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We present a novel scheme to accurately predict atomic forces as vector quantities, rather than sets
of scalar components, by Gaussian Process (GP) Regression. This is based on matrix-valued kernel
functions, on which we impose the requirements that the predicted force rotates with the target
configuration and is independent of any rotations applied to the configuration database entries.
We show that such “covariant” GP kernels can be obtained by integration over the elements of the
rotation group SO(d) for the relevant dimensionality d. Remarkably, in specific cases the integration
can be carried out analytically and yields a conservative force field that can be recast into a pair
interaction form. Finally, we show that restricting the integration to a summation over the elements
of a finite point group relevant to the target system is sufficient to recover an accurate GP. The
accuracy of our kernels in predicting quantum-mechanical forces in real materials is investigated by
tests on pure and defective Ni, Fe and Si crystalline systems.

I. INTRODUCTION

The last decades have witnessed an exponential growth
of computer processing power (“Moore’s Law” [1]) and
an even faster progress of storage technology (“Kry-
der’s Law” [2, 3]). Atomistic modelling methods based
on computation and data-intensive quantum mechanical
methods, such as Density Functional Theory (DFT) [4–
6], have correspondingly evolved in both feasibility and
scope. Moreover, the possibility of retaining at low cost
very large amounts of data generated by Quantum Mech-
anical (QM) codes has prompted novel efforts to make the
data openly accessible [7].

The information contained in the data can thus be har-
nessed and re-used indefinitely, in various ways. High
throughput techniques are routinely used to identify new
correlations between physical properties, with the aim of
designing new high-performance materials [8–10]. Infer-
ence techniques can meanwhile also be used as a boost
or substitute for QM techniques. This typically involves
predicting a physical property for a new system configur-
ation, on the basis of its values for an existing database
of configurations. If the database is sufficiently large and
representative, the new property values can be quickly
inferred, rather than calculated anew by expensive QM
procedures, with controllable accuracy.

Machine Learning techniques have been successfully
used to predict properties as diverse as atomisation en-
ergies [11], density functionals [12], Green’s functions
[13], electronic transport coefficients [14], potential en-
ergy surfaces [15–17] and free energy landscapes [18].
The high configuration space complexity of real chemical
systems has also inspired “learning” molecular dynamics
schemes that never assume database completeness, but
rather combine inference with on-the-fly QM calculations
(learning on-the-fly, LOTF) [19–21] carried out when in-
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ference is infeasible or not deemed sufficiently accurate.

A well established general concept within the Machine
Learning community is that functional invariance prop-
erties under some known transformation can be used to
improve prediction, whether this is carried out by e.g.
Gaussian Process (GP) regression [22, 23] or neural net-
works [24]. Exploiting in similar ways properties other
than invariance has received more limited attention [25].
In the same spirit, materials modellers have been suc-
cessful in exploiting the invariance of energy under rota-
tion or translation to improve the performance of energy
prediction techniques [15, 16]. In LOTF molecular dy-
namics applications the high-accuracy target and local
interpolation character of force prediction makes it ap-
pealing to learn forces directly rather than learning a po-
tential energy scalar field first and then deriving forces
by differentiation. In previous works [26–28] this was ac-
complished by using GP regression to separately learn
individual force components.

Here, we show how Vectorial Gaussian Process (VGP)
[29, 30] regression provides a more natural framework
for force learning, where the correct vector behaviour
of forces under symmetry transformations can be ob-
tained by using a new family of vector kernels of co-
variant nature. These kernels prove particularly effi-
cient at exploiting the information contained in QM force
databases, however constructed, together with any prior
knowledge of the symmetry properties of the physical
system under investigation. The next section provides a
brief overview of the notion of a VGP, where we pay par-
ticular attention to the problem of force learning. Then
we define a covariant kernel, explain its symmetry prop-
erties and give a general recipe to generate such kernels.
The procedure is best exemplified by looking at one and
two dimensional systems, where the relevant symmetry
force transformation groups are D1 and O(2). Finally
we address the full three dimensional case, where covari-
ant kernels are tested by examining their performance in
learning QM forces in realistic physical systems.
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II. VECTORIAL GAUSSIAN PROCESS
REGRESSION

We wish to model by a VGP the force f acting on an
atom whose chemical environment is in a configuration ρ
that encodes the positions of all neighbours of the atom,
up to a suitable cutoff radius, in an arbitrary Cartesian
reference frame. In the absence of long range ionic inter-
actions, the existence of such a local map is guaranteed
for all finite-temperature systems by the "nearsighted-
ness" principle of electronic matter [31, 32].

In a Bayesian setting, before any data is considered,
f is treated as a Gaussian Process, i.e., it is assumed
that for any finite set of configurations {ρi, i = 1, . . . N}
the values f(ρi) taken by the vector function f are well
described by a multivariate Gaussian distribution [23].
We write:

f(ρ) ∼ GP(m(ρ),K(ρ, ρ′)) (1)

wherem(ρ) is a vector-valued mean function andK(ρ, ρ′)
is a matrix-valued kernel function. Before any data is
considered, m is usually assumed to be zero as all prior
information on f is encoded into the kernel function
K(ρ, ρ′). The latter represents the correlation of the vec-
tors f(ρ) and f(ρ′) as a function of the two configurations
(“input space points”) ρ and ρ′:

K(ρ, ρ′) = 〈f(ρ)fT(ρ′)〉, (2)

where angular brackets here signify the expected value
over the multivariate Gaussian distribution. Any ker-
nel K consistent with this definition must be a positive
semi-definite matrix function, since for any collection of
vectors {vi}∑

ij

vT
i K(ρi, ρj)vj = 〈(

∑
i

vT
i f(ρi))

2〉 ≥ 0. (3)

To train the prediction model we need to access a
database of atomic configurations and reference forces
D = {(ρ, fr)i, i = 1, . . . , N}. Using Bayes’ theorem [33]
the distribution (1) is modified to take the data D into ac-
count [23]. If the likelihood function [24] is also Gaussian
(which effectively assumes that the observed forces fri are
the true forces subject to Gaussian noise of variance σ2

n)
then the resulting posterior distribution f(ρ | D), condi-
tional on the data, will also be a Gaussian process

f(ρ | D) ∼ GP(f̂(ρ | D), Ĉ(ρ, ρ′)). (4)

The mean function of the posterior distribution, f̂(ρ | D),
is at this point the best estimate for the true underlying
function:

f̂(ρ | D) =

N∑
ij

K(ρ, ρi)[K + Iσ2
n]−1
ij frj . (5)

Here σ2
n, formally the noise affecting the observed forces

fr, serves in practice as a regulariser for the matrix in-
verse. In the following, blackboard bold characters such
as K or I indicate N×N block matrices (for instance, the
Gram matrix K is defined as (K)ij = K(ρi, ρj)). Simil-
arly, we denote by [K+ Iσ2

n]−1
ij the ij-block of the inverse

matrix.
We next examine how to incorporate the vector be-

haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
the same chemical species, rotations and reflections of
atomic configurations. Forces are invariant with respect
to translations and atomic permutations, and covariant
with respect to rotations and reflections. Assuming that
the representation of the atomic configuration is local,
i.e., the atom subject to the force fi is at the origin of the
reference frame used for ρi, translations are automatic-
ally taken into account. The remaining symmetries must
be addressed in the construction of covariant kernels.

III. COVARIANT KERNELS

From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(ρ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ρ is trans-
formed to Sρ, the predicted force must transform ac-
cordingly:

f̂(Sρ | D) = Sf̂(ρ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D → D̃ = {(Siρi,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(Sρ,S ′ρ′) = SK(ρ, ρ′)S′T. (7)

That a covariant kernel imposes Property 1 follows
straightforwardly from Eq. (5):

f̂(Sρ | D) =

N∑
ij

K(Sρ, ρi)[K + Iσ2
n]−1
ij frj

=

N∑
ij

SK(ρ, ρi)[K + Iσ2
n]−1
ij frj

= Sf̂(ρ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
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(K̃)ij = K(Siρi,Sjρj) = SiK(ρi, ρj)S
T
j . If we define the

block-diagonal matrix Sij = δijSi, this can be written in
the simple block-matrix form K̃ = SKST. Using kernel
covariance again to write K(ρ,Siρi) = K(ρ, ρi)ST

ii the
prediction associated with the transformed database D̃
can be written as

f̂(ρ | D̃) =

N∑
ij

K(ρ, ρi)ST
ii[SKST + Iσ2

n]−1
ij Sjjfrj . (9)

By simple matrix manipulations it is now possible to
show that in the above expression the symmetry trans-
formations cancel out; indeed

ST[SKST + Iσ2
n]−1S = ST[S(K + Iσ2

n)ST]−1S
= ST(ST)−1[K + Iσ2

n]−1S−1S
= [K + Iσ2

n]−1 (10)

Equation (10) along with (9) implies f̂(ρ | D̃) = f̂(ρ | D),
that is, Property 2. It is easy to check that standard
kernels such as the squared exponential [24] or the over-
lap integral of atomic configuration [34] do not possess
the covariance property (7). Designing, entirely by fea-
ture engineering, a covariant kernel is in principle pos-
sible but can require complex tuning and is likely to be
highly system dependent (see e.g. [26]). We note that
non covariant kernels can be used and avoid these dif-
ficulties, and some have been successfully implemented
[28, 35]. This leaves space for improvement as prediction
efficiency will generally be enhanced by increased exploit-
ation of symmetry (see e.g., Figure 3 below for a simple
test of this).

We next present a general method to transform a
standard matrix kernel into a covariant one, followed by
numerical tests suggesting that the resulting kernel im-
proves very significantly on the force-learning properties
of the initial one, its error converging with just a fraction
of the training data. This proceeds along the lines of
previous techniques to generate scalar invariants, namely
the transformation integration procedure developed in
[22] and the Smooth Overlap of Atomic Orbitals (SOAP)
representation for learning potential energy surfaces of
atomic systems [36, 37].

Given a group S and a base kernel Kb, a covariant
kernel Kc can be constructed by

Kc(ρ, ρ′) =

∫
dS1dS2 S

T
1 K

b(S1ρ,S2ρ
′)S2 (11)

where dS is the normalised Haar measure for the sym-
metry group we are integrating over [38].

The covariance of Kc as given by (11) is easily checked
as

Kc(Sρ,S ′ρ′) =

∫
dS1dS2 S

T
1 K

b(S1Sρ,S2S ′ρ′)S2

=

∫
dS̃1dS̃2 SS̃

T
1 K

b(S̃1ρ, S̃2ρ
′)S̃2S

′T

= SKc(ρ, ρ′)S′T (12)

where the second line follows from the substitutions
S̃1 = S1S and S̃2 = S2S ′. Note that these transforma-
tions have unit Jacobian because of the translational in-
variance (within the group) of any Haar measure [38, 39].

It can be shown that the positive semi-definiteness of
the base kernel is preserved under the operation (11) of
covariant integration. In particular, a kernel is posit-
ive semi-definite if and only if it is a scalar product in
some (possibly infinite dimensional) vector space [23, 40].
Hence the base kernel can be written as Kb(ρ, ρ′) =∫
dαφα(ρ)φT

α(ρ′). It is then possible to show that its
covariant counterpart Kc (equation (11)) will also be a
scalar product in a new function space. Indeed

Kc(ρ, ρ′) =

∫
dS1dS2 S

T
1 K

b(S1ρ,S2ρ
′)S2

=

∫
dα dS1dS2 S

T
1 φα(S1ρ)φT

α(S2ρ
′)S2

=

∫
dαψα(ρ)ψT

α(ρ′) (13)

where the new basis vectors were defined as ψα(ρ) =∫
dS STφα(Sρ). Hence, Kc will also be positive definite.
The completely general procedure above can be cum-

bersome to apply in practice, because of the double integ-
ration over group elements in (11) and the dependence on
the design of the base kernel matrix Kb. As a simplific-
ation, we assume the base kernel to be of diagonal form;
assuming equivalence of all space directions, we can then
write

Kb(ρ, ρ′) = Ikb(ρ, ρ′). (14)

where the scalar base kernel kb is independent on the
reference frame in which the configurations are expressed.
This requires that

kb(Sρ,Sρ′) = kb(ρ, ρ′), (15)

that is, scalar invariance of the base kernel (a property
very commonly found in standard kernels). The double
integration in (11) reduces at this point to a single one

Kc(ρ, ρ′) =

∫
dS1dS2 S

T
1 S2k

b(S1ρ,S2ρ
′)

=

∫
dS1dS2 S

T
1 S2k

b(ρ,S−1
1 S2ρ

′)

=

∫
dS S kb(ρ,Sρ′) (16)

where the second line follows from property (15) and the
third line is obtained by the substitution S = S−1

1 S2.
In the next section we show that some base kernels

allow analytical integration of (16). Here we note that
incorporating our prior knowledge of the correct beha-
viour of forces in the kernel enables us to learn and pre-
dict forces associated with any configuration, regardless
of its orientation. However, being able to do this for com-
pletely generic orientations is not always necessary. In
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many systems (e.g. crystalline solids where the orienta-
tion is known) all relevant configurations cluster around
particular discrete symmetries. For these systems the
relevant physics can be captured by restricting equation
(11) to a discrete sum over the relevant group elements:

Kc(ρ, ρ′) =
1

|G|
∑
G∈G

Gk(ρ, Gρ′), (17)

and since there are 48 distinct group elements at most
(the order of the full O48 group), the procedure remains
computationally feasible. In the particular case of one-
dimensional systems, where the only symmetry operation
available other than the identity is the inversion, equa-
tions (16) and (17) are formally equivalent.

IV. COVARIANT KERNELS FROM 1 TO 3
DIMENSIONS

In the following we will assume that a single chemical
species is present, so that permutation invariance will
be simply enforced by representing configurations as lin-
ear combinations of n Gaussian functions each centred
on one atom, all having the same width σ, and suitably
normalised depending on the dimension d considered:

ρ(r, {ri}) =
1

(2πσ2)d/2

n∑
i

e−
‖r−ri‖

2

2σ2 . (18)

From (18), a linear base kernel kbL can be defined as the
overlap integral of two configurations [15, 34]

kbL(ρ, ρ′) =

∫
dr ρ(r, {ri})ρ′(r, {r′j})

=
1

(2πσ2)d

nn′∑
ij

∫
dr e−

‖r−ri‖
2

2σ2 e−
‖r−r′j‖

2

2σ2

=
1

(2
√
πσ2)d

∑
ij

e−
‖ri−r′j‖

2

4σ2 (19)

where the integration yielding the third line is performed
by standard completion of the square.

We can interpret the linear kernel kbL in (19) as a scalar
product in function space, so that kbL(ρ, ρ) = ‖ρ‖2 can
be thought of as the squared norm of the ρ configuration
function. A permutation invariant distance is also readily
obtained as d(ρ, ρ′) = ‖ρ−ρ′‖, which can be used within
a squared exponential kernel to give

kbSE(ρ, ρ′) = e−‖ρ−ρ
′‖2/2θ

= e−(kbL(ρ,ρ)+kbL(ρ′,ρ′)−2kbL(ρ,ρ′))/2θ. (20)

The representation described above is by construction
translation (and atomic permutation) invariant. We next
address the transformations for which the atomic force is

Figure 1. Lennard-Jones dimer force field, learned with data
from one atom only. The base kernel (C1) does not learn the
symmetric counterpart (reaction force), while the covariant
(D1) does. The kernels are labelled by the symmetry group
used to make them covariant; see main text for details.

covariant, i.e., rotations and reflections, using the ap-
proach described in the previous section. Systems with
dimensions d = 1, 2, 3 are considered in the following
three subsections. The first two provide a useful concep-
tual playground where the features of “covariant learning”
can be more easily visualised. The third one benchmarks
the method in real physical systems, simulated at the
DFT level of accuracy.

A. 1D systems

A key feature of covariant kernels is the ability to en-
able “learning” of the entire set of configurations that are
equivalent by symmetry to those actually provided in the
database. For instance, the force acting on the (“central”)
atom at the origin of configuration ρ can be predicted
even if only configurations ρ′ of different symmetry are
contained in the database. The only relevant symmetry
transformation in 1D is the reflection Q of a configura-
tion about its centre. In the simplest possible system, a
dimer, this maps configurations where the central atom
has a right neighbour (i.e. those for which the central
atom is the left atom in the dimer) onto configurations
where the central atom has a left neighbour. The cov-
ariant symmetrisation discussed in the previous section
(equation (17)) takes the very simple form

kc(ρ, ρ′) =
1

2
(kbL(ρ, ρ′)− kbL(ρ,Qρ′)). (21)

Note that kc is identically zero for inversion-symmetric
configurations ρ or ρ′ whose associated forces must van-
ish.

The force field associated with a 1D Lennard Jones di-
mer is plotted in Figure 1 (dotted curve) as a function
of a single signed number – the 1D vector going from
the central atom to its neighbour. The figure also shows
the predictions of the unsymmetrised base kernel using
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Figure 2. Learning Curves for a 1D chain of LJ atoms. The
covariant kernel (D1) learns twice as fast as the base one (C1).

training data coming from configurations centred on the
left atom only (solid blue curve). This closely reproduces
the true LJ forces in the region where the data are avail-
able, and predicts the pure prior mean (i.e. zero) in the
symmetry related region, i.e. the left half of the figure.
Meanwhile, because of the covariant constraint (prior in-
formation) the GP based on the covariant kernel learns
the left part of the field by just reflecting the right part
appropriately.

To further check the performance of the covariant ker-
nel (21) we extended the comparison above to predicting
the forces associated with a 1D Lennard Jones 50-atom
chain system, in periodic boundary conditions. A data-
base of training configurations and an independent test
set of local configurations and forces were sampled from
a constant temperature molecular dynamics simulation
using a Langevin thermostat.

Before presenting the results, it is necessary to intro-
duce some conventions that will apply throughout the
rest of this work. As a measure of error between reference
force fr(ρ) and predicted force f̂(ρ), we will take the abso-
lute value of their vector difference |∆f | = |fr(ρ)− f̂(ρ)|.
Relative errors are obtained by dividing this absolute er-
ror by the time-ensemble average of the force modulus
¯|f |. Average errors are found by randomly sampling N
training configurations and 1000 test configurations. Re-
peating this operation provides the standard deviation
and hence the errors bars on absolute and relative errors.
We furthermore denote by Cn the cyclic group of order
n and by Dn the dihedral group (containing also reflec-
tions) of order 2n (C1 hence indicates the trivial group).

With the above clarifications, we can proceed with the
analysis of Figure 2, which reports the average relative
force error made by the GP regression on the test set as
a function of training set size. It is immediately apparent
that the covariant kernel performance is comparable to
that of the base kernel with double the number of data
points for training. We will observe the same effect also
in 2 and 3 dimensions: symmetrising over a relevant finite
group of order |G| gives rise to an error drop approxim-

Figure 3. Learning curves for 2D triangular grid of LJ atoms.
The larger the symmetry group used to construct the kernel,
the faster the learning, provided that the lattice symmetry is
captured.

ately equivalent to a |G|-fold increase in the number of
training points. Since the computational complexity of
training GP is O(N3), this can obviously lead to signi-
ficant computer time savings.

B. 2D systems

In two dimensions all rotations and reflections, as
well as any combination of these, are elements of O(2).
Moreover, the O(2) group can be represented by the
following set of matrices O(2) = {R(θ), θ ∈ (0, 2π]} ∪

{R(θ)Q, θ ∈ (0, 2π]} where R(θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
and Q is any 2× 2 reflection matrix.

This makes the covariant integration (16) over O(2)
trivial once the matrix elements resulting from the integ-
ration over SO(2) have been calculated. We next carry
out the integration for the linear base kernel of Eq. (19).
This can be expressed as a sum of pair contributions,
where the first atom in each pair belongs to ρ and the
second to ρ′ :

Kc
SO(2)(ρ, ρ

′) =
1

L

nn′∑
ij

∫
SO(2)

dRR e−
‖ri−Rr′j‖

2

4σ2 . (22)

Consistent with Eq. (16), only one atom of the pair is
rotated during the integration, with L being the normal-
isation factor (cf. equation (19)). The pairwise integrals
in (22) are calculated in two steps. We first define Rij to
be the rotation matrix which aligns r′j onto ri, and then
perform the change of variable R̃ = RRT

ij (and analog-

ously R̃ = RR−1

ij ) yielding

Kc
SO(2)(ρ, ρ

′) =
1

L

∑
ij

(∫
SO(2)

dR̃ R̃ e−
‖ri−R̃Rijr

′
j‖

2

4σ2

)
Rij .

(23)
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Since the two vectors ri and Rijr
′
j are now aligned, the

integral in Eq. (23) can only depend on the two moduli
ri and r′j . The final result takes a very simple analytic
form (cf. Supplemental Material):

Kc
SO(2)(ρ, ρ

′) =
1

L

∑
ij

e−
r2i+r

′2
j

4σ2 I1

(
rir
′
j

2σ2

)
Rij (24)

where I1(·) is a modified Bessel function of the first kind.
The kernel in (24) is rotation-covariant by construction
as can be seen immediately by comparison with Eq. (7).

By exploiting the internal structure of the orthogonal
group discussed above, it is straightforward to show that
the roto-reflection covariant kernel is given by

Kc
O(2)(ρ, ρ

′) =
1

2

(
Kc
SO(2)(ρ, ρ

′) + Kc
SO(2)(ρ,Qρ

′)Q
)
,

(25)
which is the two-dimensional analog of Eq. (21). Inter-
estingly, the resulting kernel can be also cast in the more
intuitive form

Kc
O(2)(ρ, ρ

′) =
1

L

∑
ij

e−
r2i+r

′2
j

4σ2 I1

(
rir
′
j

2σ2

)
r̂ir̂
′T
j , (26)

where the hat denotes a normalised vector. Equation (26)
implies that the predicted force on an atom at the centre
of a configuration ρ will be a sum of pairwise forces ori-
ented along the directions r̂i connecting the central atom
with each of its neighbours (while each neighbour will ex-
perience a corresponding reaction force). The modulus of
these forces will be a function of the interatomic distance
completely determined by the training database, whose
integral can be thought of as a pairwise energy potential.
Clearly then, the resulting force field will be conservat-
ive: for any fixed database, the forces predicted by GP
inference using this kernel will do zero work if integrated
along any closed trajectory loop in configuration space.

To test the relative performance of the learning models
discussed above, we constructed training and test data-
bases for a two-dimensional triangular lattice, sampled
from a constant temperature molecular dynamics sim-
ulation of a 48-particle system interacting via standard
Lennard-Jones forces, once more using periodic bound-
ary conditions and a Langevin thermostat. As the chosen
lattice has three-fold and six-fold symmetry, we can also
examine the performance of covariant kernels that obey
the two properties described above restricted to appro-
priate finite groups; these kernels are constructed as in
Eq. (17). In this way we can monitor how imposing a
progressively higher degree of symmetry on the kernel
changes the rate at which forces in this system can be
learned.

Our results are reported in Figure 3. As anticipated,
we find that the discrete covariant summation over the
elements of a group G is approximately equivalent to a
|G|-fold increase in the number of data points. This can
be seen e.g. from the results for the C3 kernel (3-fold rota-
tions) and the C6 kernel (6-fold rotations), by comparing

Figure 4. Learning Curves for crystalline nickel at two target
temperatures. The SO(3) covariant kernel (full lines) outper-
forms the base one (dashed lines).

the error incurred in the two cases using 20 and 10 data-
points, respectively. More generally, we observe that the
larger the group, the faster the learning. Note, however,
that for the covariant summation (17) to extract content
from the database that is actually useful for predicting
forces in the test configurations at hand, the group used
must describe a true underlying point symmetry of the
system. Hence, for instance, the C4 kernel gives rise to
much slower learning than the C3 kernel for the 2D tri-
angular lattice examined. Consistently, for this lattice
the full point group D6 performs almost as well as the
continuous symmetry kernels, suggesting that not much
more is to be gained once the full (finite-group) symmetry
of a system has been captured. This finding enables ac-
curate force prediction in crystalline system when base
kernels are used for which the covariant integration can-
not be performed analytically, because the summation
over a discrete symmetry group is available as a viable
alternative.

C. 3D systems

We next benchmark our kernels’s accuracy in predict-
ing DFT forces in three-dimensional bulk metal systems.
As in the 2D case, starting from the linear base kernel we
proceed to carry out the covariant integration analytic-
ally. After expressing the integration as a sum of pairwise
integrals, the position vectors ri and r′j of two atoms in
each pair are aligned onto each other. A convenient way
to achieve this is by making both vectors parallel to the
z-axis with appropriate rotations Rz

i and Rz
j . As be-

fore, the covariant integration will yield a matrix whose
elements are scalar functions of the radii ri and r′j only.
The integration can be carried out analytically over the
standard three Euler angle variables (cf. Supplemental
Material for further details). Due to the z-axis orienta-
tion, the kernel matrix elements turn out to be all zero
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Figure 5. Density of relative error made by the GP algorithm
(N = 320) for bulk nickel at 500K. The inset shows the
scatter plot of real vs. predicted cartesian components for the
same data.

except for the zz one. The result reads

Kc
SO(3)(ρ, ρ

′) =
1

L

∑
ij

RzT
i

0 0 0
0 0 0
0 0 φ(ri, r

′
j)

Rz
j ,

φ(ri, rj) =
e−αij

γ2
ij

(γij cosh γij − sinh γij),

αij =
r2
i + r′2j
4σ2

,

γij =
rir
′
j

2σ2
. (27)

As in the 2D case, this covariant kernel matrix can be
rewritten in terms of the unit vectors r̂i and r̂′j associated
with the atoms of the configurations ρ, ρ′ as

Kc
SO(3)(ρ, ρ

′) =
1

L

∑
ij

φ(ri, r
′
j)r̂ir̂

′T
j , (28)

making it apparent that the kernel models a pairwise
conservative force field. However, while in 2D we needed
to impose the full roto-reflection symmetry in order to
obtain Eq. (26), rotations alone are sufficient to arrive at
the fully covariant kernel in (28). This is a consequence of
the fact that, in 3D, the covariant integral over rotations
already imposes that the predicted force any atom will
exert on any other is aligned along the vector connecting
the pair: by symmetry there can be no preferred direc-
tion for an orthogonal force component after integrating
over all rotations around the connecting vector, so that
Kc
O(3) = Kc

SO(3). This is not the case in 2D where covari-
ant integration is over rotations around the z-axis ortho-
gonal to all connecting vectors lying in the xy plane, so
that non-aligned predicted force components associated
with a non-zero torque are not forbidden by symmetry in
Kc
SO(2), and only the fully symmetrised kernel (25) will

reduce to the pairwise form (26). More generally we may
conjecture that the rotationally covariant kernel Kc

O(d)

derived from a linear base kernel predicts pairwise cent-
ral forces, and hence is conservative, in any dimension
d.

We note that energy conserving kernels have previously
been obtained as double derivatives (Hessian matrices) of
scalar energy kernels (as originally described in [41, 42]
and used for atomistic systems in [37] to learn energies
and more recently in [43] to learn forces). However, no
closed-form expressions exist for the energy kernels that
would yield our O(d) energy conserving kernels through
this route, since the required double integration of the
kernels (21,26,28) cannot be carried out analytically.

To test our models, we performed DFT-accurate dy-
namical simulation with exchange and correlation energy
modeled via the PBE/GGA approximation [44]. The sys-
tems considered were 4 × 4 × 4 supercells of fcc nickel
and bcc iron in periodic boundary conditions. A weakly
coupled Langevin thermostat was used to control the
temperature. We first examine bulk nickel at the target
temperatures of 500K and 1700K, i.e. for an intermediate
temperature where anharmonic behaviour is already sig-
nificant, and at a temperature close to the melting point
where the strong thermal fluctuations make the system
explore a more complex target configuration space. Fig-
ure 4 illustrates the performance of the kernel in Eq. (27)
on this system.

The effect of adding symmetry information on the
learning curve is very significant for both temperatures.
In particular, the SO(3) covariant kernel achieves a force
error average lower than the 0.1eV/Å threshold using re-
markably few training points: 10 and 80 for the lower and
higher temperatures in this test, respectively. The errors
of the most accurate models (achieved with a N = 320
database) are particularly low: 0.0435(±0.0006)eV/Å
and 0.095(±0.003)eV/Å respectively. Moreover, we note
that the error on each force component (often reported
in the literature, and different from the error on the full
force vector used here) will be lower by a factor

√
3. This

yields errors of 0.025eV/Å and 0.052eV/Å in the two
cases, the former comparing well with the 0.09eV/Å value
obtained by using a state of the art Embedded Atom
Model (EAM) interatomic potential for nickel [45, 46].

Figure 5 allows one to assess the accuracy of the GP
predictions in a complementary way: here we plot the
probability distribution of the atomic forces as a func-
tion of the force modulus (blue histogram) and the asso-
ciated relative error density (grey histogram). We define
the latter as RED(f) = |∆f |

f p(f), which is normalised to
0.055, reflecting the 5.5% average relative error incurred
by force prediction. The fact that RED(f) is everywhere
a small fraction of p(f) demonstrates that a reasonable
accuracy is achieved for the whole range of forces pre-
dicted.

The results presented so far indicate that fully exploit-
ing symmetry significantly improves the accuracy of force
prediction. Covariance is thus always used in the follow-
ing analysis, where we compare the performance of differ-
ent symmetry-aware kernels. We start by choosing iron
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Figure 6. Learning curves associated with force prediction
by the linear (L, dashed lines) and squared exponential (SE,
solid lines) covariant kernels in bulk iron systems. Red and
blue colours indicate undefected systems and model systems
containing a vacancy, respectively.

systems for these tests as many properties of iron-based
systems remain out of modelling reach. This is mostly
due to technical limitations. On the one hand, full DFT
calculations on large systems are too computationally ex-
pensive and even hybrid quantum-classical (“QM/MM”)
simulations of iron systems are typically overwhelmingly
costly, as they require large QM-zone buffered clusters to
fully converge the forces [47]. On the other hand, in many
situations even the best available, state of the art classical
force fields may not guarantee accurate force prediction,
as they may incur systematic errors [46, 47], or may be
hard to extend to complex chemical compositions [48], so
that a technique that can indefinitely re-use all computed
QM forces via GP inference and produce results that are
traceably aligned with DFT-accurate forces could be very
useful [26, 49].

We carried out constant temperature (500K) molecu-
lar dynamics simulations of two bcc iron systems: a 64-
atom crystalline system and a 63-atom system derived
from this and containing a single a vacancy. In the lat-
ter, only the atoms within the first two neighbour shells
of the vacancy were used to test the algorithm, to better
resolve the performance of our kernels in a defective sys-
tem. Figure 6 shows the learning curves for the two sym-
metrised kernels: the linear kernel covariant over O(3)
and the squared exponential kernel (20) covariant over
the full cubic point-group of the crystal. The figure also
reports the performance of a high-quality EAM potential
[50]. Both kernels perform better than the EAM poten-
tials in this test. However, the error rate of the linear
kernel (dashed lines) levels off to some constant non-zero
value that might or might not be satisfactory (depend-
ing on the application), and will generally depend on
the system being examined. In bulk iron the error floor
value is about 0.09eV/Å while in the vicinity of a vacancy
it is considerably higher (0.15eV/Å), suggesting that in
spite of its many attractive properties (e.g. fast evalu-
ation, fast convergence, energy conservation), the linear

Figure 7. Learning curves obtained for crystalline silicon us-
ing the linear kernel (dashed lines) or the quadratic kernel
(solid lines). Different colours indicate different temperat-
ures.

class of kernels of the form (28) is by no means com-
plete, that is, it sometimes cannot capture and reproduce
the entirety of the reference QM physical interaction. In
many situations, kernels capable of reproducing higher
order interactions could be needed to reach the target
accuracy. This is exemplified by the much better per-
formance of the squared exponential kernel (full lines in
the figure), which yields higher accuracy, particularly for
the more complex vacancy system (about 0.05eV/Å and
0.075eV/Å for atoms in the bulk and near the vacancy
respectively). It is worth noting here that, in general,
conserving energy exactly by construction provides no
guarantee of higher force accuracy. For instance, in the
case above, the squared exponential kernel delivers much
more precise forces even though it conserves energy only
approximately. As the approximation will in any case
improve with the accuracy of the predicted forces, while
no SO(3)-invariant energy conserving equivalent of this
kernel has been proposed or appears viable, whether it is
preferable to use this kernel or a less accurate but energy
conserving alternative one, will generally depend on both
the target system and the application at hand.

For target systems with no clear point symmetry, a
full covariant integration would always be desirable. This
cannot be carried out analytically for the squared expo-
nential kernel, where symmetrising by a discrete summa-
tion is the only option. However, interactions beyond
pairwise can be still captured by the quadratic kernel ob-
tained by taking the square of the linear kernel (19). In
contrast to the squared exponential kernel, this is ana-
lytically tractable (for instance, a SO(3)-invariant scalar
quadratic kernel was obtained in [36]), and our analysis
reveals that a matrix-valued quadratic kernel covariant
over O(3) can be derived analytically (details of the cal-
culation will be presented in a forthcoming publication
[51]). The resulting model generates a roto-reflection
symmetric three-body force field that can be expected
to properly describe non close-packed bonding, such as
found in covalent systems, for example.
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Figure 7 illustrates the errors incurred by the linear
and the quadratic kernel while attempting to reproduce
the forces obtained during Langevin dynamics of a 64-
atom crystalline silicon system using Density Functional
Tight Binding (DFTB) [52]. Both linear and quadratic
kernel are significantly more accurate than a classical
Stillinger Weber (SW) potential [53] fitted to reproduce
the DFTB lattice parameter and bulk modulus [26]. Due
to its more restricted associated function space, the lin-
ear kernel is the one that learns faster, and would be the
more accurate if only very restricted databases had to be
used. However, the quadratic kernel eventually performs
much better than the (effective two-body) linear one for
both of the temperatures, 500K and 1000K, that we in-
vestigated in this covalent system. We obtain errors of
0.05eV/Å and 0.1eV/Å in the two cases, corresponding
respectively to approximately 4% and 6% of the mean
force. These are very close to the minimum baseline loc-
ality error [54] associated with the finite cutoff radius
used for the Gaussian expansion in (18).

V. CONCLUSION

In this work we presented a new method to learn
quantum forces on local configurations. This method is
based on a Vectorial Gaussian Process that encodes prior
knowledge in a matrix valued kernel function. We showed
how to include rotation and reflection symmetry of the
force in the GP process via the notion and use of cov-
ariant kernels. A general recipe was provided to impose
this property on otherwise non-symmetric kernels. The
essence of this recipe lies in a special integration step,
which we call covariant integration, over the full roto-
reflection group associated with the relevant number of
system dimensions. This calculation can be performed
analytically starting from a linear base kernel, and the
resulting O(d) covariant kernels can be shown to gener-
ate conservative force fields.

We furthermore tested covariant kernels on standard
physical systems in 1, 2 and 3 dimensions. The 1 and
2 dimensional scenarios served as playgrounds to better
understand and illustrate the essential features of such
learning. The 3D systems allowed some practical bench-
marking of the methodology in real systems. In agree-
ment with what physical intuition would suggest, we con-
sistently found that incorporating symmetry gives rise
to more efficient learning. In particular, if both data-
base and target configurations belong to a system with
a definite underlying symmetry, restricting kernel covari-
ance to the corresponding finite symmetry group will de-
liver the full speed-up of error convergence with respect
to database size. At the same time this approach lifts
the requirement of analytical integrability over the full
SO(d) manifold, as the restricted integration becomes a
simple discrete sum over the relevant finite set of group
elements. Testing on nickel, silicon and iron (the lat-
ter both pure and defective) reveals that the present re-

cipes can improve significantly on available classical po-
tentials. In general, non-linear kernels may be needed for
accurate force predictions in the presence of complicated
interactions, e.g. in the study of plasticity or embrittle-
ment/fracture behaviour of covalent or metallic systems.
In particular, a quadratic base kernel yields a fully O(3)
covariant effective three-body force field, and our tests
suggest that this can be used successfully to improve the
accuracy of force prediction in covalent materials. Cur-
rent work is focussing on amorphous Si systems, where
the lack of a clear point symmetry makes the full O(3)
covariance strictly necessary.

Our results reveal that force covariance is achievable
without imposing energy conservation to the kernel form.
While both are desirable properties, we find that lift-
ing the exact energy conservation constraint can some-
times yield higher force accuracy. For instance, no in-
variant local energy based kernel has been proposed for
the square exponential ("universal approximator") ker-
nel, since the analytic integration over SO(3) is not vi-
able. However, we find that covariance limited to the
O48 point group is very effective for force predictions in
crystalline Fe systems using this kernel (see Figure 6).

In general, while predicting forces with high accuracy
is the main motivation for machine learning-based work
in this field, the best compromise between accuracy, en-
ergy conservation and covariance will depend on the spe-
cific target application. For instance, kernels built from
a covariant integration (or summation) that do not con-
serve energy exactly should not be used as substitutes
for conventional interatomic potentials to perform long
NVE simulations, since they might in principle lead to
non-negligible spurious energy drifts. This is not a prob-
lem in NVT simulations, where a thermostat exchanges
energy with the system to achieve and conserve the tar-
get temperature, which will be able to compensate for
any such drift if appropriately chosen [55]. Furthermore,
the same kernels will be particularly suited for schemes
that are in all cases incompatible with strict energy con-
servation. These include the LOTF approach and any
online learning scheme similarly involving a dynamically
updated force model. They also include any highly accur-
ate and transferable scheme based on a fixed, very large
database where, to maximise efficiency, each force predic-
tion only uses its corresponding most relevant database
subset.

On the other hand, any usage style is possible for co-
variant kernels conserving energy exactly, like the cov-
ariant linear kernels of equations (21), (26) and (28). In
fact, the conservative pairwise interaction forces gener-
ated by these covariant linear kernels can be easily in-
tegrated to provide effective “optimal” standard pairwise
potentials for any application needing a total energy ex-
pression. We also note that while the pair interaction
form would still ensure very fast evaluation of the pre-
dicted forces, its accuracy for complex systems could be
improved by dropping the transferability requirement of
a single pairwise function. In such a scheme, different
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system regions could conceivably be modelled by locally
optimised forces/potentials, where the local tuning could
be simply achieved by restricting the inference process to
subsets of the database pertinent to each target region.
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