 2D t − J model finds that the uniform
d-wave SC is essentially degenerate with a PDW state
and with a striped SC over a wide range of dopings
and of the ratio t/J ,41 (and in variational Monte-Carlo
simulations.42,43) This result suggests that strongly cor-
related systems have a strong tendency to exhibit in-
tertwined orders and that the PDW state may occur
more broadly than was previously anticipated.4 How-

ever, a more recent density-matrix renormalization group
(DMRG) simulation of a (frustrated) t − J model has
not found evidence for such ground state degeneracy.44

PDW states have been proposed to be the ground state
of models of strongly correlated systems, based on the
concept of Ampérean pairing,45 as an explanation the
pseudo-gap features found in angle-resolved photoemis-
sion experiments,46 PDW states have been shown to
arise as instabilities of spin-triplet nematic Fermi fluids.47

PDW SC states have been shown to be the ground state
of 1D systems such as the Kondo-Heisenberg chain48 and
extended Hubbard-Heisenberg models of 2-leg ladders for
certain electronic densities,49 and in a quasi-1D model of
coupled 2-leg ladders.50 Using a different approach, us-
ing the spin-fermion model Wang and collaborators51–53

provided evidence for the coexistence of CDW and PDW
orders in underdoped cuprates.

In this paper we return to the problem of finding
additional experimentally testable tell-tale predictions
that may unambiguously identify the PDW SC state.
Although the recent detection of a real-space modula-
tion of the superfluid density in Bi2Sr2CaCu2O8+δ deep
in the d-wave SC state by scanned Josephson tunnel-
ing microscopy30 is an encouraging development, there
is so far no direct experimental evidence of the PDW
state. An observation of a half-vortex (or of the pre-
dicted anomalous flux quantization) would certainly give
strong indication of the observation of this state. Here
we will propose a different way to detect the PDW state.
One possibility is to study the signatures of the PDW in
Raman spectroscopy, in momentum-resolved electron en-
ergy loss spectroscopy, or in resonant inelastic X-ray scat-
tering. For conventional superconductors, at low temper-
atures the SC amplitude mode (also referred as Higgs
mode in similarity to the Higgs boson in high-energy
physics) can be present.54 For conventional superconduc-
tors (such as NbSe2) where the SC order parameter is
uniform, the experimental signatures agree with the the-
oretical results.55–59

In this paper we study the amplitude (Higgs modes)
fluctuations of the PDW order parameter. Since the
PDW state has two complex order parameters we ex-
pect to see two Higgs modes. In addition, in a phase in
which the uniform d-wave state and the PDW phase co-
exist (a “striped SC”) a new Higgs mode should appear.
Thus, the pattern of observed Higgs modes is a signa-
ture of these SC states. In addition, in contrast to the
usual uniform SC state, the FS in a PDW state is not
completely gapped and instead presents Fermi pockets
of Bogoliubov quasiparticles. On the other hand, since
the FS surface in the PDW state remains largely gap-
less, expecting more decay channels for the Higgs modes
one would naively expect that the damping of the Higgs
modes will be stronger than in the case of the uniform SC
state. However, we show below that this is not the case.
As will be discussed in the following sections, the pre-
dicted damping is expected to have a comparable thresh-
old for the PDW SC as for a uniform SC state.
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Since the PDW states cannot be studied within a weak
coupling theory, here will use instead the following ap-
proach. We will postulate the existence of a PDW SC
state (the same with the other states) described by a
quantum order parameter field ∆±Q(r, t). We will as-
sume that the quantum dynamics of this order parame-
ter has an effective Lagrangian (without damping) with
dynamic critical exponent z = 1. This quantum fluctuat-
ing field will be coupled to fermion bilinears for Cooper
pairs with the requisite center-of-mass momentum. To
simplify matters we will assume that the Fermi surface
of the fermions is circular (although it is straightforward
to generalize to other more physically-motivated cases).
In particular, no assumptions on nesting will be made.
Theories of this type are commonly used in studies of
quantum criticality in metals (see, e.g. Ref.[60]). The-
ories of this type have several parameters that describe
the normal and the condensed phases, as well as a stiff-
ness and a Yukawa coupling between the fermions and
the order parameter field. These details, and others, will
be specified in the subsequent sections.

Within this framework, we study the energies and
damping of the Higgs modes for a PDW state. To gain
some intuition of the problem, we first analyze the case
of an FF state (i.e., with only one ordering momentum
Q), and extend our approach to the PDW state. Our
key findings are as follows. The energies of the two

Higgs modes are split from 2|∆(0)
Q |, i.e., twice of value

of the mean-field gap. The magnitude of the splitting is
given by the bi-quadratic coupling of ∆±Q, and is gen-

erally comparable to ∆
(0)
Q . These two modes can decay

via scattering into bosonic collective Goldstone modes or
fermionic quasiparticles. However, by gauge invariance
the former process can only occur via a gradient cou-
pling interaction, and hence is weak. The major contri-
bution to the decay comes from scattering into fermionic
quasiparticles. We find that this process has a thresh-

old at approximately 2|∆(0)
Q |, and, as a result, only one

of the two Higgs modes is significantly damped, and the
other remains sharp. Since in cuprate systems, a uniform
(d-wave) SC component always exists at sufficiently low
temperatures, we also discuss the properties of the PDW
Higgs modes in the presence of a uniform SC order. In
particular, we computed their energies and damping in
two limiting cases when the mixing between PDW Higgs
modes and uniform SC Higgs mode is weak, and we find
that in both limits, it remains true that only one of the
two PDW Higgs mode is significantly damped.

Collective modes of FFLO-type phases have been stud-
ied theoretically in imbalanced Fermi gases (of interest in
ultra-cold atomic gases) in isotropic backgrounds.61,62 In
such systems there is a delicate interplay between rota-
tional and translational collective modes which was stud-
ied in detail in these references. Here, instead, we are
interested in PDW-type phases which are strongly cou-
pled to the underlying (square) lattice and orientational
collective modes are strongly gapped. Thus, unlike simi-

lar problems in cold-atomic gases, the orientation of the
ordering wave vector of the PDW (and FF) states is fixed
and does not fluctuate. This difference changes signifi-
cantly the physics of the collective modes, particularly
of the Goldstone modes. In addition, the PDW SC is
charged and couples to the electromagnetic field (through
the Higgs mechanism) and, as expected, the SC Gold-
stone mode is absent (‘Higgsed’). Also, the damping of
the collective modes was not considered in Refs.[61 and
62], while it plays a significant role in the systems that
we are interested in here.

This paper is organized as follows. In Sec. II as a
warm-up example we study first the simpler Fulde-Ferrell
state. We study in detail the amplitude fluctuations of
the order parameter (Higgs mode), computing its energy
and damping. In Sec. III we generalize the model of Sec.
II to two superconducting order parameters with Q and
−Q momenta, i.e., the PDW state. We show the appear-
ance of two Higgs modes, one of which is always damped.
In Sec. IV we study the fate of PDW Higgs modes in the
phase where the PDW state coexists with the usual uni-
form SC state. In Sec. V we present our conclusions
and final remarks. The details of some calculations are
presented in the Appendix.

II. HIGGS MODE IN A FULDE-FERREL STATE

As a warm-up, we first study the energy and damping
of the Higgs mode in a Fulde-Ferrell (FF) state, which
was theoretically proposed as a superconducting state
stabilized in the presence of a magnetic field. Such a
state is characterized by a single SC order parameter ∆Q

that carries a finite momentum Q. An FF state is very
similar to the PDW state, and the only difference for the
PDW state is that it has SC order parameters with both
±Q, and hence time-reversal is preserved. The analysis
of the Higgs mode in an FF state serves as a good start-
ing point for that in a PDW state. To our knowledge, the
Higgs mode for an FF state has not be analyzed before.

The order parameter couples with fermions via a bilin-
ear term

H∆Q
= ∆∗Qψk+ Q

2
ψ−k+ Q

2
+ c.c, (2.1)

where, for simplicity, we have kept an implicit spin struc-
ture on the fermions (which forms a singlet). Unlike the
usual superconducting order parameter, an FF order pa-
rameter does not gap the full FS, but rather renormal-
izes the original FS into pockets. In Fig. 1, we show
the simulation of the spectral function A(k, ω = 0) =
Im G(k, ω = 0) for a circular FS and an FF order pa-
rameter with Q = (0, π/2). On a pocket, the nature
of the quasiparticle excitations continuously varies from
electron-like to hole-like. In such a state, there are two
collective modes: one Goldstone mode corresponding to
the fluctuation of the phase of ∆Q (which gets “eaten” by
the electromagnetic field), and another Higgs mode cor-
responding to the fluctuation of the magnitude of ∆Q.
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FIG. 1. (Color online) The spectral function for the FF state
with Q = (0, π/2).

The two modes are decoupled, as protected by gauge in-
variance, and we only focus on the Higgs mode.

We begin with a generic form of the Lagrangian for the
FF state,

L =κ0|∂τ∆Q|2 + κ1|∇∆Q|2 + r|∆Q|2 + u|∆Q|4, (2.2)

where r < 0, τ is the imaginary time (for convenience
with signs) and the ∇ term captures the slow-varying
component of the FF order parameter. Minimizing

Eq.(2.2), we have ∆Q =
√
−r/2ueiφ ≡ ∆

(0)
Q eiφ, where

φ is an arbitrary phase. The Higgs mode corresponds
to the longitudinal fluctuation (i.e., with φ fixed) of ∆Q

around this value. Expanding the Lagrangian in terms

of δ∆Q ≡ ∆Q −∆
(0)
Q , we have

δL =(r − κ0ν
2 + κ1q

2 + 6u|∆(0)
Q |

2)|δ∆Q(q, ν)|2

=(4u|∆(0)
Q |

2 − κ0ν
2 + κ1q

2)|δ∆Q(q, ν)|2, (2.3)

where ν is the frequency and q is the momentum de-
viation from the mean-field value Q. We find that the
dispersion relation of the Higgs mode is given by

ν(q) =

√
4u|∆(0)

Q |2/κ0 + κ1q2/κ0. (2.4)

For optical probes such as Raman scattering, we are
primarily concerned with q = 0, and in this case ν =

2|∆(0)
Q |
√
u/κ0.

Furthermore, if we assume that the FF state comes
from a Fermi surface instability, the coefficients κ0 and u
can be computed via diagrams (see Fig. 2) by integrat-
ing out fermions. Note that this procedure is controlled
only at weak coupling as it neglects fluctuations in all
other channels. However, an FF state (and a PDW state
we shall consider in the next section) usually does not

Q

Q

Q

Q

Q

(a) (b)

FIG. 2. Feynman diagrams that are relevant to coefficients
κ0 [Panel (a)] and u [Panel (b)].

emerge as a weak coupling instability. With this impor-
tant caveat in mind, we proceed to at least get an esti-
mate of the Higgs energy. From the diagrams in Fig. 2,
we obtain

κ0 =
1

4

∂2

∂Ω2
m

[∫
k,ωm

1

i(ωm + Ωm)− ξk+Q

1

−iωm − ξ−k

]
Ωm=0

u =
1

4

∫
k,ωm

1

[iωm − ξk+Q]2
1

[−iωm − ξ−k]2
. (2.5)

where ωm is the Matsubara frequency corresponding to
imaginary time, and we have used the shorthand nota-
tion

∫
k,ωm

=
∫
ddkdω/(2π)d+1. Note that, in the spirit

of the Ginzburg-Landau expansion, we use the normal
state Green’s functions and order parameters appear as
vertices. After taking the derivative and integrating by
parts in the expression for κ0, we find that κ0 ≡ u for any
band structure ξk. The value of u can be estimated by
noticing that Eq.(2.5) does not contain any IR divergence
because of the double poles. As a result, by dimensional
analysis κ0 = u ∼ 1/(vFEF ) in 2D.

Thus, we find in this case that

ν = 2|∆(0)
Q |. (2.6)

The same result can be obtained from solving the self-
consistent equations (which technically speaking is also
only controlled in weak coupling) for the Higgs and Gold-
stone modes in the FF state, which we detail in Appendix
A.

Next we discuss the damping (decay) of the Higgs
mode. For a neutral superfluid, the Higgs mode can
weakly [via a gradient coupling, required by gauge invari-
ance (see, e.g., Refs. 63 and 64)] decay into two massless
Goldstone modes, and the scattering process is associ-
ated with the masses of the Higgs mode and the Gold-
stone mode by a Ward identity. However, in a supercon-
ductor, as we said, the Goldstone mode is absent, since
it gets absorbed (“eaten”) by the electromagnetic field,
making the latter gapped at the plasmon frequency via
the Anderson-Higgs mechanism. In this case, we will
only consider the damping of the Higgs mode via de-
caying into two fermionic quasiparticles. Such a process
can be evaluated by computing the imaginary part of the
particle-particle bubble, shown in Fig. 3. Again, this cal-
culation is strictly speaking only well-controlled at weak
coupling. In this diagram, the wavy lines represent the
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Higgs mode, i.e., the amplitude fluctuation around the
mean-field value of ∆Q, while the fermion double lines
are the ones renormalized by the mean field of ∆Q. This
is equivalent to summing up the full series of diagrams

like those in Fig. 2 while in each diagram keeping two ex-
ternal legs to be the Higgs mode and the rest as the mean
field. The fermionic Green’s function in the presence of
the mean field ∆Q is given by

G(k, ωm) =
∆

(0)
Q τ1 + (ξ−k+Q + ξk)τ3/2 + [iωm + (ξ−k+Q − ξk)/2]

(ωm − iξ−k+Q)(ωm + iξk) + |∆(0)
Q |2

, (2.7)

where τ ’s are Pauli matrices in the Nambu space, and as
before we have set both the mean-field order parameter

∆
(0)
Q and the Higgs mode δ∆Q as real (indicated by τ1).

The polarization operator is thus given by

K(Ωm) =− 1

2

∫
k,ωm

tr [G(k, ωm + Ωm)τ1G(k, ωm)τ1]

=

∫
k

1√
4|∆(0)

Q |2 + (ξk + ξ−k+Q)2

× (ξk + ξ−k+Q)2

Ω2
m + 4|∆(0)

Q |2 + (ξk + ξ−k+Q)2
(2.8)

The k integral is done in the range satisfying ξkξ−k+Q +

|∆(0)
Q |2 > 0. This is a result of the frequency integral we

performed in the second line, which requires the poles in
Ωm to be located in opposite half complex planes.

To compute the damping of the modes, we need to
evaluate the imaginary part of Eq. (2.8). Doing the
analytical continuation to real frequencies iΩm → ν+ iη,
the imaginary part of Eq.(2.8) reads:

π

∫
k

(ξk + ξ−k+Q)2δ
(
ν2 − 4|∆(0)

Q |2 − (ξk + ξ−k+Q)2
)

√
4|∆(0)

Q |2 + (ξk + ξ−k+Q)2

(2.9)

Defining ξ± = ξk ± ξ−k+Q we can write the previous
integral as:∫

dξ+dξ−
2

ξ2
+√

4|∆(0)
Q |2 + ξ2

+

δ
(
ν2 − 4|∆(0)

Q |
2 − ξ2

+

)
(2.10)

where integral over ξ− ranges from −|ν| to |ν| due to the

restriction ξkξ−k+Q + |∆(0)
Q |2 > 0. Finally we have:

Im(K) =

∫
dξ+dξ−

2

ξ2
+√

4|∆(0)
Q |2 + ξ2

+

δ
(
ν2 − 4|∆(0)

Q |
2 − ξ2

+

)

=
1

2

√
ν2 − 4|∆(0)

Q |2

|ν|

∫ |ν|
−|ν|

dξ− =

√
ν2 − 4|∆(0)

Q |2,

(2.11)

FIG. 3. Feynman diagrams for the damping of the Higgs
mode.

given that ν ≥ 2|∆(0)
Q |, and for ν ≤ 2|∆(0)

Q |, Im(K) = 0.

We can see from Eq.(2.6) and Eq.(2.11) that the Higgs
mode in the FF state is right at the threshold energy, and
therefore is not damped. This may sound trivial, since it
is the same as the damping of the Higgs mode for a uni-
form SC state. However, the important difference is that
in a uniform SC state the FS is completely gapped, while
in the FF state, there exist abundant gapless fermions
which form pockets. Surprisingly, we have found that
the existence of the gapless fermionic quasiparticles can-
not act as a decay channel for the Higgs mode. The main
reason is kinematics. As seen from the above calcula-
tions, the damping of the Higgs mode is tied to fermions
with momenta k and −k + Q. The total energy of two
quasiparticles made out of these two fermions are always
gapped, and, as the δ-function in Eq.(2.11) suggests, is

given by E(k) =
√

4|∆(0)
Q |2 + (ξk + ξ−k+Q)2. The two-

particle energy E can also be obtained by directly diago-

nalizing a 2-by-2 Hamiltonian H(k) = ∆
(0)
Q τ1 +(ξ−k+Q+

ξk)τ3/2+(ξ−k+Q− ξk)/2 and summing the absolute val-
ues of its two eigenvalues. Since E has a minimum value

of 2|∆(0)
Q |, the threshold frequency for damping is also

2|∆(0)
Q |, as we found in Eq.(2.11).

III. HIGGS MODES IN A
PAIR-DENSITY-WAVE STATE

We now analyze the Higgs modes in a PDW state. As
we said, the main difference with the FF state is that,
for a PDW state, SC order parameters with both wave
vectors ±Q are present. Like in the FF state, in the
PDW state the fermionic quasiparticles remain gapless
and form pockets. We show in Fig. 4 such pockets with
the simulation of the spectral function in a PDW state.
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FIG. 4. The spectral function for a pair-density-wave state
with wave vectors ±Q = ±(0, π/2). The pockets are clearly
visible.

As we did for the FF state, we consider a generic form
of the Lagrangian for the PDW state. In this case we
have two complex order parameters (∆Q,∆−Q) and up
to quartic order the Lagrangian is given by:

L =κ0

(
|∂τ∆Q|2 + |∂τ∆−Q|2

)
+ κ1

(
|∇∆Q|2 + |∇∆−Q|2

)
+ r
(
|∆Q|2 + |∆−Q|2

)
+ u

(
|∆Q|4 + |∆−Q|4

)
+ γ|∆Q|2|∆−Q|2 (3.1)

For r < 0, the system enters an ordered state. Whether
both ∆±Q have nonzero expectation values depends on
the interplay between u and γ. To see this, we neglect
the spatial and temporal dependence in Eq.(3.1):

U =r
(
|∆Q|2 + |∆−Q|2

)
+ u

(
|∆Q|2 + |∆−Q|2

)2
+ (γ − 2u)|∆Q|2|∆−Q|2. (3.2)

When minimizing this free energy, the first two terms fix
the mean-field value of |∆Q|2 + |∆−Q|2. For γ ≥ 2u, the
last term fixes one of ∆±Q to be zero, and the resulting
ground state is an FF state. For γ < 2u, the last term
favors that |∆Q| = |∆−Q| 6= 0, and the ground state is
a PDW state. Furthermore, when γ < −2u, the free en-
ergy Eq.(3.2) becomes unbounded as the quartic terms
can be made arbitrarily negative for a large ∆Q = ∆−Q.
In this case, to find the ground state, sixth order terms
need to be included, and the transition into a PDW state
becomes first order. For the following we only focus on
the case where −2u < γ < 2u. In this case the sad-
dle point solution for the Lagrangian defined above is

∆±Q =
√
−r/(2u+ γ)eiφ±Q ≡ ∆

(0)
±Qe

iφ±Q , where φ±Q
is an arbitrary phase and we have defined:

∆
(0)
Q = ∆

(0)
−Q =

√
−r

(2u+ γ)
(3.3)

The Higgs modes correspond to the longitudinal fluctu-
ations (i.e., with φ±Q fixed) of ∆±Q around the saddle
point value in Eq. (3.3). Expanding the Lagrangian in

terms of δ∆±Q ≡ ∆±Q −∆
(0)
±Q we have

δL =
(
r − κ0ν

2 + κ1|q|2
) (
δ∆2

Q + δ∆2
−Q
)

+ 6u
(

(∆
(0)
Q )2δ∆2

Q + (∆
(0)
−Q)2δ∆2

−Q
)

+ γ
(

(∆
(0)
Q )2δ∆2

−Q + (∆
(0)
−Q)2δ∆2

Q

)
+ 2γ

(
∆

(0)
Q ∆

(0)
−Qδ∆−Qδ∆Q + h.c

)
, (3.4)

where we have switched to momentum/frequency space.
Substituting the results in Eq. (3.3) we obtain,

δL =
(
δ∆Q δ∆−Q

)
M

(
δ∆Q

δ∆−Q

)
(3.5)

where the matrix M is given by:

M =
(
−κ0ν

2 + κ1|q|2 + 4u|∆(0)|2
)
σ0 + 2γ|∆(0)|2σ1

(3.6)

and we have used ∆
(0)
Q = ∆

(0)
−Q =

√
−r

(2u+γ) and σ0 and

σ1 are the identity and the first Pauli matrix. As a gen-
eralization of that in the FF state, the dispersion of the
Higgs modes in the PDW state is given by the vanishing
of the determinant of M , and

det(M) = 0 =⇒ ν1,2(q) =

√
(4u± 2γ)

κ0
|∆(0)

Q |2 + κ1q2

(3.7)
As in the FF state, we will focus on fluctuations with
q = 0. Using the condition −2u < γ < 2u, the energies
ν1,2(q = 0) are both real (since we have not yet consid-
ered the damping via decaying into fermion pairs).

In the case of weak coupling, the coefficients κ0, u
and γ can be computed via diagrams by integrating out
fermions. The coefficients κ0 and u are the same as those
in Eq. (2.5), so κ0 = u. The Higgs modes energies are
thus given by

ν1 = 2|∆(0)
Q |
√

1 +
γ

2u
and ν2 = 2|∆(0)

Q |
√

1− γ

2u
.

(3.8)
where the coefficient γ is given by the diagram in Fig. 5
which corresponds to the expression:

γ =
1

4

∫
k,ωm

1

[iωm − ξk+Q]

1

[iωm − ξk−Q]

1

[−iωm − ξ−k]2
.

(3.9)

The evaluation of this integral requires a detailed knowl-
edge of the band structure. Since the integral does not
contain any IR divergence, from dimensional analysis we
expect γ ∼ u ∼ 1/(vFEF ) in 2D.
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�⇤
Q

�⇤
�Q

��Q

FIG. 5. Feynman diagram for coefficient γ.

As usual, the energies of the Higgs modes acquire imag-
inary parts via decaying into bosonic collective modes or
fermionic quasiparticles. Unlike the FF state, in which
the Goldstone mode is absent, in a PDW state a gapless
Goldstone mode does exist due to its coupling to the elec-
tromagnetic field. This is because the PDW state breaks
a U(1) × U(1) symmetry, corresponding to the phases
of ∆±Q, and has two Goldstone modes (before coupling
to the electromagnetic field). The two Goldstone modes
are the common phase (which carries charge 2e) and the
relative phase (which is charge neutral) of ∆±Q. Once
coupled to the electromagnetic field, the Goldstone mode
corresponding to the common phase gets absorbed (“Hig-
gsed”) and gapped at the plasma frequency. The other
neutral mode, corresponding to the relative phase, is cou-
pled to the phase of the induced CDW order parameter
with K = 2Q. This Goldstone mode remains gapless
as long as K is incommensurate and the CDW does not
get locked to the lattice. In this case, the PDW Higgs
mode can decay into two such gapless Goldstone modes
with opposite momenta, but only weakly so, as we dis-
cussed for the FF state.63,64 As a result, the Higgs modes
have long, but finite, lifetimes, and their spectral peaks
get broadened but remain well-defined. The magnitude
of this small width can in principle be computed within
our PDW Lagrangian, but receives an O(1) correction
if the dynamics of the (induced) CDW is included. For
this reason we will not pursue this further, but we em-
phasize that this broadening from this process is small
in the sense that this decaying process is via a gradient
term. On the other hand, a more significant contribution
to the damping of Higgs modes comes from decaying into
a pair of fermionic quasiparticles.

To this end, we couple the order parameters ∆±Q with
the fermions. The bilinear Hamiltonian for such a cou-
pling is given by:

H∆Q
= ∆∗Qψk+ Q

2
ψ−k+ Q

2
+ ∆∗−Qψk−Q

2
ψ−k−Q

2
+ c.c,

(3.10)

The damping of the Higgs modes is then analyzed by
evaluating the imaginary part of the bubble diagram,
shown in Fig. 3, similar to that for the FF state. The only
difference is that the fermion double line is renormalized
by both ∆±Q. Its Hamiltonian H(k) and Green’s func-
tion G(ωm,k) has a much more complex matrix struc-
ture since fermions with momenta k, −k + Q, −k −Q,
k + 2Q, etc., are all coupled, and the size of the ma-
trix depends on when (and whether) this series closes

under k = k + 2π. The evaluation of such a diagram
is conceptually straightforward but technically tedious.
However, with what we learned for the FF state, insights
into the damping can be gained without carrying out the
integral. Just like Eq.(2.9), the damping of the PDW
Higgs mode (say with momentum Q) comes from an on-
shell process of the Higgs mode scattering into quasi-
particles made out of an electron and a hole with total
momentum Q. As before, the threshold frequency for
the damping is the minimum of the total energy of such
quasiparticles. For the FF state, the minimum is reached

at ξk = ξ−k+Q = 0, and is 2|∆(0)
Q |. For the PDW state

the threshold is found by diagonalizing the full matrix
Hamiltonian H(k) (instead of the 2-by-2 one for the FF
state). However, the minimum of the two-particle energy
is still found close to when ξk = ξ−k+Q = 0, and typical
energies of all other fermions involved are of O(EF ). For

∆
(0)
Q /EF � 1, we can approximately reduce H(k) to the

2-by-2 block, and E ≈ 2|∆(0)
Q |. This result is corrected

by high energy fermions via ∆
(0)
−Q, and perturbation the-

ory, the corrections are of O((∆
(0)
Q /EF )2). Thus, without

doing any calculation, we find the damping condition for
PDW Higgs mode to be

ν ≥ 2|∆(0)
Q | [1 +O(∆

(0)
Q /EF )]. (3.11)

Compared with the FF state, we see that the damping

threshold gets shifted from 2|∆(0)
Q |. In the regime ∆Q �

T where the Ginzburg-Landau Lagrangian is valid, the
splitting of the Higgs modes energies is larger than the
shift of the damping threshold. Therefore, only one of
the Higgs modes gets significantly damped. This is the
key result of the present work.

Upon further lowering T , the quartic form of the La-
grangian, Eq.(3.1), becomes invalid, and the relation be-
tween the Higgs energies and the damping threshold has
to be obtained from evaluating bubble diagrams with
fully dressed Green’s functions at finite temperatures,
which is beyond the scope of our work.

IV. PDW HIGGS MODES IN COEXISTENCE
WITH A UNIFORM SC ORDER

Experimentally, the putative PDW phase coexists with
a uniform d-wave superconducting (SC) phase at low
temperature in LBCO. It is thus interesting to consider
the fate of the PDW Higgs modes in the presence of a
uniform SC order. In such a coexistence phase, the PDW
Higgs modes generally become mixed with the SC Higgs
modes, which makes the problem in general complicated.
It is helpful to consider the limiting cases, where the uni-
form SC gap is either much smaller or much larger than
the PDW gap. In such situations, the mixing of PDW
Higgs modes with the SC one is negligible and we can
focus on the PDW sector. It is beyond the scope of this
work to treat the SC and PDW Higgs modes together
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and consider their mixings, which is again conceptually
straightforward but technically tedious.

The generic Lagrangian for the coexistence of the uni-
form SC and the PDW has been given in Ref. 4. For our
purposes, we focus on the PDW sector and simply replace
the SC order parameter with its mean-field value ∆0. For
the SC sector, there exists the usual Higgs mode57 with
frequency νSC = 2|∆0|. The Lagrangian for the PDW
sector is given by,

L =κ0

(
|∂τ∆Q|2 + |∂τ∆−Q|2

)
+ r

(
|∆Q|2 + |∆−Q|2

)
+ u

(
|∆Q|4 + |∆−Q|4

)
+ γ|∆Q|2|∆−Q|2

+ γ0|∆0|2
(
|∆Q|2 + |∆−Q|2

)
+ γ̃

[
(∆∗0)2∆Q∆−Q + c.c.

]
. (4.1)

where we have taken q = 0 as we did in the FF and
PDW states. In the coexistence phase, where ∆0 6= 0
and ∆±Q 6= 0 we can expand around the saddle point
solution. We see from the last term of Eq. (4.1) that
the presence of a uniform SC ∆0 further mixes and splits
the two Higgs modes. Indeed, following a similar proce-
dure to minimize the free energy and solve for the Higgs
frequencies we find,

ν1 = 2|∆(0)
Q |
√

1 +
γ

2u

ν2 = 2|∆(0)
Q |
√

1− γ

2u
+

γ̃|∆0|2

2u|∆(0)
Q |2

. (4.2)

The coefficient γ̃ is given by the diagram in Fig. 6, and
is expressed as

γ̃ =
1

2

∫
k,ωm

1

ω2
m + ξ2

k

1

ω2
m + ξ2

−k+Q

. (4.3)

Unlike Eqs. (2.5) and (3.9), the above integral is diver-
gent in the IR which is cut by temperature, and thus
γ̃ ∼ 1/(vFT ) in 2D. For T � EF , we have γ̃ � γ, u.

Comparing with Eq.(3.8) and Eq.(4.2) we see that the
existence of a uniform SC order parameter shifts the
lower Higgs frequency up while keeping the other one
unchanged. However, as we said, the above approach
treating the PDW Higgs modes separately from the SC
Higgs mode is only valid when their energies are not close,

i.e., either ∆0 � ∆
(0)
Q or ∆0 � ∆

(0)
Q .

As for the damping of the Higgs modes, when ∆0 �
∆

(0)
Q , the quasiparticle spectrum is dominated by the

PDW order parameter, and the damping threshold re-

mains approximately 2|∆(0)
Q |. As long as the shift in

Higgs energy caused by ∆0 is small, only one Higgs mode
of the two is damped, just like in the pure PDW state.

In the opposite limit ∆0 � ∆
(0)
Q , the relevant regions

that may cause the damping of the PDW Higgs modes
are gapped by uniform SC and the damping threshold be-

comes 2∆0. The Higgs energies in this limit are ν1 ∼ ∆
(0)
Q

�0

�⇤
Q

�⇤
�Q

�0

FIG. 6. Feynman diagram corresponding to the coefficient γ̃.

and ν2 ∼
√
γ̃/u∆0 ∼ ∆0

√
EF /T � ∆0. In this limit

only ν2 is damped. Therefore, in both limits of the co-
existence phase, it still holds true that one of the two
PDW Higgs modes is damped. We close this section by
noting that even though the d-wave SC order parameter
does not fully gap out the Fermi surface but rather leaves
Dirac nodal points with gapless Bogoliubov quasiparti-
cles, they, however, generically cannot damp the PDW
Higgs modes due to kinematics, just as in the case of the
gapless quasiparticles of a pure PDW state.

V. CONCLUDING REMARKS

In this work, we analyzed the properties of the Higgs
modes of a pair-density-wave state, a spatially modulated
superconducting state. We discussed the energy and
damping of the Higgs modes, both from a phenomeno-
logical Lagrangian for the order parameters and from a
self-interacting fermionic theory. We found that, even
though the FS remains largely gapless (and reorganizes
as pockets), the damping of Higgs mode requires exceed-

ing a threshold frequency, which is twice the gap (2|∆(0)
Q |)

due to kinematics. For the PDW state, we found that
there exist two Higgs modes, and due to their mixing,

the energies are split from 2|∆(0)
±Q|. As a result, only one

of the two Higgs modes is damped by the coupling to the
fermionic excitations. Motivated by the putative PDW
order in the cuprate superconductors, we also discussed
the fate of the PDW Higgs modes in the presence of a uni-
form SC order. We focused on two limiting cases where
the mixing between the PDW Higgs and the uniform SC
Higgs can be neglected, and analyzed the properties of
the PDW Higgs modes. We found that in the coexistence
phase with uniform SC, it remains that only one of the
two Higgs modes is significantly damped, at least in the
limit where the mixing between the PDW Higgs modes
and SC Higgs mode can be neglected.

The PDW order parameters, being in the particle-
particle channel, do not directly couple to the fermion
density. Just like the Higgs mode for the uniform su-
perconductor NbSe2, the PDW Higgs modes can be de-
tected via coupling to a CDW collective mode. Since the
PDW orders with momentum Q and hence breaks trans-
lational symmetry, a CDW order (with ordering wave
vector 2Q) is naturally induced in the PDW state.3,4 We
propose that these Higgs modes can be observed in Ra-
man spectroscopy, in momentum resolved electron energy
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loss spectroscopy, and in resonant inelastic X-ray scatter-
ing, which would provide evidence for the PDW order in
the cuprates.

We close with a few remarks on the role of disor-
der. In this paper we have only worked in the clean
(disorder-free) limit. By including weak disorder, mo-
mentum conservation is relaxed. Without the constraints
that momentum conservation implies for the kinematics,
we expect that the gapless quasiparticle excitations in
the pure PDW state or its coexistence state of d-wave
SC to give rise to damping for both of the PDW Higgs
modes. In particular, in the coexistence state, the density
of states at the d-wave Dirac point becomes nonzero65–67

with disorder, which further enhances damping. On the
other hand, disorder has much more serious effects on a
translation symmetry breaking state such as the PDW
superconductor. Indeed, in a layered material, such as
the cuprate superconductors, the expected PDW state
should be incommensurate. It is well known that in this
case any amount of disorder destroys true long range
order,68 leaving behind a state with short range order
and a vestigial (Ising) nematic orientational order.69 The
role of disorder in PDW superconductors and its con-
sequences has so far been studied at a qualitative level
(see Refs.[3 and 70]). An interesting possibility is that
the surviving vestigial order might be either nematic or
a charge 4e superconductor36 (or both). The behavior of
Higgs modes in conventional disordered superconductors
has been studied in recent work.71 An in-depth analysis
of the disorder effects on PDW Higgs modes remains an
interesting and important open question that we leave
for future studies.

Note: After this work was completed we became
aware of the recent paper by Boyack, Wu, Anderson and
Levin72 who studied the collective mode contributions to
the superfluid density in FF superconductors with a finite
pairing momentum Q. They found that, unlike in uni-
form superconductors, the contribution from the Higgs
mode in FF superconductors is important, and that it
destroys superfluidity well before the mean-field order
parameter vanishes.
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Appendix A: Alternative derivation for the Higgs
mode energy in the FF state

In this appendix we give the details for an alternative
derivation of the Higgs mode energy in the FF state. We
start from the polarization operator defined in Eq. (2.8):

K(Ωm) =− 1

2

∫
k,ωm

tr [G(k, ωm + Ωm)τ1G(k, ωm)τ1]

=

∫
k

1√
4|∆(0)

Q |2 + (ξk + ξ−k+Q)2

× (ξk + ξ−k+Q)2

(Ω2
m + 4|∆(0)

Q |2 + (ξk + ξ−k+Q)2)
(A1)

and also define the polarization operator for the Gold-
stone mode (the phase mode):

K̄(Ωm) =− 1

2

∫
k,ωm

tr [G(k, ωm + Ωm)τ2G(k, ωm)τ2]

=

∫
k

1√
4|∆(0)

Q |2 + (ξk + ξ−k+Q)2

×
(ξk + ξ−k+Q)2 + 4|∆(0)

Q |2

(Ω2
m + 4|∆(0)

Q |2 + (ξk + ξ−k+Q)2)
. (A2)

Note that the difference lies in the Nambu pseudospin
structure inside the trace.

Inside the FF state, the Lagrangian for the Gold-
stone mode can be obtained by performing an Hubbard-
Stratonovich transformation on the four-fermion attrac-
tive interaction V and integrating out fermions. Par-
ticularly, the mass for the Goldstone mode is given by
1/V − K̄(Ωm = 0), which should vanish by definition.
Therefore 1/V = K̄(Ωm = 0). On the other hand, the
quadratic kernel for the Higgs mode Lagrangian, by the
same procedure, is given by 1/V − K(Ωm), and setting
1/V −K(Ωm) = 0 gives the dispersion of the Higgs mode.

After the analytical continuation to real frequencies
(iΩm → ν + iη), we see from Eqs. (A1) and (A2) that
the Higgs mode energy is given by

0 =
1

V
−K(ν) = K(ν)− K̄(ν = 0)

=

∫
k

1√
4∆2 + (ξ1 + ξ2)2

[
(ξ1 + ξ2)2

−ν2 + 4∆2 + (ξ1 + ξ2)2
− 1

]
(A3)

where we used the shorthand ξ1 = ξk, ξ2 = ξ−k+Q and

∆ = |∆(0)
Q |. From Eq. (A3) we can read off that ν = 2∆,

which is the same result in Eq. (2.6).
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A. M. Oleś, Phys. Rev. B 76, 140505 (2007).

44 J. F. Dodaro, H.-C. Jiang, and S. A. Kivelson, Phys. Rev.
B. 95, 155116 (2017).

45 P. A. Lee, Phys. Rev. X 4, 031017 (2014).
46 R.-H. He, M. Hashimoto, H. Karapetyan, J. Koralek,

J. Hinton, J. Testaud, V. Nathan, Y. Yoshida, H. Yao,
K. Tanaka, et al., Science 331, 1579 (2011).

47 R. Soto-Garrido and E. Fradkin, Phys. Rev. B 89, 165126
(2014).

48 E. Berg, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett.
105, 146403 (2010).

49 A. Jaefari and E. Fradkin, Phys. Rev. B 85, 035104 (2012).
50 R. Soto-Garrido, G. Y. Cho, and E. Fradkin, Phys. Rev.



11

B 91, 195102 (2015).
51 Y. Wang and A. Chubukov, Phys. Rev. B 90, 035149

(2014).
52 Y. Wang, D. F. Agterberg, and A. Chubukov, Phys. Rev.

B 91, 115103 (2015).
53 Y. Wang, D. F. Agterberg, and A. Chubukov, Phys. Rev.

Lett. 114, 197001 (2015).
54 D. Pekker and C. Varma, Annu. Rev. Conden. Ma. P. 6,

269 (2015).
55 R. Sooryakumar and M. V. Klein, Phys. Rev. Lett. 45, 660

(1980).
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