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We use general hydrodynamic equations to determine the long-wavelength spin excitations in
isotropic antiferromagnets in the presence of a homogeneous magnetization. The latter may be
induced, such as in antiferromagnets in an external magnetic field, or spontaneous, such as in fer-
rimagnetic or canted phases that are characterized by the coexistence of antiferromagnetic and
ferromagnetic order. Depending on the physical situation, we find propagating spin waves that are
gapped in some cases and gapless in others, diffusive modes, or relaxational modes. The excita-
tion spectra turn out to be qualitatively different depending on whether or not the homogeneous
magnetization is a conserved quantity. The results lay the foundation for a description of a variety
of quantum phase transitions, including the transition from a ferromagnetic metal to an antiferro-
magnetic one, and the spin-flop transitions that are observed in some antiferromagnets. They also
are crucial for incorporating weak-localization and Altshuler-Aronov effects into the descriptions of
quantum phases in both clean and disordered magnetic metals.

I. INTRODUCTION

Soft or massless excitations are of paramount impor-
tance for the description of condensed-matter systems,
since they determine the universal long-wavelength and
low-frequency properties of materials that do not depend
on microscopic details. A common cause of soft excita-
tions or modes is the presence of a spontaneously bro-
ken continuous symmetry in an ordered phase, which
leads to static Goldstone modes and related dynami-
cal excitations.1 They generically couple to various ob-
servables and qualitatively change the behavior of both
static susceptibilities and equilibrium time-correlation
functions; namely, they can lead to power-law instead
of exponential decay for large distances or times, a phe-
nomenon known as generic scale invariance.2

In magnets, the excitations due to the long-ranged
magnetic order are magnons or spin-waves. In sim-
ple isotropic ferromagnets and antiferromagnets they are
well known to be gapless with a quadratic and linear
dispersion relation, respectively, in the long-wavelength
limit. This difference is due to the coupling of the antifer-
romagnetic order parameter, i.e., the staggered magneti-
zation, to the fluctuating homogeneous magnetization, as
a consequence of which the two problems do not simply
map onto one another.1

For antiferromagnets in the presence of a nonzero av-
erage homogeneous magnetization, which can be due to
the presence of an external magnetic field or coexisting
spontaneous ferromagnetic and antiferromagnetic orders,
a systematic analysis of the soft modes, or spin excita-
tions in general, in the ordered phase does not exist.
This is rather surprising, given the abundance of anti-
ferromagnetic materials, and the importance of the con-

cept for many topics of great current interest, including
certain classes of quantum phase transitions3 and high-
Tc as well as iron-based superconductors.4,5 Early work
on the dynamics of antiferromagnets focused on the dy-
namical critical behavior6,7 and therefore left out terms
that renormalization-group irrelevant near the classical
critical point, and later approaches that used spin-wave
theory or other solid-state oriented approaches were not
systematic and sometimes reached conclusions that are
not consistent with basic spin dynamics.

It is the purpose of the present paper to remedy
this situation and give a complete classification of the
long-wavelength spin excitations in antiferromagnets in
the presence of a homogeneous magnetization. We
use a hydrodynamic approach that is extremely general
and reliable and has been previously applied to helical
magnets,8,9 and to ferromagnets.10 As we will see, it re-
lies only on the basic equation of motion for a magnetic
moment and therefore is more general than approaches
based on specific solid-state-oriented models, such as the
Heisenberg model. For simplicity, we consider only the
case of isotropic magnets, as the problem is fairly com-
plex even in that simple case. If desirable, the symmetry-
breaking effects of the spin-orbit interaction can be built
in at a later stage. Our results are very general and de-
pend only on the type of order and on conservation laws,
rather than on the underlying mechanisms that produce
the order. For instance, the spin-wave spectrum is the
same irrespective of whether the staggered magnetiza-
tion and the homogeneous part of the order parameter
are produced by electrons in the same band or electrons
in different bands, and it the same in what are known as
“canted phases” and “fan phases”.11 As we will show, the
results are qualitatively different depending on whether
the homogeneous magnetization is conserved, or whether
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that conservation law is violated, e.g., due to the presence
of magnetic impurities.

To conclude these introductory remarks we list some
physical problems for which a thorough understanding of
the spin dynamics is crucial.

(1) In ferromagnets, and in simple antiferromagnets,
the spin waves couple to other observables, e.g., the lon-
gitudinal susceptibility and the dynamical structure fac-
tor, which is directly observable via neutron scattering.
This coupling induces nonanalytic wave-number and fre-
quency dependences that reflect the long-range order in
the magnetic phase.10 Similar effects are expected for the
more complicated antiferromagnets discussed here.

(2) More generally, the effects known as weak-
localization phenomena and Altshuler-Aronov effects in
disordered metals,2,12,13 as well as their counterparts in
clean metals,14,15 rely on all of the soft modes in the sys-
tem and their couplings to various observables. A com-
plete list of soft modes is therefore crucial for studying
these effects, and in magnetic metals this includes the
soft collective spin excitations.

(3) At the phase transition that signals the instability
of an ordered phase, the soft modes that characterize the
latter disappear, turn into critical modes, or change into
modes characteristic of a different type of order, depend-
ing on the nature of the phase transition. Knowledge of
the soft modes is thus important for describing the tran-
sition. In the current context, an interesting example is
the quantum phase transition from a ferromagnetic phase
to an antiferromagnetic one. There are many experimen-
tal examples of such transitions,16 but no theoretical de-
scription exists. Another example of phase transitions for
which information about spin waves is important are the
metamagnetic transitions known as spin-flop transitions
(e.g., from easy-axis to easy-plane) that are commonly
observed in antiferromagnets, see Ref. 17 and references
therein.

(4) If antiferromagnetic spin fluctuations are behind
the pairing mechanism for either high-Tc or iron-based
superconductors, as has been suggested,5,18 then one
would expect their spectra to be reflected in tunneling
data, just as is the case for the phonon spectra in conven-
tional superconductors. Moreover, the spin fluctuations
responsible for the pairing mechanism would be very sen-
sitive to an external magnetic field, which is not the case
for phonons. A thorough understanding of spin fluctu-
ations, especially in an external field, is therefore very
important in this context. We note that coexistence of
antiferromagnetic order and superconductivity has been
observed in some materials, see Ref. 19 and references
therein, which will make spin excitations in a magneti-
cally ordered state directly relevant. However, even in
cases where there is an antiferromagnetic phase nearby
in the phase diagram a thorough understanding of the
antiferromagnetic parent compound is important.

(5) While magnetic states that have both a antifer-
romagnetic and a ferromagnetic component have been
known for a long time, materials that display such phases

have received much attention lately, in part because
of their potential technological importance, see, e.g.,
Refs. 20,21. Their understanding requires information
about the spin dynamics of systems in which both order
parameters are nonzero.

II. TIME-DEPENDENT GINZBURG-LANDAU

THEORY

While the equations of motion for an isotropic Heisen-
berg antiferromagnet are well known,1,7,11 many versions
in the literature omit terms that are irrelevant for the
classical critical behavior, yet contribute to the spin dy-
namics in the ordered phase. For completeness, we there-
fore provide a brief derivation.

A. Statics

1. Landau free energy

Consider a general magnetization field M(x) of the
form

M(x) =m(x) + ν(x) , (2.1a)

where m(x) is a slowly varying function, whereas

ν(x) = n(x) f(x) (2.1b)

with n(x) slowly varying and f(x) a rapidly oscillat-
ing function with zero spatial mean. We defined coarse-
grained variables

1

VN

ˆ

y∈N (x)

dyM(y) ≈m(x) , (2.2a)

1

VN

ˆ

y∈N (x)

dyM(y) f(y) ≈ n(x) f2 , (2.2b)

where N (x) is a neighborhood of the point x whose vol-
ume VN is large on the microscopic length scale, but
small on the macroscopic one, and f2 is the spatial av-
erage of f2(x). m and n are the magnetization and the
staggered magnetization, respectively, and

1

VN

ˆ

y∈N (x)

dy (f(y))
n+1 ≈ 0 , (2.3a)

1

VN

ˆ

y∈N (x)

dy (f(y))2n ≡ f2n > 0 (2.3b)

for all integer n. By rescaling n we can choose

f2 = 1 (2.3c)

without loss of generality, and we will adopt this choice
from now on.

Now consider a Landau free energy that is a functional
of M . Multiplying out powers of M yields all possible
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scalar terms that can be constructed from the two vectors
m and n. However, all terms that are odd in n are mul-
tiplied by odd powers of f and thus vanish upon coarse
graining. Up to quartic terms in m, n, and gradients
(for comments on higher-order terms see Sec. IVB 1) we
thus obtain a free-energy functional

F =

ˆ

dx
[r

2
n2 +

a

2
(∇n)2 + u

4

(

n2
)2 − h · n

+
t

2
m2 +

c

2
(∇m)

2
+
v

4

(

m2
)2 − h ·m

+
1

2
w1 n

2m2 +
1

2
w2 (n ·m)2

]

. (2.4)

Here h and h are a homogeneous and a staggered mag-
netic field, respectively, and r, a, u, t, etc. are Landau
coefficients. The coefficients of terms that result from
different powers of M are different even within a bare
theory. Moreover, all of the coefficients will behave differ-
ently under renormalization, and therefore all Landau co-
efficients in Eq. (2.4) should be considered independent.
In particular, one can have r < 0, t > 0. This allows
for spontaneous antiferromagnetic order, i.e., a nonzero
staggered magnetization for h = 0, with a homogeneous
magnetization that vanishes as h→ 0. We will also con-
sider the case of coexisting spontaneous order for both
the staggered and the homogeneous magnetization.

2. Equations of state

We now consider the mean-field equations of state,
which are given by

(δF/δn)n0
= (δF/δm)m0

= 0 . (2.5a)

For h = 0 we have explicitly

0 = rn0 + u(n0)
2n0 + w1(m0)

2n0 + w2(n0 ·m0)m0 ,

(2.5b)

h = tm0 + v(m0)
2m0 + w1(n0)

2m0

+w2(n0 ·m0)n0 .

(2.5c)

a. AFM order only Let us first consider parameter
values such that n0 6= 0 and m0(h→ 0) → 0. For h = 0
we have the simple AFM solutionm0 = 0, n0 = (0, 0, n0)

with n0 =
√

−r/u. For h 6= 0 we need to distinguish
between two cases:

Case 1: w2 > 0
In this case n0 · m0 = 0, and m0 = m0ĥ, with ĥ

the unit vector in the direction of h. Choosing n0 =
(0, 0, n0), m0 = (m0, 0, 0), h = (h, 0, 0), n0 and m0 are
the solutions of the equations of state

(t+ w1n
2
0)m0 + vm3

0 = h , (2.6a)

n2
0 = −(r + w1m

2
0)/u , (2.6b)

which requires r < −w1m
2
0. A Gaussian stability analysis

(see Sec. II A 3 below) shows that the condition for this
state to minimize the free energy is

w2
1 < u v + u h/2m3

0 . (2.7)

We will refer to this case as the transverse-field case.
Note that is the field whose direction is chosen in an
experiment, and n adjusts such that n and h are per-
pendicular.

Case 2: w2 < 0
In this case n0, m0, and h are all collinear and the

equations of state read

(

t+ (w1 + w2)n
2
0

)

m0 + vm3
0 = h , (2.8a)

n2
0 = −

(

r + (w1 + w2)m
2
0

)

/u , (2.8b)

which requires r < −(w1+w2)m
2
0. The stability require-

ment in this case is

(w1 + w2)
2 < u v . (2.9)

We will refer to this case as the longitudinal-field case.
As in the previous case, n will adjust, in this case such
that it is collinear with h.

b. Coexisting AFM and homogeneous orders Now
consider the case h = 0, and parameter values such that
both the staggered magnetization and the homogeneous
magnetization have nonzero expectation values, n0 6= 0
and m0 6= 0.22 We need to distinguish again between two
cases:

Case 1: w2 > 0,
In this case n0 ⊥m0. The equations of state are given

by Eqs. (2.6) with h = 0, which leads to

n2
0 = −(rv − w1t)/(uv − w2

1) , (2.10a)

m2
0 = −(tu− w1r)/(uv − w2

1) . (2.10b)

Coexisting orders thus require rv − w1t < 0 and tu −
w1r < 0. The stability criterion is given by Eq. (2.7)
with h = 0, i.e.,

w2
1 < u v . (2.11)

We will refer to this case as the orhogonal-order-
parameters case.

Case 2: w2 < 0,
In this case n0 is parallel to m0. The equations of

state are given by Eqs. (2.8) with h = 0, which leads to

n2
0 = − (rv − (w1 + w2)t) /

(

uv − (w1 + w2)
2
)

,

(2.12a)

m2
0 = − (tu− (w1 + w2)r) /

(

uv − (w1 + w2)
2
)

,

(2.12b)

and the stability criterion is given by Eq. (2.9). We will
refer to this case as the collinear-order-parameters case.
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We note that the equations of state for Cases 1 and 2
can be combined to read23

n2
0 = −(rv − wt)/(uv − w2) , (2.13a)

m2
0 = −(tu− wr)/(uv − w2) , (2.13b)

where

w =

{

w1 if w2 > 0

w1 + w2 if w2 < 0
(2.13c)

and the stability criterion is

w2 < uv . (2.14)

The requirements (rv < wt) ∧ (tu < wr) imply that the
phase of coexisting orders is always separated from the
paramagnetic phase by a purely antiferromagnetic one,
except at the tetracritical point (r, t) = (0, 0) where the
four phases meet. Observations of coexisting orders are
not common; for an example, see Ref. 24.

3. Static susceptibilities; Goldstone modes

Also of interest are the static susceptibilities, which
are obtained by expanding the free energy to quadratic

order in the Gaussian fluctuations about the solutions of
the equations of state. We are in particular interested in
the presence of Goldstone modes, which manifest them-
selves as susceptibilities that diverge as k → 0. The same
calculation yields the stability criteria listed in Sec. II A 2
above; they are given by the requirement that all of the
static susceptibilities must be positive.

To proceed, we parameterize the fields n and m as
follows:

n = (−θ2, θ1, n0 + θ3) , m =m0 + (π1, π2, π3) ,
(2.15)

and expand the free energy, Eq. (2.4), to Gaussian order
in the small fluctuations θ1,2,3 and π1,2,3. This yields
a 6 × 6 eigenvalue problem. Stability requires that all
eigenvalues are positive, and eigenvalues that vanish as
k → 0 indicate the existence of Goldstone modes.

a. AFM order only

Case 1: w2 > 0 (transverse-field case)

We choosem0 = (m0, 0, 0), and h = (h, 0, 0). The 6×6
problem then decomposes into two 2×2 problems (for the
pairs (θ2, π3) and (θ3, π1), respectively, and two single-
variable problems for θ1 and π2, respectively. Using the
equations of state, Eqs. (2.6), we find for the Gaussian-
fluctuation contribution to the free energy

δF (2) =
1

2V

∑

k

θ1(k) ak
2 θ1(−k) +

1

2V

∑

k

π2(k)
(

h/m0 + ck2
)

π2(−k)

+
1

2V

∑

k

(θ2(k), π3(k))

(

w2m
2
0 + ak2 −w2n0m0

−w2n0m0 h/m0 + w2n
2
0 + ck2

)(

θ2(−k)
π3(−k)

)

+
1

2V

∑

k

(θ3(k), π1(k))

(

un2
0 + ak2 w1n0m0

w1n0m0 h/m0 + vm2
0 + ck2

)(

θ3(−k)
π1(−k)

)

. (2.16)

All eigenvalues are positive provided Eq. (2.7) holds, and
the one related to θ1 vanishes as k → 0. We thus have
one Goldstone mode,

g(k) = θ1(k) , (2.17a)

whose susceptibility is soft, namely

χg(k) = 〈g(k) g(k)∗〉 = 1/a k2 . (2.17b)

Physically, the field polarizes the homogeneous magne-
tization m, and the w2 term forces the staggered mag-
netization n to be perpendicular to m, but n is still

free to rotate about the field direction, so one of the two
transverse n fluctuations do not cost any energy in the
long-wavelength limit.

Case 2: w2 < 0 (longtitudinal-field case)
In this case n0, m0, and h are all collinear, so m0 =

(0, 0,m0) and h = (0, 0, h). The 6 × 6 problem decom-
poses into three 2 × 2 problems for the pairs (θ1, π2),
(θ2, π1), and (θ3, π3), respectively. Using Eqs. (2.8) we
find for the Gaussian-fluctuation contribution to the free
energy
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δF (2) =
1

2V

∑

k

(θ1(k), π2(k))

(

−w2m
2
0 + ak2 w2n0m0

w2n0m0 h/m0 − w2n
2
0 + ck2

)(

θ1(−k)
π2(−k)

)

+
1

2V

∑

k

(θ2(k), π1(k))

(

−w2m
2
0 + ak2 −w2n0m0

−w2n0m0 h/m0 − w2n
2
0 + ck2

)(

θ2(−k)
π1(−k)

)

+
1

2V

∑

k

(θ3(k), π3(k))

(

un2
0 + ak2 (w1 + w2)n0m0

(w1 + w2)n0m0 h/m0 − w2n
2
0 + ck2

)(

θ3(−k)
π3(−k)

)

. (2.18)

All eigenvalues are positive provided Eq. (2.9) holds, and
all of them remain positive for k = 0. Hence there are no
Goldstone modes. This reflects the fact that the field po-
larizes the homogeneous magnetization via the Zeeman
term, which in turn polarizes the staggered magnetiza-
tion via the w2 term, so any deviation from the collinear
field configuration costs energy.

In the limit of a vanishing field, h = m0 = 0, two of
the positive eigenvalues in Case 2 vanish at k = 0, and
Case 1 yields one additional zero eigenvalue. This reflects
the two zero-field AFM Goldstone modes that are rep-
resented by the transverse fluctuations of the staggered
magnetization:

g1,2(k) = θ1,2(k) (2.19a)

with susceptibilities

χg1(k) = χg2(k) = 1/a k2 . (2.19b)

b. Coexisting AFM and homogeneous order

Case 1: w2 > 0 (orthogonal-order-parameters case)
This case is obtained from the transverse-field case,

Eq. (2.16), by taking the limit h → 0 at fixed m0. The
eigenvalue that corresponds to the π2 fluctuations now
vanishes in the k → 0 limit in addition to the one that
corresponds to the θ1 fluctuations, and the (θ2, π3) sys-
tem contributes a third zero eigenvalue. We thus have
three Goldstone modes, namely

g1(k) = θ1(k) ,

g2(k) = π2(k) ,

g3(k) = θ2(k) + iπ3(k) , (2.20a)

with susceptibilities

χg1(k) = 1/a k2 ,

χg2(k) = 1/c k2 ,

χg3(k) =
n2
0 +m2

0

n2
0c+m2

0a

1

k2
. (2.20b)

Physically, the situation is as follows. In the absence of
a coupling between n and m the transverse fluctuations
of both order parameters would be soft. However, the
w2 coupling enforces the condition that the two order

parameters are orthogonal. This leads to one constraint,
which reduces the number of soft modes from four to
three.

Case 2: w2 < 0 (collinear-order-parameters case)
This case is obtained from the longitudinal-field case,

Eq. (2.18), by taking the limit h→ 0 at fixed m0. Of the
six eigenvalues, two vanish in this limit at k = 0. There
are two Goldstone modes,

g1(k) = θ1(k) + iπ2(k) ,

g2(k) = θ2(k) + iπ1(k) , (2.21)

with susceptibilities

χg1(k) = χg2(k) =
n2
0 +m2

0

n2
0c+m2

0a

1

k2
. (2.22)

Physically, the homogeneous magnetization gets slaved
to the staggered magnetization by the w2 coupling, and
the soft-mode structure is that of an antiferromagnet.

B. Dynamics

The dynamics of the order-parameter fields n and m
are governed by the basic equation of motion that de-
scribes the precession of the magnetic moment M in an
effective magnetic field,25,26

∂tM(x, t) =M(x, t)× δF

δM(x)

∣

∣

∣

M(x,t)
. (2.23)

We put the gyromagnetic ratio equal to unity, which
amounts to measuring the magnetization in units of the
magnetic moment. By using

δF

δMi(x)
=

ˆ

dy

(

δF

δmj(y)

δmj(y)

δMi(x)
+

δF

δνj(y)

δνj(y)

δMi(x)

)

=
δF

δmi(x)
+

δF

δνi(x)
(2.24)

and coarse-graining Eq. (2.23) we obtain

∂tm(x) =m(x)× δF

δm(x)

∣

∣

∣

∣

∣

m(x)

+ n(x, t)× δF

δn(x)

∣

∣

∣

∣

∣

n(x)

,

(2.25a)
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where x = (x, t). Multiplying Eq. (2.23) by f(x) and
coarse-graining we obtain

∂tn(x) = n(x) ×
δF

δm(x)

∣

∣

∣

∣

∣

m(x)

+m(x)× δF

δn(x)

∣

∣

∣

∣

∣

n(x)

,

(2.25b)
where we have used Eq. (2.3c). Adding dissipative terms
we finally obtain6,27

∂t n = −Γ0
δF

δn
+ n× δF

δm
+m× δF

δn
, (2.26a)

∂tm = λ0 ∇
2 δF

δm
+ n× δF

δn
+m× δF

δm
, (2.26b)

where Γ0 and λ0 are bare kinetic coefficients. The func-
tional form of the dissipative term in Eq. (2.26a) (con-
stant Γ0) reflects the fact that the staggered magnetiza-
tion n is not a conserved quantity. The gradient-squared
form of the corresponding term in Eq. (2.26b) is valid pro-
vided the total magnetization is conserved. If it is not,
e.g., due to the presence of magnetic impurities, then this
term must also have a constant coefficient and we have,
instead of Eq. (2.26b),

∂tm = −µ0
δF

δm
+ n× δF

δn
+m× δF

δm
. (2.24b’)

The last term on the right-hand-side of Eq. (2.26a) is of-
ten omitted since it is irrelevant for the critical dynamics
of a classical antiferromagnet.6 Equations (2.26) without
this term, and with v = w1 = w2 = 0 in Eq. (2.4), is often
referred to as Model G in the classification of Ref. 7. We
also note that in order to calculate correlation functions
one needs to add Langevin forces on the right-hand-sides
of Eqs. (2.26), see Appendix B. Alternatively, one can
calculate response functions in the presence of the fields h
and h. We will take the latter approach; the fluctuation-
dissipation theorem can then be used to determine the
correlation functions.

III. LINEARIZED EQUATIONS OF MOTION,

AND SPIN EXCITATIONS

We now parameterize the fields n and m as in
Eq. (2.15) and linearize the kinetic equations (2.26) in
the small fluctuations θ1,2,3 and π1,2,3. This yields a 6×6
system of linear equations. The solutions for h = 0 give
the eigenoscillations of the antiferromagnet. For counting
purposes we will treat this as analogous to a mechanical
system; that is, we have six eigenvalues and correspond-
ing eigenvectors that characterize six modes. In the case
of propagating modes, pairs of modes that propagate in
opposite directions form one spin wave.

A. Conserved homogeneous magnetization; AFM

order only

1. Zero field

For completeness, we first recall the well-known results
for a vanishing external field, h = 0. The six equations
decouple into two identical pairs of 2×2 systems for θ1, π1
and θ2, π2, respectively, and two single equations for θ3
and π3, respectively. They read
(

iΩ+ Γ0ak
2 −n0(t+ w1n

2
0 + ck2)

n0ak
2 iΩ+ λ0(t+ w1n

2
0 + ck2)k2

)(

θ1,2
π1,2

)

= 0 .

(3.1)
and

[

iΩ+ Γ0(2un
2
0 + ak2)

]

θ3 = 0 , (3.2)
[

iΩ+ λ0
(

t+ (w1 + w2)n
2
0 + ck2)

)

k2
]

π3 = 0 . (3.3)

Equation (3.1) yields two identical pairs of gapless prop-
agating modes with eigenfrequencies

Ω1,± = Ω2,± = ±c1 k +
i

2
Γ1ak

2 +O(k3) . (3.4a)

The speed of the propagating modes is

c1 = n0

√
a
√

t+ w1n2
0 = n0

√

ah/m0

∣

∣

h→0
(3.4b)

and the damping coefficient is

Γ1 = Γ0 + λ0(c1/n0a)
2 . (3.4c)

The right eigenvectors are

νR1,± ≡
(

θ1
π1

)

±

=

(

1
±i(n0a/c1)k +O(k2)

)

(3.4d)

and νR2,± = νR1,±, so the long-wavelength spin waves
are transverse θ-fluctuations with a small admixture of
π-fluctuations. Also of interest are the left eigenvectors

νL1,± ≡ (θ1, π1)± =
(

±i(n0a/c1)k +O(k2), 1
)

(3.4e)

and νL2,± = νL1,±. Note that the left eigenvectors are
structurally very different from the right ones. This is im-
portant for calculating time correlation functions, and for
ensuring that the fluctuation-dissipation theorem holds,
see Appendix B.

In addition, there is a pure π3 mode described by
Eq. (3.3) which is diffusive with an eigenfrequency

Ω3 = iDk2 +O(k4) , (3.5a)

and a diffusion constant

D = λ0
(

t+ (w1 + w2)n
2
0

)

. (3.5b)

Finally, Eq. (3.2) describes a pure θ3 mode which is re-
laxational with eigenfrequency

Ω4 = i 2Γ0un
2
0 +O(k2) . (3.6)
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These are the well-known results for an isotropic
Heisenberg antiferromagnet:1,11,28 There are two spin
waves with a linear dispersion relation and quadratic
damping, and the dynamics of the longitudinal homo-
geneous magnetization are diffusive.

Equation (3.6) implies that the longitudinal response
function in the limit of long wavelengths and low frequen-
cies is a constant. This result requires a qualification, as
it changes qualitatively if one goes beyond the linearized
theory: The coupling between the longitudinal and trans-
verse degrees of freedom leads to a longitudinal response
function that diverges, in classical antiferromagnets, as
1/kd−4 in dimensions d < 4,29,30 and as 1/kd−3 at T = 0
in dimensions d < 3.10 This is most easily seen by em-
ploying a nonlinear sigma model; alternatively, one can

apply the renormalization-group techniques reviewed in
Ref. 7 to the present formalism.

2. Transverse field

In Sec. II A we saw that if w2 > 0 and h 6= 0, the low-
est free-energy state is a configuration where m0 and
h are collinear and perpendicular to n0. We choose
n0 = (0, 0, n0), m0 = (m0, 0, 0), and h = (h, 0, 0). The
linearized kinetic equations then take the form of two
3×3 systems for (θ1, θ3, π1) and (θ2, π2, π3), respectively.
They read





iΩ+ Γ0ak
2 2n2

0m0(u− w1) +m0ak
2 −n0

(

h/m0 + 2m2
0(v − w1) + c k2

)

−m0ak
2 iΩ+ Γ0(2un

2
0 + ak2) 2Γ0w1n0m0

n0ak
2 2λ0w1n0m0k

2 iΩ+ λ0
(

h/m0 + 2vm2
0 + ck2

)

k2









θ1
θ3
π1



 = 0 , (3.7)

and




iΩ+ Γ0(w2m
2
0 + ak2) −n0(h/m0 + c k2) −Γ0w2n0m0

n0ak
2 iΩ+ λ0(h/m0 + c k2)k2 h+m0c k

2

−λ0w2n0m0k
2 −(h+m0c k

2) iΩ+ λ0(h/m0 + w2n
2
0 + c k2)k2









θ2
π2
π3



 = 0 . (3.8)

The former yields one pair of gapless propagating
modes with eigenfrequencies

Ω1,± = ±c1 k +
i

2
Γ1ak

2 +O(k3) , (3.9a)

and right and left eigenvectors

νR1,± ≡





θ1
θ3
π1





R1,±

=





1
∓i aw1m0

u c1
k +O(k2)

±i n0 a
c1

k +O(k2)



 , (3.9b)

νL1,± ≡ (θ1, θ3, π1)L1,±

=

(

±i n0a

c1
k,∓i n0m0a

Γ0c1

(

1− w1

u

)

k, 1

)

+O(k2) (3.9c)

This is a generalization of one of the two transverse
modes from Eqs. (3.4). The magnetic field leads to a
θ3-component of the eigenoscillation, and it modifies the
speed and the damping coefficient of the mode:

c1 = n0

√
a
√

h/m0 + 2(v − w2
1/u)m

2
0 , (3.9d)

Γ1 = Γ0 + λ0 (c1/n0 a)
2 +

m2
0

Γ0
(1− w1/u)

2 .

(3.9e)

For h = 0 these expressions correctly reduce to Eqs. (3.4).
They hold in the limit of asymptotically small k for fixed
damping coefficients Γ0, λ0, i.e., for k ≪ c1/aΓ1. The
limits k → 0 and Γ0, λ0 → 0 do not commute, as is
obvious from the last term in Eq. (3.9e). In the limit of
vanishing damping coefficients at fixed small k the modes
remain propagating and gapless, but the speed of the
propagation changes. One finds for the eigenfrequencies

Ω̃1,± = ±c̃1 k +O(k2,Γ0, λ0) , (3.10a)

and for the right and left eigenvectors

ν̃R1,± =





1
∓i (am0/c̃1)k +O(k2)
±i (a n0/c̃1)k +O(k2)



 (3.10b)

ν̃L1,± =
(

±ic1k,−2n2
0m0(u− w1),

n0(
h

m0
+ 2m2

0(v − w1))
)

+O(k2,Γ0, λ0)

(3.10c)

with

c̃1 = n0

√
a
√

h/m0 + 2(u+ v − 2w1)m2
0 , (3.10d)



8

The second transverse modes are gapped propagating
modes with eigenfrequencies

Ω2,± = ±
√

h2 + c22k
2+

i

2
Γ2(h, k)ak

2+O(ǫ3) (3.11a)

and right and left eigenvectors

νR2,± ≡





θ2
π2
π3





R2,±

=





1

±i m0/h
n0

√

h2 + c22k
2 +O(ǫ2)

m0/n0 +O(ǫ2)



 ,

(3.11b)

νL2,± ≡ (θ2, π2, π3)L2,±

=

(

n0ak
2

h
+ O(ǫ2),

∓i
h

√

h2 + c22k
2 +O(ǫ2), 1

)

.

(3.11c)

where ǫ = O(k, h). Here

c2 = n0

√

a h/m0 , (3.11d)

and

Γ2(h, k) =
c22/a

h2 + c22 k
2

[

Γ0ak
2 + λ0(2h

2 + c22k
2)/n2

0 a
]

.

(3.11e)
We see that in this mode the magnetic field opens a gap of
magnitude h. For h = 0 we again recover the expressions
in Eqs. (3.4). Note that π3 is part of the linear combina-
tion that comprises the gapped propagating modes. For
h = 0 it decouples and is diffusive, see Eqs. (3.5).

In addition to these propagating modes there are two
relaxational modes. One has an eigenfrequency

Ω3 = i2Γ0un
2
0 +O(k2) (3.12a)

and right and left eigenvectors

νR3 ≡





θ1
θ3
π1





R3

=





(1 − w1/u)m0/Γ0 +O(k2)
1

O(k2)



 ,

(3.12b)

νL3 ≡ (θ1, θ3, π1)L3 =

(

O(k2), 1,
w1m0

un0

)

. (3.12c)

This is valid in the limit of asymptotically small
wavenumber. In the limit of asymptotically small damp-
ing one finds instead

Ω̃3 = i2Γ0un
2
0c

2
1/c̃

2
1 (3.13a)

and

ν̃R3 =







0
1

2n2

0
m0(u−w1)+m0ak

2

n0h/m0+2n0m2

0
(v−w1)+n0ck2






+O(Γ0, λ0) .

(3.13b)
The other relaxational mode has an eigenfrequency

Ω4 = iΓ0w2m
2
0 +O(k2) (3.14a)

and right and left eigenvectors

νR4 ≡





θ2
π2
π3





R4

=





1
O(k2)
O(k2)



 , (3.14b)

νL4 ≡ (θ2, π2, π3)L4 =
(

1, O(k2),−n0/m0 + O(k2)
)

.
(3.14c)

3. Longitudinal field

If w2 < 0, then in a nonzero external field the lowest
free-energy configuration is one wherem0, h, and n0 are
all collinear; we choose them to be parallel to (0, 0, 1).
The linearized kinetic equations then decouple into one
2× 2 system for (θ3, π3),

(

iΩ+ Γ0(2un
2
0 + ak2) 2(w1 + w2)Γ0n0m0

2(w1 + w2)λ0n0m0k
2 iΩ+ λ0(h/m0 + 2vm2

0 + ck2)k2

)(

θ3
π3

)

= 0 , (3.15)

and one 4× 4 system for (θ1, θ2, π1, π2),









iΩ+ Γ2(k) m̃0(k) −ñ0(k) w2Γ0n0m0

−m̃0(k) iΩ+ Γ2(k) −w2Γ0n0m0 −ñ0(k)

n0ak
2 −w2λ0n0m0k

2 iΩ+ λ̃0(k)k
2 h+m0ck

2

w2λ0n0m0k
2 n0ak

2 −(h+m0ck
2) iΩ+ λ̃0(k)k

2















θ1
θ2
π1
π2






= 0 . (3.16a)
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Here we have defined

Γ2(k) = Γ0(−w2m
2
0 + ak2) , (3.16b)

m̃0(k) = m0

(

w2(n
2
0 −m2

0) + ak2
)

(3.16c)

ñ0(k) = n0

(

h/m0 − w2(n
2
0 −m2

0) + ck2
)

(3.16d)

λ̃0(k) = λ0(h/m0 − w2n
2
0 + ck2) (3.16e)

Equations (3.16) lead to two pairs of gapped propagating modes. For small h and k we find for the eigenfrequencies31

Ω1,± =
±1√
2

[

(1 + w2
2n

4
0m

2
0/h

2)h2 + 2c̃2k2 −
√

(1 − w2
2n

4
0m

2
0/h

2)2h4 + 4h2(1 + w2n2
0m0/h)2c̃2k2 +O(ǫ4)

]1/2

−iw2Γ0m
2
0

[

1 +O(k2/m2
0)
]

, (3.17a)

Ω2,± =
±1√
2

[

(1 + w2
2n

4
0m

2
0/h

2)h2 + 2c̃2k2 +
√

(1 − w2
2n

4
0m

2
0/h

2)2h4 + 4h2(1 + w2n2
0m0/h)2c̃2k2 +O(ǫ4)

]1/2

+ iλ0(h/m0) k
2
[

1 +O(k2/m2
0)
]

, (3.17b)

where the innermost square root is defined as
√
x2 = x irrespective of the sign of x,

c̃ = n0

√
a
√

h/m0 − w2n2
0 (3.17c)

and ǫ can stand for either h or k. The damping coefficients are easily obtained to O(ǫ2), but the results are complicated
and we show only the leading terms for k → 0 at fixed h. The corresponding right and left eigenvectors are, at k = 0,

νR1,± ≡







θ1
θ2
π1
π2







R1±

=







1
∓i
0
0






, (3.17d)

νR2,± ≡







θ1
θ2
π1
π2







R2±

=







1
∓i

±im0/n0

m0/n0






, (3.17e)

νL1,± ≡ (θ1, θ2, π1, π2)L1,± = (∓im0/n0,m0/n0, 1,±i) , (3.17f)

νL2,± ≡ (θ1, θ2, π1, π2)L2,± = (0, 0, 1,±i) . (3.17g)

Note that the first two modes come with a damping coef-
ficient that does not vanish as k → 0, whereas the other
two have a damping coefficient that vanishes as k2, as in
the transverse-field case. Also note that if the coupling
constant w2 were neglected, the first pair of modes would
be gapless with a quadratic dispersion relation. Keeping
all coupling constants consistent with the symmetry of
the problem is thus important for obtaining the correct
soft-mode structure.

From the 2×2 system we obtain a diffusive mode with
eigenfrequency

Ω3 = iD3k
2 . (3.18a)

The diffusion constant is given by

D3 = λ0

[

h

m0
+ 2vm2

0 − 2(w1 + w2)
2m2

0/u

]

, (3.18b)

and the right and left eigenvectors are

νR3 ≡
(

θ3
π3

)

R3

=

(

−(w1+w2)
u

m0

n0

+O(k2)

1

)

, (3.18c)

νL3 ≡ (θ3, π3)L3 =

(−(w1 + w2)λ0m0

uΓ0n0
k2 +O(k4), 1

)

.

(3.18d)
This is a generalization of the diffusive π3 mode in zero
field.

Finally, there is a relaxational mode with eigenfre-
quency

Ω4 = i2Γ0un
2
0 +O(k2) (3.19a)
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and right and left eigenvectors

νR4 ≡
(

θ3
π3

)

R4

=

(

1
(w1+w2)λ0m0

uΓ0n0
k2 + O(k4)

)

, (3.19b)

νL4 ≡ (θ3, π3)L4 =

(

1,
w1 + w2

u

m0

n0
+O(k2)

)

. (3.19c)

which generalizes the relaxational θ3 mode in zero field.

B. Conserved homogeneous magnetization;

coexisting AFM and homogeneous orders

We now consider the modes for the case of coexist-
ing AFM and homogeneous orders. As discussed in
Sec. II A 2 we need to distinguish again between w2 > 0,
which leads to orthogonal order parameters, and w2 < 0,
which leads to collinear order parameters.

1. Orthogonal order parameters

The gapless propagating modes are obtained by taking
the straightforward limit h→ 0 at fixed m0 in Eqs. (3.9).
The results from Sec. III A 2 remain valid except that the
speed of the modes now is

c1 = n0

√

2a(v − w2
1/u)m

2
0 (3.20a)

in the limit of vanishing wave number, and

c̃1 = n0

√

2a(u+ v − 2w1)m2
0 (3.20b)

in the limit of vanishing damping coefficients.
For the other oscillating modes the result cannot sim-

ply be read off from the results of Sec. III A 2, for two
reasons: The oscillation frequency vanishes to O(k) in
the limit h → 0 at fixed m0, and in the damping term
the limits h → 0 and Γ0 → 0 do not commute in the
coexisting-orders case. An analysis of Eq. (3.8) yields

Ω2,± = ±d2k2
(

1− a2cn2
0

2m2
0w2d22

k2
)

+
i

2
λ2ck

4 +O(k6)

(3.21a)
in the limit of asymptotically small wave numbers. Here

d2 =
√

m2
0c

2 + n2
0ac (3.21b)

and

λ2 = λ0(2 + n2
0a/m

2
0c) . (3.21c)

The corresponding right and left eigenvectors are

νR2,± ≡





θ2
π2
π3





R2,±

=





1
±id2/n0c+O(k2)

m0/n0 + ak2/w2n0m0 +O(k4)



 .

(3.21d)

νL2,± ≡
(±iacn2

0/d2 + λ0w2n
2
0

Γ0w2n0m0
k2,∓i m0c

d2
, 1

)

. (3.21e)

These modes have the characteristics of a ferromag-
netic magnon, with a quadratic dispersion relation and a
damping term that vanishes as k4. In the limit of van-
ishing damping coefficients at fixed wave number the os-
cillation frequency remains the same, but the damping
changes. The eigenfrequencies in this limit are

Ω̃2,± = ±d2k2 +
i

2

(

Γ0ak
2 + λ0ck

4
)

. (3.22)

Note the damping term proportional to k2, which is ab-
sent in the limit of asymptotically small wave number.

The previous results for the relaxational modes,
Eqs. (3.12) through (3.14), remain valid if one puts h = 0
at fixed m0.

It is not obvious how the results given above cross over
from the ones in Sec. III A 2 in the limit h → 0 at fixed
m0. In Appendix A we give a solution of the eigenvalue
problem represented by Eq. (3.8) that interpolates be-
tween the two results.

2. Collinear order parameters

Of the two pairs of gapped modes shown in Eqs. (3.17),
one remains gapped in the limit h→ 0 at fixed m0. How-
ever, m0 should no longer be considered small. To zeroth
order in the wave number we find, instead of Eq. (3.17a),

Ω1,± = ±w2m0(n
2
0 −m2

0)− iw2Γ0m
2
0 +O(k2) . (3.23a)

For the other eigenfrequency, Eq. (3.17b), both the prop-
agating part and the damping part vanish to O(k) and
O(k2), respectively, and we need to go to quartic order
in k. An elementary but tedious calculation yields

Ω2,± = ±
(

n2
0a+m2

0c

m0
k2 +

n2
0a

2

w2m3
0

k4
)

+iλ0
n2
0a+m2

0c

m2
0

k4 +O(k6) . (3.23b)

To lowest order in the wave number the corresponding
eigenvectors are still given by Eqs. (3.17d) - (3.17g). We
see that the gapped modes are fluctuations of the stag-
gered magnetization that are gapped due to the coupling
to the collinear homogeneous magnetization. The gapless
mode is a linear combination of staggered and homoge-
neous fluctuations that are locked together and behave
like a ferromagnetic magnon.

The modes shown in Eqs. (3.18) and (3.19) allow for
a straightforward limit h → 0 at fixed m0 to be taken.
We thus again obtain a diffusive mode with the diffusion
constant given by Eq. (3.18b) with h = 0 and the eigen-
vectors given by Eqs. (3.18c, 3.18d), and a relaxation
mode that is still given by Eqs. (3.19).



11

C. Non-conserved homogeneous magnetization:

AFM order only

We now discuss the case of a non-conserved homoge-
neous magnetization, which means that Eq. (2.26b) gets
replaced by Eq. (2.24b’). Although formally this amounts
to replacing λ0k

2 by µ0, the result can in in general not be
obtained by performing this substitution in the results of
Sec. III A, because the reality properties of the eigenvalue
problems may change. As a result the problem gets quite
involved, with many different cases depending on param-
eter values. Since we are mainly interested in soft modes,
we will derive and discuss only those in detail. For re-
laxational modes, and for gapped propagating modes, we
will list the eigenfrequencies at zero wave number, but we
will not discuss their k-dependence or the corresponding
eigenvectors.

1. Zero field

In the absence of an external field, the kinetic equa-
tions for the transverse fluctuations now are, instead of
Eq. (3.1),

(

iΩ+ Γ0ak
2 −n0(t+ w1n

2
0 + ck2)

n0ak
2 iΩ+ µ0(t+ w1n

2
0 + ck2)

)(

θ1,2
π1,2

)

= 0 .

(3.24)
For asymptotically small k this yields two identical dif-
fusive modes with eigenfrequencies

Ω1 = Ω2 = i(Γ0 + n2
0/µ0)a k

2 +O(k4) . (3.25a)

The corresponding right and left eigenvectors are

νR1 ≡
(

θ1
π1

)

R1

=

(

1
−n0a k

2/µ0(t+ w1n
2
0) +O(k4)

)

,

(3.25b)

νR2 ≡
(

θ2
π2

)

R2

= νR1 (3.25c)

νL1 ≡ (θ1, π1)L1 =
(

µ0/n0 +O(k2), 1
)

, (3.25d)

νL2 ≡ (θ1, π1)L2 = νL1 . (3.25e)

We note in passing that for larger wavenumbers
Eq. (3.24) describes two propagating modes, see the dis-
cussion in Sec. IV. The other solution of the quadratic
equation yields two identical relaxational modes with
eigenfrequencies

Ω3 = Ω4 = iµ0(t+ w1n
2
0) +O(k2) , (3.26)

In addition, the analogs of Eqs. (3.2) and (3.3) yield two
more relaxational modes. One is a pure θ3 mode with
eigenfrequency

Ω5 = iΓ0(2un
2
0 + a k2) , (3.27)

and one is a pure π3 mode with eigenfrequency

Ω6 = iµ0

[

t+ (w1 + w2)n
2
0 + c k2

]

. (3.28)
Note that the mode spectrum is qualitatively different
compared to the case of a conserved homogeneous mag-
netization: There are no propagating spin waves; instead,
the transverse fluctuations form one diffusive mode and
one relaxational one.

2. Transverse field

The relevant kinetic equations for this case are ob-
tained by replacing λ0k

2 in Eqs. (3.7, 3.8) by µ0. The
first 3 × 3 system yields one diffusive mode with eigen-
frequency

Ω1 = iD1k
2 +O(k4) (3.29a)

where the diffusion constant is given by

D1 = a

[

Γ0 +
m2

0

Γ0
(1− w1/u) +

n2
0

µ0

h+ 2m3
0(v − w2

1/u)

h+ 2m3
0v

]

. (3.29b)
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The corresponding right and left eigenvectors are

νR1 =





θ1
θ3
π1





R1

=







1
(

1
2uΓ0n2

0

+ w1/u
µ0(h/m0+2vm2

0
)

)

m0ak
2 +O(k4)

−n0ak
2

µ0(h/m0+2vm2

0
)
+O(k4)






, (3.29c)

νL1 = (θ1, θ3, π1)L1 =

(

µ0(h/m0 + 2m2
0v)

n0(h/m0 + 2m2
0(v − w2

1/u))
+ O(k2),

−µ0m0(h/m0 + 2m2
0v)(1− w1/u)

Γ0n0(h/m0 + 2m2
0(v − w2

1/u))
+O(k2), 1

)

.

(3.29d)

In addition, we find two relaxational modes with eigen-
frequencies

Ω2 = i2Γ0un
2
0 +O(k2) , (3.30)

and

Ω3 = iµ0(h/m0 + 2m2
0v) +O(k2) , (3.31)

Now consider the 3 × 3 system that is the analog of
Eq. (3.8). Here the energy scale w2µ0n

2
0 competes with h,

and for small h there are neither propagating nor diffusive
modes. Instead we find three relaxational modes with
eigenfrequencies

Ω4 = iµ0h/m0 +O(ǫ2) , (3.32)

Ω5 = iµ0(h/m0 + w2n
2
0) +O(ǫ2) , (3.33)

Ω6 = iw2hm0
n2
0 + Γ0µ0

µ0(h/m0 + w2n2
0)

+O(ǫ4) , (3.34)

with ǫ = O(h,m0).

3. Longitudinal field

The 2× 2 matrix that is analogous to Eq. (3.15) yields
two relaxational modes. To zeroth order in h and m0 the
eigenfrequencies are

Ω1 = i2Γ0un
2
0 +O(ǫ2) (3.35)

and

Ω2 = iµ0(h/m0) +O(ǫ2) . (3.36)

From the 4×4 matrix that is the analog of Eq. (3.16a)
one finds four additional relaxational modes. To lowest
order in ǫ = O(h,m0) the corresponding eigenfrequencies
are

Ω3 = Ω4 = iµ0(h/m0 − w2n
2
0) +O(ǫ) , (3.37)

Ω5 = Ω6 = −iw2hm0
n2
0 + Γ0µ0

µ0(h/m0 − w2n2
0)

+O(ǫ3) .

(3.38)

D. Non-conserved homogeneous magnetization:

Coexisting AFM and homogeneous orders

1. Orthogonal order parameters

The 3× 3 matrix that is analogous to Eq. (3.7) yields
one diffusive mode:

Ω1 = i
(

Γ0 + n2
0/µ0 +m2

0/Γ0

)

a k2 +O(k4) . (3.39a)

The corresponding right and left eigenvectors are

νR1 ≡





θ1
θ3
π1





R1

=







1
w1Γ0n

2

0
+vµ0m

2

0

2Γ0µ0n2

0
m0(uv−w2

1
)
ak2 +O(k4)

−(uΓ0n
2

0
+w1µ0m

2

0
)

2Γ0µ0n0m2

0
(uv−w2

1
)
ak2 +O(k4)






,

(3.39b)

νL1 = (θ1, π2, π3)L1

=

(

µ0

n0
+O(k2),−µ0m0

Γ0n0
+O(k2), 1

)

. (3.39c)

Note that if we put µ0 = λ0k
2 we can not relate these

expressions to Eqs. (3.9, 3.20), since the nature of the
mode has changed.

The other two modes are relaxational with eigenfre-
quencies

Ω2,3 = i

(

uΓ0n
2
0 + vµ0m

2
0

∓
√

(uΓ0n2
0 − vµ0m2

0)
2 + 4w2

1Γ0µ0n2
0

)

.

(3.40)

From the 3 × 3 matrix that is analogous to Eq. (3.8) we
obtain two soft modes. Depending on parameter values,
they can be gapless propagating with both the oscillation
frequency and the damping coefficient proportional to k2:
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Ω4,± =
±k2

2(Γ0m2
0 + µ0n2

0)

√

4d22(Γ0m2
0 + µ0n2

0)
2 − µ2

0(Γ0a− µ0c)2n4
0 + iµ0

Γ0(n
2
0a+ 2m2

0c) + µ0n
2
0c

2(Γ0m2
0 + µ0n2

0)
k2 +O(k4) ,

(3.41a)
with d2 from Eq. (3.21b) and right and left eigenvectors

νR4,± ≡





θ2
π2
π3





R4,±

=





1

±i
√

m2
0/n

2
0 + µ0/Γ0 +O(k2)

m0/n0 +O(k2)



 , (3.41b)

νL4,± ≡ (θ2, π2, π3)L4,± =

(

n0µ0

m0Γ0
+O(k2),∓i

√

1 + µ0n2
0/Γ0m2

0 +O(k2), 1

)

. (3.41c)

For µ0 → λ0k
2 this is consistent with Eqs. (3.21). However there is no guarantee that the expression under the square

root in Eq. (3.41a) is positive. If it is not, then one has instead two diffusive modes,

Ω̃4,± = iD4,±k
2 +O(k4) (3.42a)

with diffusion coefficients

D4,± =
1

2(Γ0m2
0 + µ0n2

0)

[

Γ0µ0(n
2
0a+ 2m2

0c) + µ2
0n

2
0c±

√

µ2
0(Γ0a− µ0c)2n4

0 − 4d22(Γ0m2
0 + µ0n2

0)
2

]

. (3.42b)

In addition, there is one relaxational mode with eigenfrequency

Ω5 = iw2(Γ0m
2
0 + µ0n

2
0) . (3.43)

2. Collinear order parameters

The 4×4 problem that is analogous to Eq. (3.16a) yields a pair of gapless propagating modes with eigenfrequencies

Ω1,± = ±m0(m
2
0c+ n2

0a)
(m2

0 − n2
0)

2 + Γ2
0m

2
0 + µ2

0n
2
0 + 2Γ0µ0n

2
0

m2
0(m

2
0 − n2

0)
2 + (Γ0m2

0 + µ0n2
0)

2
k2

+iµ0(m
2
0c+ n2

0a)
(m2

0 − n2
0)

2 + Γ2
0m

2
0 + Γ0µ0n

2
0

m2
0(m

2
0 − n2

0)
2 + (Γ0m2

0 + µ0n2
0)

2
k2 +O(k4) . (3.44a)

The right and left eigenvectors are, at k = 0,32

νR1,± ≡







θ1
θ2
π1
π2







R1,±

=







1
∓i

±im0/n0

m0/n0






, (3.44b)

νL1,± ≡ (θ1, θ2, π1, π2)L1,±

=

(

Γ0µ0n0m0 ∓ iµ0n0(n
2
0 −m2

0)

(n2
0 −m2

0)
2 +m2

0Γ
2
0

,
µ0n0(n

2
0 −m2

0)± iΓ0µ0n0m0

(n2
0 −m2

0)
2 +m2

0Γ
2
0

,∓i, 1
)

. (3.44c)

In addition, there is a pair of gapped propagating modes with eigenfrequencies

Ω2,± = ±w2m0(m
2
0 − n2

0)− iw2(Γ0m
2
0 + µ0n

2
0) +O(k2) . (3.45)

Note that the damping coefficient does not vanish at k = 0.
The 2× 2 problem that is analogous to Eq. (3.15) now yields two relaxational modes with eigenfrequencies

Ω3,4 = i

(

uΓ0n
2
0 + vµ0m

2
0 ±

√

(uΓ0n2
0 − vµ0m2

0)
2 + 4(w1 + w2)2Γ0µ0n2

0m
2
0

)

. (3.46)

IV. SUMMARY, AND DISCUSSION

In summary, we have used time-dependent Ginzburg-
Landau theory, with the basic equation of motion for

magnetic moments the only input, to determine the long-



14

wavelength spin dynamics of antiferromagnets in various
physical situations. We have considered purely antiferro-
magnetic order subject to an external magnetic field, and
have distinguished between the cases of a conserved and
a non-conserved homogeneous magnetization. We have
also considered the case of coexisting antiferromagnetic
and ferromagnetic orders, as it occurs, for example, in
ferrimagnets and canted magnets. Our results are sum-
marized in Tables I and II.

Table I: Number of modes of various types for anti-
ferromagnetic order with the homogeneous magnetization
conserved/non-conserved.

Field Modes

propagating∗ diffusive relaxational
gapless gapped

zero 4 / 0 0 / 0 1 / 2 1∗∗/ 4
transverse 2 / 0 2 / 0 0 / 1 2 / 5

longitudinal 0 / 0 4 / 0 1 / 0 1 / 6

∗ Two propagating modes form one spin wave.
∗∗ See the comments after Eq. (3.6).

Table II: Number of modes of various types for coexisting
antiferromagnetic and ferromagnetic orders with the homo-
geneous magnetization conserved/non-conserved.

Order
Parameters Modes

propagating diffusive relaxational
gapless gapped

orthogonal 4 / 2 or 0 0 / 0 0 / 1 or 3 2 / 3
collinear 2 / 2 2 / 2 1 / 0 1 / 2

A. Nature of spin excitations

One striking aspect of these results is the qualitative
difference between the cases of a conserved and a non-
conserved homogeneous magnetization, respectively. In
the former case in a zero external field the transverse fluc-
tuations form two pairs of gapless propagating modes, or
two spin waves, with a linear dispersion relation. The lon-
gitudinal order-parameter fluctuations are relaxational,
whereas the longitudinal fluctuations of the homogeneous
magnetization are diffusive. In a transverse field one of
the spin-wave pairs remains gapless with a linear disper-
sion, the other one acquires a gap that is proportional to
the field, and there is no diffusive mode. In a longitudinal
field one finds two pairs of gapped propagating modes, or
two spin waves, and one diffusive mode. In all cases there

thus are two propagating spin waves. If the homogeneous
magnetization is not conserved, in contrast, there are no
propagating spin waves and the only soft modes are two
diffusive modes in zero field and one diffusive mode in the
transverse-field case. (To avoid misunderstandings we re-
iterate that there is no experimental control over the ori-
entation of the field with respect to the order parameter;
the sign of the Landau parameter w2 determines which
case is realized in any given system.) This case is real-
ized, for instance, in an antiferromagnet with magnetic
impurities. The results of Ref. 33 obtained by applying
linear spin-wave theory to this case, which found propa-
gating modes, are thus not valid in the long-wavelength
limit. Propagating spin waves are reconstituted, how-
ever, above a threshold wave number, as we discuss next.

An interesting feature of the antiferromagnet in zero
field is the crossover between the cases of a conserved
and a non-conserved homogeneous magnetization in the
limit µ0 → 0 or, for fixed small µ0, with increasing wave
number. Consider the eigenproblem posed by Eq. (3.24),
and assume that the damping is small in the sense that
µ0Γ0 ≪ n2

0 and µ2
0 ≪ n2

0a/c. Then the reality proper-
ties of the quadratic equation change at a critical value
of the wave number k, and the diffusive modes become
propagating for k > kc where kc = µ0

√

(t+ w1n2
0)/an

2
0.

In more physical terms, the threshold wave number is
kc/k0 = 1/E0τmag, with k0 and E0 microscopic wave-
number and energy scales, respectively, and 1/τmag ∝ µ0

the relaxation rate associated with the magnetic im-
purities. Similarly, the two relaxational modes from
Eq. (3.26) become propagating, and collectively these
four modes cross over to the four propagating modes (two
spin waves) that characterize the antiferromagnet with a
conserved homogeneous magnetization, Eq. (3.4a). For
metals at low temperatures we expect k0 and E0 to be on
the order of the Fermi wave number and the Fermi en-
ergy, respectively, and the value of kc can be quite small.

Alternatively, let µ0 → 0 in the limit of asymptoti-
cally small k. Then the two diffusive modes and two of
the relaxational modes listed in Table I for the zero-field
non-conserved case turn into the four propagating modes
of the conserved case, one of the relaxational modes be-
comes diffusive, and the remaining mode remains relax-
ational.

B. Properties of propagating spin waves

1. Models, and their restrictions

The long-wavelength and low-frequency properties of
the Heisenberg model for an antiferromagnetic nearest-
neighbor coupling are captured by an effective field the-
ory that takes the form of a nonlinear sigma model.34–36

It needs to be noted that this model always has the stag-
gered magnetization point in a direction perpendicular
to an external magnetic field, i.e., the simple Heisenberg
model captures only the case w2 > 0 (the transverse-
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field case) in Eq. (2.4) and is less general than the Lan-
dau theory we have used. The sigma model correctly
describes the two gapless and two gapped modes shown
in Table I.36 In Ref. 37 it was pointed out that the field-
dependence of the dispersion relations predicted by the
sigma model does not agree with the results of spin-wave
theory, even though the qualitative features of the spin
waves are correct. A comparison with the coefficients c1
and c2 in Eqs. (3.9d) and (3.11d) shows that their field de-
pendence as obtained from the hydrodynamic equations
is still substantially more complicated than the results of
the spin-wave theory employed in Ref. 37. In the sigma
model, both of these coefficients are replaced by their
values at h = 0.

We have truncated the Landau free energy, Eq. (2.4),
at biquadratic order. The property that the staggered
magnetization is either parallel or perpendicular to the
homogeneous magnetization is a consequence of this
truncation. For instance, keeping a term proportional
to (n · m)4 allows for states where n and m are nei-
ther collinear nor orthogonal to each other. This can
become important in large magnetic fields, when m is
no longer small, see, e.g., Ref. 38. If this is important
for a specific purpose one can keep higher order terms in
the free-energy functional and repeat the analysis of the
hydrodynamic equations, which is completely general.

We also note that our discussion applies to systems in
spatial dimensions d ≥ 2. Antiferromagnetic spin chains
show qualitatively different behavior that requires a spe-
cial treatment; see, e.g., Ref. 39.

2. Damping

In Eqs. (2.26) we have used the standard Landau-
Lifshitz form for the damping terms.7,25,26 Landau and
Lifshitz considered a φ4-theory and enforced a time-
independent modulus of the magnetic moment by writing
Eq. (2.23) with the damping term added as

∂tM = M × δF

δM
− Γ

[

δF

δM
−M

(

M · δF
δM

)

/M2

]

= M × δF

δM
+ ΓM ×

(

M × δF

δM

)

/M2 . (4.1)

Gilbert later proposed to replace the M × (δF/δM)
in the damping term by ∂tM .40 The resulting Landau-
Lifshitz-Gilbert equation,

∂tM =M × δF

δM
+ ΓM × ∂tM/M2 , (4.2)

is very popular on phenomenological grounds, but its con-
sistency with basic principles of irreversible thermody-
namics is questionable, see, e.g., Ref. 41. Equation (4.2)
can be mapped onto Eq. (4.1) at the expense of making
the prefactor of the Bloch term depending on the damp-
ing coefficient.42 This observation underscores the fact
that the Gilbert modification does not have the standard

hydrodynamic form, but it also means that, as far as the
nature of the spin excitations is concerned, the difference
between Eqs. (4.1) and (4.2) is irrelevant.

Regarding the nature of the damping, in a simple an-
tiferromagnet in zero field the damping is quadratic in
the wavenumber, and thus always small, in the long-
wavelength limit, compared to the oscillation frequency,
which is linear in k, see Eq. (3.4a). This is important
for ensuring the correct relation between the static Gold-
stone modes and the time-correlation functions, as we
demonstrate in Appendix B. In a simple ferromagnet,
the damping is proportional to k2, and the damping to
k4. For an antiferromagnet with a conserved homoge-
neous magnetization in a transverse field, the gapless
propagating modes still have a linear dispersion relation
and both they and the gapped modes have a quadratic
damping, see Eqs. (3.9, 3.11), but in a longitudinal field
one of the pairs of gapped modes has a damping coeffi-
cient that is nozero at k = 0, see Eq. (3.17a). For co-
existing antiferromagnetic and homogeneous order there
are ferromagnon-like spin waves, with a quadratic oscil-
lation frequency and quartic damping, see Eqs. (3.21a)
and (3.23b).

In the context of damping it is also interesting to see
how the damping term that appears in effective field the-
ories for metals,43 which is often referred to as Landau
damping in analogy to the corresponding effect in a colli-
sionless classical plasma, is related to the hydrodynamic
equations. In the case of a ferromagnetic metal with
nonmagnetic impurities the Landau-damping term in the
paramagnon propagator has the form |Ω|/Dk2, where D
is the diffusion coefficient related to the diffusive dynam-
ics of the conduction electrons in the spin-triplet channel.
This corresponds to the damping term in the hydrody-
namic equations for the case of a conserved order param-
eter, see Eq. (2.26b). For an antiferromagnetic metal, or
for a ferromagnet with magnetic impurities, the corre-
sponding term is |Ω|τ , with τ a k-independent relaxation
time. This corresponds to the damping term for a non-
conserved order parameter, see Eqs. (2.26a) and (2.24b’).

In a clean metallic ferromagnet the Landau-damping
term has the form |Ω|/vFk, with vF the Fermi velocity.43

In order to see how this case fits into the hydrodynamic
description, we note that Eq. (2.26b) implies a long-
wavelength susceptibility of the form

χ(k, iΩ) ∝ −iΩ/λ0k2 + k2 , (4.3)

for the conserved and non-conserved cases, respectively.
In our case χ is the spin susceptibility, but the following
discussion holds more generally for any order-parameter
susceptibility. In a clean metallic system at T = 0 the
kinetic coefficient λ0 does not exist in the limit of zero
frequency and wave number and scales as λ0 ∼ 1/(Ω +
kzλ), with zλ the dynamical exponent characteristic of
the kinetic coefficient. In the conserved case, zλ ≥ 2
leads to Ω ∼ k2, and zλ < 2 leads to Ω ∼ k4−zλ . For
the conduction electrons in a metal one has Ω ∼ k, and
as long as the order parameter couples to the conduction
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electrons one therefore expects zλ = 1. Effectively, we
thus have λ0 ∼ 1/k,8 which is consistent with the above
form of the Landau-damping term.

C. Outlook: Nonlinear effects, and consequences

for quantum phase transitions

The current paper lays the groundwork for several in-
vestigations of properties of quantum antiferromagnets.
For instance, Ref. 10 considered the coupling of the spin
waves to the longitudinal fluctuations, and the resulting
behavior of the longitudinal susceptibility and the dy-
namical structure factor. Within the current formalism,
these effects are due to the nonlinearities in the hydro-
dynamic equations that we have neglected (see also the
remark after Eq. (3.6)). Due to limitations inherent in
the nonlinear sigma model used in Ref. 10 the only cases
considered were those of zero field, and antiferromagnetic
order in a transverse field. An analogous investigation of
all cases discussed in the present paper would be of inter-
est, especially for the dynamical structure factor, which
is directly measurable by neutron scattering.

A renormalized mean-field theory for quantum ferro-
magnets predicted that the quantum phase transition
from a paramagnet to a ferromagnet or ferrimagnet in
clean metals is necessarily first order.44,45 This predic-
tion has been confirmed by experiments on many differ-
ent materials.16 The present paper makes possible anal-
ogous theories for other quantum phase transitions. For
instance, one expects the prediction of a universal tricriti-
cal point45 to hold for canted magnets (the case w2 > 0 in
our notation) in addition to ferrimagnets (w2 > 0). Fur-
thermore, it allows for a treatment of the quantum phase
transition from a metallic ferromagnet to an antiferro-

magnet, of which there are various known examples.16

Another class of phase transitions that is of interest in
this context is the spin-flop transition in uniaxial antifer-
romagnets as a function of an applied external field. The
history of these classical transitions goes back to Neél
in the 1930s; they have been studied extensively from
the viewpoint of classical phase-transition theory46 and
continue to be of great interest, see Ref. 17 and refer-
ences therein. They usually are first order, but can be
second order in certain materials.47 An investigation of
the corresponding quantum phase transitions would be
of interest.
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Appendix A: Interpolating solution for the

transverse-field and orthogonal-order-parameters

cases

As we saw in Secs. III A 2 and III B 1, the nature of the
solution of Eq. (3.8) changes qualitatively if one consid-
ers the limit h → 0 for fixed m0. To see the crossover,
one can of course solve the cubic equation exactly, but
this is not very illuminating. It is more useful to keep
all terms that contribute to leading order in k and h in
either the pure AFM case or the coexisting-orders case.
The eigenfrequencies then can be found by solving linear
equations only. The result is

Ω2,± = ±
√

(h+m0ck2)2 + c22k
2 + n2

0ack
4

+
i

2
k2

[

λ0(h/m0 + ck2) +
(h/m0)(λ0h

2 + Γ0n
2
0a

2k2) + Γ2
0λ0w

2
2m

2
0(an

2
0 + cm2

0)k
2

h2 + c22 + Γ2
0w

2
2m

4
0

]

. (A1a)

The corresponding right and left eigenvectors are

νR2,± ≡





θ2
π2
π3





R2,±

=







1

±i
√

(h+m0ck2)2+c22k
2+n2

0
ack4

n0(h/m0+ck2)

m0/n0






. (A1b)

νL2,± ≡ (θ2, π2, π3)L2,± =

(

n0ak
2

h+m0ck2
,

∓i
h+m0ck2

√

(h+m0ck2)2 + (h/m0 + ck2)n2
0ak

2, 1

)

. (A1c)

These expressions are valid to leading order in k and h for
both the AFM case, where the oscillation frequency is of

O(h, k) and the damping is of O(k2), and the coexisting-
orders case, where the oscillation frequency is of O(k2)
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and the damping is of O(k4). They correctly interpolate
between Eqs. (3.11) and (3.21). To linear order in Γ0 and
λ0 in the coexisting-orders case one recovers Eq. (3.22).

Appendix B: Time correlation functions, and the

fluctuation-dissipation theorem

We mentioned at the end of Sec. II that we have chosen
to calculate response functions. It is illustrative to con-
sider the related problem of calculating time correlation
functions. To this end we add Langevin forces fn and
fm on the right-hand sides of Eq. (2.26a) and (2.26b),
respectively. These are random forces that are charac-
terized by Gaussian distributions with second moments

〈f in(x, t) f jn(x′, t′)〉 = 2T Γ0 δijδ(x− x′) δ(t− t′) ,

(B1a)

〈f im(x, t) f jm(x′, t′)〉 = −2T λ0∇
2 δijδ(x− x′) δ(t− t′),

(B1b)

〈f in(x, t) f jm(x′, t′)〉 = 0 , (B1c)

where T is the temperature. For simplicity, we consider
only classical systems in this appendix; for a discussion
of a quantum Langevin equation, see Ref. 48. These rela-
tions guarantee the validity of the fluctuation-dissipation
theorem.

We now illustrate the use of this formalism for the
simple case of an AFM in zero field, Sec. III A 1; the
other cases can be analyzed analogously.

Consider Eq. (3.1) and add the fluctuating forces.
Then we have, structurally,

M ψ = f , (B2)

where M denotes the 2× 2 matrix, ψ comprises the fluc-
tuations θ and π, and f the appropriate components of
the fluctuating forces fn and fm. Multiplying with the
left eigenvector νL1,±, Eq. (3.4e), yields

Λ1± ψ1± = ±i(n0a/c1)kf
1
n + f1

m , (B3a)

where

ψ1± = ±i(n0a/c1)k θ1 + π1 (B3b)

and

Λ1± = iΩ± ic1k +
1

2
Γ1ak

2 (B3c)

is the eigenvalue of the matrix M that corresponds to
the eigenvector νL,1±, see Eqs. (3.4). For the correlation
function of ψ1± we thus have

〈ψ1± ψ
∗
1±〉Ω,k =

−2T (n0a/c1)
2Γ1k

2

(Ω± c1k)2 + Γ2
1a

2k4/4
, (B4)

with Γ1 from Eq. (3.4c). The equal-time correlation func-
tion, which is, apart from a factor of T , equal to the ψ1±-
susceptibility χψ by the fluctuation-dissipation theorem,
is obtained by integrating over all frequencies:

Tχψ =

ˆ ∞

−∞

dΩ

2π
〈ψ1± ψ

∗
1±〉Ω,k = −2Ta(n0/c1)

2 . (B5)

Now consider kθ1 = −i(c1/2n0a)(ψ1+ − ψ1−). Equation
(B5) yields k2χθ1 = 1/a, or

χθ1 = 1/ak2 (B6)

in agreement with Eq. (2.19b).

We see that the structure of the left eigenvector, which
is very different from the right one, is crucial for obtaining
the correct result for the static susceptibility. The more
complicated cases can be analyzed analogously. In par-
ticular, we note that the structure of the left eigenvector
νL2,± in the longitudinal-field case, Eq. (3.17g), makes
sure that there in no diverging static susceptibility, in
agreement with the absence of any Goldstone modes in
the static analysis in Sec. II A 3.
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