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In this paper we demonstrate the necessity of including the generally omitted collective mode
contributions in calculations of the Meissner effect for non-uniform superconductors. We consider
superconducting pairing with non-zero center of mass momentum, as is possibly relevant to high
transition temperature cuprates, cold atoms, and color superconductors in quantum chromodynam-
ics. For the concrete example of the Fulde-Ferrell phase we present a quantitative calculation of the
superfluid density, showing the collective mode contributions are not only appreciable but that they
derive from the amplitude mode of the order parameter. This latter mode is generally viewed as
being invisible in conventional superconductors. However, our analysis shows that it is extremely
important in pair-density wave type superconductors, where it destroys superfluidity well before the

mean-field order parameter vanishes.

I. INTRODUCTION

There is a large amount of interest in amplitude modes
in superconductors in large part stimulated by the excite-
ment surrounding the discovery of the Higgs boson [1].
Nevertheless, there is a widespread belief that observing
these modes, directly or indirectly, is particularly chal-
lenging [2, 3]. As a result they only infrequently appear
in condensed matter physics [4-10]. In this paper we
show that in a class of very topical superconductors, col-
lective mode effects associated with the amplitude of the
order parameter play an essential role in the most funda-
mental quantity, the superfluid density tensor n%. The
superconductors in question are those which have a “pair-
density wave” order parameter. These are a large class of
theoretical models (awaiting firm experimental confirma-
tion) associated with pairing of electrons at non-zero cen-
ter of mass momentum Q. Much attention has focused on
these systems from the perspective of high temperature
superconductivity (in condensed matter physics [11, 12])
and color superconductors (in particle physics [13]).

For this class of superfluids, the collective mode con-
tribution to the superfluid density has been largely ig-
nored in previous literature [14, 15], with the exception
of the original calculation of the electromagnetic current
by Larkin and Ovchinnikov [16]. Discussion of this effect
can also be found in Ref. [17] for a different situation in-
volving non s-wave superconductors [18]. In both cases,
however, the size of the collective mode contributions was
not accessible.

We provide two different, but related, derivations of
the superfluid density for the tractable case of the Fulde-
Ferrell (FF) superfluid [19]. Importantly, this enables us
to compute numerical values for the sizeable collective
mode effects in n?/. The first method is based on us-
ing the Ward-Takahashi identity in the Kubo formalism,
while the second method is based on studying the equi-
librium current. In both approaches particle number is
manifestly conserved and gauge invariance is maintained.
Through these approaches we find that amplitude collec-

tive modes drive the superfluid density (along the direc-
tion parallel to Q) to zero at temperatures lower than
those associated with the vanishing of the mean-field or-
der parameter.

Before giving these more complete calculations, here
we provide a general argument for the necessity of in-
cluding collective mode effects in non-uniform supercon-
ductors. The origin of collective mode contributions to
the Meissner effect [16, 17] is due to the fact that, in the
presence of a vector potential A¥, the order parameter A
will depend on A* through the gap (saddle-point) equa-
tion [9, 20]. A series expansion of A[A], in powers of A*,
is thus

AlA] = AD[A = 0] + AD[A] + O(4?). (1.1)
Here A is the order parameter in the absence of A*
and AM is a correction linear in A*. It is this term
which gives rise to the rarely discussed collective mode
contributions to the superfluid density. Since AW is a
scalar quantity, it can depend on only scalar, linear func-
tionals of A*. Therefore, in a uniform superfluid A® is
a functional of only V - A [21]. Thus, if one chooses the
(“transverse”) gauge such that V- A = 0, the collective
mode contribution A®M) vanishes identically [20].

However, for a non-uniform system there are other
scalar, linear functionals of A*. In particular, for a
pair-density wave superfluid with pairing vector Q, A(!)
can depend on other scalar, linear quantities such as
A - Q. Hence, for this non-uniform superfluid, even in
the gauge where V- A = 0, A may still be non-zero.
In principle, this allows for a collective mode contribu-
tion to the superfluid density. [For future use in the
discussion below, we define A = [dq 1I*(q)A, and
I*(q) = (0A[A]/0AL(q))] 4—o] This argument empha-
sizes that, for any non-uniform superfluid with a pairing
vector present, one must consider collective mode contri-
butions. In particular, it also applies to a system where
Q is a priori fixed, such as in a crystalline superconduc-
tor, where the rotational symmetry is explicitly, and not
spontaneously, broken. Here one would still need to con-



sider the resulting collective mode contributions to the
superfluid density arising from having a finite Q.

For concreteness we will illustrate these collective
mode effects in the FF superfluid, where pairing at fi-
nite Q arises due to a spin (or mass) imbalance causing a
Fermi surface mismatch between up and down spins. For
simplicity we take the FF pairing vector as Q = Q2. In
the FF phase specifically, both a continuous rotational
and global gauge symmetry are spontaneously broken.
Similarly discrete time-reversal symmetry is also spon-
taneously broken. However, gauge invariant observables
are translationally invariant [22]. Due to the underlying
rotational symmetry of the FF state, the superfluid den-
sity vanishes along the directions transverse to Q. Hence
n7* =nY¥¥ = 0, and thus only n?? needs to be considered
[22].

As has been posited [19], and will be shown in more
detail below, the superfluid density for the FF superfluid

can be written as
1 /nZ*
2\m )’

where j%(Q) is the equilibrium current. It is useful to
express Eq. (1.2) in terms of the mean-field thermody-
namic potential Q, where j*(Q) = 2 (9Q/9Q)|, ;-
The saddle-point condition which determines the mean-
field value of @ is then j#(Q) = 0. Similarly, the saddle-
point condition which determines the mean-field value of
A is (8Q/8A)\H’h’Q = 0. In terms of Q, Eq. (1.2) be-
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where both saddle-point equations, and the symmetry of
mixed partial derivatives has been used.

Equation (1.3) indicates that there are two contribu-
tions to the superfluid density. The first is the conven-
tional “bubble” term (which is usually assumed to be
sufficient) and the second represents the collective mode
contribution required for gauge invariance. Importantly,
a stability inequality for the FF superfluid based on
the thermodynamic potential curvature [23-25] is equiv-
alent to requiring that both nZ?, as derived above, and
(0%Q/0|A]?) ‘u h.q are positive. Tt follows from the lat-
ter condition that for a stable FF superfluid the collective
mode contribution always acts to reduce the overall size
of the superfluid density. These arguments, however, still
do not indicate how large the magnitude of this effect is.

In this paper the collective-mode contribution will be
found to be appreciable; this underlines the inadequacy of
including only the so-called bubble term [14, 15]. Equally
important is the nature of these collective mode correc-
tions. For the FF superfluid we will show that they derive
from the amplitude mode of the order parameter. This
mode is thought to be rather invisible in conventional
superconductors [2]. Nevertheless we demonstrate how

it arises to ensure the electromagnetic (EM) response is
manifestly gauge invariant. Readers who wish to quickly
take away the main message of this paper can jump to
the numerical results.

II. THEORETICAL FORMALISM
A. Mean-field results

The FF mean-field Hamiltonian, in the ] =
(Ci 1+ cjr_k+Q7¢) basis, is Hpp = >, U1 Hprtx, where [26]

’HFFZ( )

Here an irrelevant constant — ), k—q,, has been ig-
nored. The notation is as follows: the dispersion re-
lation is defined by &k, = k?/2m — u,, where j, is
the fermionic chemical potential for a species with spin
o =1,], m is the fermion mass, and A denotes an s-
wave pairing gap. It is useful to define p = % (g + pey)
and h = 1 (u4 — py). The dispersion relations are then
written compactly as &kq = (1/2m)[k?* + (Q/2)?] — p,
ERq = &iq +IAP, hkq = h—k-Q/2m. Throughout the
paper h=kp =c=1.

The inverse Nambu Green’s function is then G—! =
iw, — Hpr, where iw, is a fermionic Matsubara fre-
quency. The inverse bare Green’s function is defined
by Ga},(k) = iw, — €. Thus, the off diagonal Gorkov
function is Gi2(k) = AGo  (—k + Q)G¢(k), where the
(spin-up) Green’s function is Gy(k) = Gi1(k). Note
that Greek indices denote spacetime coordinates: z# =
(t,z,y, z); whereas Roman indices denote spatial coordi-
nates: ' = (x,9,2). Here Q* = (0,Q). Explicit cal-
culation then gives the full Green’s function which has
appeared in the literature [14, 26]. Indeed, from Dyson’s
equation, G, (k) = Gg (k) — S, (k), the self energy is
Y, (k) = —|A|*’Go 5 (—k + Q). [For convenience later, we

define K = k" + Q" /2.]

ISR -A

by (2.1)

B. Electromagnetic response and Ward-Takahashi
identity

We now study the EM response of the FF super-
fluid and consider the superfluid density for the case
of a neutral superfluid. Our observation that collective
modes are necessary to ensure a gauge invariant super-
fluid density calculation should apply to a charged sys-
tem as well, but we avoid here the complexities associ-
ated with the Coulomb interaction [27]. We apply linear
response theory, where a fictitious vector potential A*
is applied to the system. The resulting EM current is
7*(q) = K" (q)A,(q), where K"¥(q) is the EM response
kernel. The response kernel can also be expressed as
KM (q) = P*™(q) + (n/m)é*” (1 — 0,,0) (with p and v



not summed over) where the EM response functions are
denoted by P*¥(g). In the Kubo formalism the EM re-
sponse functions for a superfluid are

P(q) =Y Golks)Uh (ks ko) Go(k-)vy (k- k),
o k

(2.2)
where ¢* = (iQ,,q), with i€, a bosonic Matsubara
frequency.

The important quantity T'*(ky,k_) denotes the full
EM vertex, where the incoming (outgoing) momentum is
ky (k_), with kY = k* £ ¢*/2 . To determine the full
vertex I'* (k4 , k_), we apply the Ward-Takahashi identity
(WTI) [28]:

Gk ho) = G (ky) — G5 (k)
k)

= qu'yg(k% + s (k) = Eg(ky).
(2.3)

This is an exact relation in quantum field theory which
relates the single particle Green’s function to the full ver-
tex. It is a gauge invariant statement and here it reflects
the underlying global U(1) gauge symmetry. Similarly,
the bare WTL, g,y (ki k-) = Gy o (ky) — Gy o(k-), is
satisfied by the bare vertex v#(ky,k_) = (1,k/m).

Satisfying the WTI ensures conservation of particle
number (or charge in the charged superfluid case). The
particle number can be written in terms of the single
particle Green’s function as n = > >, G(k), where
Y. =871 > iw, 21 With 3 being inverse temperature.
In the limit ¢* — 0, the WTTI reduces to the Ward iden-
tity: Th(k, k) = ~v#(k, k) — (08,(k)/0k,). The second
term in this equation diagrammatically represents a ver-
tex insertion in the self energy. This relation then impor-
tantly shows that the full vertex can be obtained by per-
forming all possible vertex insertions in the full Green’s
function [28, 29].

For the FF self energy given in Sec. (ITA), there are
three possible positions where the bare vertex can be in-
serted: the bare Green’s function and the two gaps A
and A*. Inserting the bare vertex into the position of
the two gaps leads to the collective mode vertices, dis-
cussed in more detail in the next section, which are of
crucial importance to ensure gauge invariance.

C. Collective mode vertices

This section discusses the properties of the collec-
tive mode vertices and how they contribute to the su-
perfluid density. By inserting the bare vertex in the
two gaps (A, A*) one obtains the collective mode ver-
tices I1*(q) and II#(q), respectively. The Supplemen-
tal Material [30] presents details showing how II*(q)
and I1#(q) are obtained by performing these vertex in-
sertions in the gap equation, which can be written as
éé}g = A2, 2k Goy(=k + Q)Gr(k) = 32, 22y Gra(k)

Due to the spontaneously broken global U(1) gauge
symmetry, the gaps A, A* are themselves not gauge in-
variant. There are, however, two natural gauge invariant
combinations of the collective mode vertices; these ap-
pear as (A*H“ — AI:[“) and (A*H” + Aﬁ“). In order to
associate these combinations with the appropriate phase
or amplitude modes of the order parameter, we contract
these quantities with g,. In the Supplemental Material
[30] it is proved that, for g, # 0, the collective mode
vertices obey ¢,I1"(q) = 2A,¢q,I1*(q) = —2A*. These
relations then lead to

qu (A'TIM — ATI?) = 4]A)?,
g (AT + ATI?) = 0.

(2.4)
(2.5)

The right hand sides of these expressions are gauge in-
variant quantities, and thus so too are the expressions in
parentheses, as claimed.

The limit g, — 0 of these contractions is of particu-
lar interest. For Eq. (2.4), the right hand side is finite,
non-zero, and independent of g,; this applies to the left
hand side as well. As g, — 0, it follows that the quan-
tity in parentheses must become singular in this limit.
This indicates that it has a zero momentum pole; we can
conclude that this is to be associated with the Nambu-
Goldstone boson that restores the global U(1) gauge sym-
metry. Since the phase mode of the order parameter is
responsible for restoring gauge invariance, it follows that
(A*H“ — AI:I“) corresponds to the phase mode of the
order parameter.

On the other hand, for Eq. (2.5), the right hand side is
zero and independent of q,; this applies to the left hand
side as well. As g, — 0, it follows that the quantity in
parentheses must be non-singular in this limit. This in-
dicates the quantity in parentheses does not have a zero
momentum pole. It follows that (A*H“ + Al:[“) corre-
sponds to the amplitude mode of the order parameter.

The next section studies the superfluid density where
we find that (A*HZ + AI:IZ) and not (A*Hz — AI:IZ) con-
tributes. Thus the phase mode, while contained within
the individual II* and II* expressions, does not directly
contribute to the superfluid density. [31]

We end by noting that A is a function of the FF pair-
ing vector @, and by differentiating the gap equation
with respect to @ (at fixed pu and h) one can obtain
(8|A|2/8Q)’# L+ An explicit calculation then gives the
following important identity, for A # 0, which relates in
a more transparent way to the amplitude mode:

AMIZ(0)+AI* (0) = P§ /My = 2 (9|A/0Q)| , . (2.6)

w,h
The order of limits in which frequency and momentum
are taken to zero is important; frequency €2, and ¢* are
set to zero, and then ¢”,¢¥ — 0. In the following sec-
tion this will be clarified. The quantities FP§ and M, are
generalized three-particle and four-particle Green’s func-
tions, respectively, which are defined in the next section.
The generalized Green’s functions in Eq. (2.6) also ap-
pear in a similar form in the work of Larkin and Ovchin-
nikov [16] and Millis [17]. Finally, note that when Q@ = 0,



P§ =0, and thus this collective mode term does not con-
tribute for a homogeneous superfluid. The size of the am-
plitude mode contribution is thus set (in part) by Q/kp.
In principle this allows for a significant collective mode
contribution, as will be discussed further in Sec. (IV).

III. SUPERFLUID DENSITY
A. Superfluid density derivation via Kubo formula

In this section we use the Kubo formula and Eq. (2.2)
to derive the superfluid density tensor:

(nd fm) =

Note that, the order of limits in the above expression is
crucial. To compute n¥/, first set w = ¢ = ¢/ = 0, then
take ¢* — 0, where k # 4,j. The collective modes are
contained within the second term.

Evaluating this expression we find

(%) - Z'A'2 (G - mi) (& p i)

M

(n/m)§¥ + P¥(w =0,q — 0). (3.1)

(3.2)

where we define Xy = D !sinh(8Fkq), and
Y« = D72(1 + cosh(BExq) cosh(Bhkq)) with D =
cosh(8Exq) + cosh(Shikq).

The first term in Eq. (3.2) represents the usual [14, 15]
“bubble” contribution, due to bubble terms in both
(n/m)d% and P%(0). The second term represents the
collective mode contribution arising solely from P%(0).
As an important check, we note that Eq. (3.2) is iden-
tical to the superfluid density obtained from Eq. (1.2)
and Eq. (1.3). Explicit calculation shows that the bub-
ble term is 4 (829/8Q2)|u,h,m\ and (9%Q/0|A|0Q) =
—|A|P§, (5‘29/6|A|2)}”)h7Q = 4]A|* My, where the mean-
field thermodynamic potential [14, 25] is Q@ = |A[*/g —
B! 3ok {log[2 cosh(BEkq) + 2 cosh(Bhiq)] — Békq}-

Note that the collective mode contribution is only
along the direction of the FF pairing vector, in agreement
with the general arguments presented earlier. Direct cal-
culation shows that n¥ is diagonal, with n%® = n%¥ =0,
as required by symmetry.

B. Derivation via equilibrium current

A verification of this Kubo analysis and the collec-
tive mode contributions can be made in a slightly sim-
pler fashion. Here we derive the superfluid density in
the direction along the FF pairing vector using only the
equilibrium current and its partial derivative with re-
spect to . The equilibrium current in the z-direction is
J3(Q) = >, > (k7 /m)Gs(k). This expression follows

4

from j* = 2 (8Q/GQ)|#7h’|A|. By symmetry the mean-
field currents in the other directions vanish: j* = j¥ = 0.

In what follows it will be important to fix u and
h to their mean-field values, and to consider the Q-
dependence of only the gap: A(Q). The following
lemma, whose proof is given in the Supplemental Mate-

rial [30] , will also be required: (9G5! (ky)/0Q) .
1,

—(1/2)T%(k4,k4). The partial derivative of j* can
now be computed. Using the number equation n =
Y02 r Go(k), along with the aforementioned lemma,
the partial derivative of j* is then (05°/0Q)I,

(n/2m) = ¥, Sk /m)GE(R) (06 (Ra)/0Q)| | =

(n%%/2m). Note that the above expression, which r,epro-
duces Eq. (1.2) and Eq. (3.2), includes collective mode

contributions arising through I'*(ky, k4).

IV. NUMERICAL RESULTS

We now illustrate numerically the regime of stability of
the FF phase. First, we require that the superfluid den-
sity nZ* as computed in the theory outlined above is pos-
itive and secondly that the state of interest is a minimum
of the thermodynamic potential. This conditions corre-
spond to: n%* > 0 and (829/8|A|2)’# no > 0. Although
derived differently, these criteria coincide with results in
the recent literature [25]. Importantly, they are a useful
way to characterize the various temperature regimes in
mean-field FF superfluid systems. We associate the crit-
ical temperature TI""" with the point at which either one
of these stability conditions fails. Additionally, we asso-
ciate the temperature T as the temperature at which
the FF pairing vector ) vanishes. Finally, TA represents
the temperature at which the mean field pairing gap van-
ishes.

For the specific region of the phase diagram studied,
our numerical calculations show that there are three tem-
perature regimes of interest: (i) 0 < T < TFF is the
regime where a stable FF phase exists: both nZ* > 0
and (629/8|A|2)]MQ > 0. (i) TFF < T < Tg is the
regime where an unstable FF phase exists. Either one or
the other (or both) of the stability conditions fails; that
is n** < 0 or (829/6|A|2)}M o < 0. (i) To < T < Ta
is the regime where A # 0, but @ = 0. This corresponds
to the Sarma phase. Since @ = 0 in this regime, there is
no collective mode contribution to the superfluid density,
and moreover nZ* = n¥* =nd¥ > 0.

Figure 1 encapsulates the important point that col-
lective modes of the order parameter will substantially
reduce the region where there is a stable FF phase. In
Fig. 1(a) we plot the superfluid density with collective
mode effects (blue curve) as a function of temperature for
the case of polarization p = 0.75 and interaction strength
(in terms of the scattering amplitude) 1/kpa = 0. Sim-
ilarly, Fig. 1(b) plots the superfluid density with collec-



(a) FF Superfluid density for 1/kra =0 and p = 0.75
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FIG. 1. Superfluid density as a function of temperature for the
FF phase (a) at unitarity (1/kra = 0) and with polarization
p = (ny —ny)/n set to p=0.75, (b) in the near-BCS regime
(1/kra = —0.5) with polarization p = 0.4. The blue curves
are the full expressions for nZ*/n given in Eq. (3.2), while
the red curves are the bubble contribution alone, given in the
first line of Eq. (3.2). The green curves are n”/n; in this
case there are no collective modes and so the bubble and full
expressions are equivalent.

tive mode effects (blue curve) for a more BCS-like case
p = 0.4 and 1/kpa = —0.5. The red curves in Fig. (1)
denote the bubble contribution to the superfluid density
which is historically [14, 15] all that is considered. The
green curves plot the transverse superfluid density. As
required by symmetry, nf” = 0 for all T' < Tg for which
the FF pairing vector () persists.

In Fig. 1(a) we identify TF'F/Tr ~ 0.06 — 0.065, in
rough agreement with Ref. [25]. Additionally, Tg ~
0.2TF, and Ta ~ 0.24TF (not shown in Fig. 1). Even
though this plot is in the strong interaction regime, for
quantitative purposes, strict mean-field parameters are
used in this plot. It should be noted that the effects of
the collective modes are quite appreciable in this plot.
This follows because the bubble term is proportional to

(A/Er)?, whereas the collective mode term is propor-
tional to (Q/kr)?. (Note though the integrands in both
expressions are somewhat different.) Near zero temper-
ature, with p = 0.75 and 1/kpa = 0, A/Ep ~ 0.16
whereas Q/kp ~ 0.71. Thus qualitatively the collective
mode contribution is expected to be an important con-
tribution in this regime.

One can determine from Fig. 1(b) that the highest tem-
perature for which the FF superfluid is stable is given
by TFF /Tr ~ 0.09 — 0.095, (in rough agreement with
Ref. [24]). The other temperature scales of interest are
found to roughly be Tg ~ 0.137F, and Tao ~ 0.17TF.
In this plot the effects of the collective modes are not
as appreciable. Near zero temperature, with p = 0.4
and 1/kpa = —0.5, we find A/Er ~ 0.13 whereas
Q/kr ~ 0.38, so that the collective mode contribution
is still expected to be appreciable, albeit not as large as
exhibited in Fig. 1(a).

For numerical checks on our results we have verified
that, in the stable regime, our mean-field solutions are
global minima of the thermodynamic potential [32] and
that the blue curve computed via Eq. (3.2) is numerically
equivalent to that computed via the equilibrium current
using Eq. (1.2).

V. CONCLUSIONS

In this paper we have computed the superfluid density
tensor n% for the FF superfluid phase. Importantly, we
have shown (using multiple, distinct theoretical frame-
works) that widely neglected collective (amplitude) mode
contributions cannot be ignored. In general they will af-
fect ni for the broad class of Q # 0 pair-density wave
superconductors. Indeed, while Fig. (1) was obtained us-
ing the specific microscopic approach of Fulde and Fer-
rell, we believe its qualitative features (except for the
behavior of the transverse superfluid density) are more
generic. It is useful to note that in the original paper
[16] by Larkin and Ovchinnikov the authors addressed
the superfluid density of pair density wave phases; how-
ever, they used a small A expansion, necessarily valid
near Ta. Note that our numerical results show this may
be well removed from the stable FF regime.

Given the intense interest in condensed matter obser-
vations of a Higgs mode, one can inquire as to what is
the relation between the amplitude mode evident in pair-
density wave superconductors and the Higgs mode in con-
densed matter [4-6, 810, 33]. The Higgs mechanism
is associated with a charged system, where the Nambu-
Goldstone mode is gapped out due to the Englert-Brout-
Higgs-Guralnik-Hagen-Kibble mechanism. In the present
theory we argue that the general observation that am-
plitude modes affect the superfluid density applies, even
though we have implemented the calculations for the neu-
tral case. Moreover, in the present theory we incorporate
the effects of the amplitude mode only at zero frequency
and zero wave number so that the amplitude mode is



not observed as a collective resonance. Nevertheless, we
have ascertained in this paper that the existence of an
amplitude mode has important consequences for readily
accessible physical quantities in pair-density wave super-
conductors.
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Note added.— After this work was completed a paper

addressing the ‘Higgs’ mode in FF and other pair den-
sity wave superfluids appeared [33]. However, as in the
present work, the authors focused on neutral systems.
Their work addresses the finite frequency behavior of the
amplitude mode in these systems. In our formalism, this
mode can be obtained from the finite frequency branch
cut in IT#, II*, which can be found from the analytic ex-
pressions given for these quantities in the Supplemental
Material [30] .
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