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We investigate how the quantum control of a two-level system (TLS) coupled to photons can
modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and
the absorption is of much interest e.g. for the development of efficient interfaces between stationary
and flying qubits in modern architectures for quantum computation and quantum communication.
We consider periodic pulse control, where the TLS is subjected to a periodic sequence of the near-
resonant Rabi driving pulses, each pulse implementing a 180◦ rotation. For small inter-pulse delays,
the absorption spectrum features a pronounced peak of stimulated emission at the pulse frequency,
similar satellite peaks with smaller spectral weights, and the net absorption peaks on the sides. As
long as the detuning between the carrier frequency of the driving and the TLS transition frequency
remains moderate, this spectral shape shows little change. Therefore, the pulse control allows
shifting the absorption peak to a desired position, and locks the overall absorption spectrum to the
carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a
function time, the inter-pulse spacing and the detuning, is presented.

I. INTRODUCTION

An interface between stationary and flying qubits
that enables a long-range entanglement between differ-
ent quantum network nodes, is essential for quantum
information processing1. It is of particular importance
for the solid state qubits, such as quantum dots or color
centers2–15, which can be efficiently coupled to each other
via photons and thus employed for quantum communica-
tions and distributed quantum information processing.
However, the slow fluctuations in the environment of
the solid-state qubits (e.g. the local strain and/or the
local electric fields) constitute a lingering challenge, be-
cause they unpredictably shift the optical transition fre-
quency of the qubits16,17. This slow drift of the tran-
sition frequency (spectral diffusion) makes it difficult to
achieve the precise matching between the photons origi-
nating from different qubits that is required for efficient
entanglement. To mitigate the spectral diffusion prob-
lem, various methods have been proposed and success-
fully used5–9,16,18–23, focusing primarily on the tuning of
the emission spectrum and on improving the indistin-
guishability of the photons emitted from different qubits.
In particular, it has been recently suggested23 that appli-
cation of a periodic sequence of the optical control pulses
to a quantum emitter (a two-level system coupled to the
electromagnetic radiation bath) can re-direct most of the
emission into a peak located at a preset target frequency
(determined by the carrier frequency of the pulse driv-
ing field), and therefore can greatly improve the indistin-
guishability of the photons coming from different emit-
ters.

At the same time, there is a growing interest, accom-
panied by impressive progress24–26 in the long-range en-
tanglement schemes based on the photon absorption, and
the theoretical developments that allow control and tun-
ing of the absorption spectra have become timely and

interesting. Correspondingly, a question arises whether
the absorption-based entanglement can also be improved
using the pulse control of the emitters, i.e. whether the
absorption spectrum of a two-level system (TLS) cou-
pled to the radiation bath can be modified and tuned
by the control pulses. Besides, the studies of absorption
of a TLS subjected to an external control are of funda-
mental interest due to the intimate connection between
emission and absorption27. For instance, if the TLS is
continuously driven by a strong coherent laser field then
the TLS emission spectrum has an interesting three-peak
structure, with two additional side peaks located at the
frequencies ±ΩR (where ΩR is the laser Rabi driving fre-
quency), and the absorption spectrum of the same system
also acquires additional structure, displaying the regions
of gain, corresponding to an amplification of the probing
weak field instead of attenuation28,29.

The emission spectrum of the pulse-controlled TLS
exhibits similarities with the continuously driven TLS
emission23: it has a central peak at the carrier fre-
quency of the pulses ω0, as well as the satellite peaks at
ω0±π/τ, ±2π/τ, · · · , where τ is the inter-pulse distance.
Thus, it is reasonable to expect that absorption also can
be controlled with the periodic pulses, and that the re-
sulting absorption spectrum also has non-trivial features.
In this work we study the absorption spectrum of a TLS
driven by a periodic sequence of optical π-pulses, and ex-
amine its dependence on the pulse sequence period and
the detuning of the emitter with respect to the pulse fre-
quency (Fig. 1). We show that both expectations above
are correct, and therefore the pulse control indeed can
be a useful tool for controlling and tuning the absorption
spectrum of a TLS. Specifically, the absorption spectrum
has a well-defined central feature that includes a pro-
nounced dip (which corresponds to stimulated emission
at the carrier frequency of the pulses) and two absorption
peaks on the sides. The spectrum also exhibits satellite
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FIG. 1. (Color online) (a) Schematic representation of the
two-level system with ground state |g〉 and excited state |e〉
separated in the rotating frame by the detuning ∆. It is
probed by measuring the energy absorbed from a weak field
as a function of frequency. (b) The absorption spectrum in
the absence of any driving field has a Lorentzian lineshape
centered around ∆. (c) We will evaluate the absorption spec-
trum when the system is driven by a periodic sequence of
π-pulses with inter-pulse time τ .

features, with smaller spectral weights. The overall shape
of the absorption spectrum does not change much as long
as the detuning ∆ between the carrier frequency of the
driving pulses and the TLS transition frequency remains
moderate (∆ <

∼ 1/τ), and as long as the value of τ is
small in comparison with the spontaneous emission time.
Therefore, we show that the optical control enables cre-
ation of pairs of quantum nodes (one node working as
an emitter and the other as an absorber) with precisely
matching frequencies, and therefore greatly increased en-
tanglement efficiency. This approach can also be used to
improve the coupling of the emitters and the absorbers
to optical cavities, since the laser pulses can tune both
the emission and the absorption lines of the respective
quantum nodes, bringing them in the resonance with the
respective cavities, and stabilizing both the emission and
the absorption peaks at the desired location.

The rest of the paper is organized as follows. In Sec. II
we describe the model of the two-level system coupled to
the photon bath and controlled by the pulses, the master
equations governing the system dynamics, and the two
methods, analytical and numerical, used for calculating
the absorption spectrum. In Sec. III we present analyti-
cal and numerical results demonstrating the control and
tunability of the absorption spectrum. In Sec. IV we
present conclusions.

II. MODEL OF THE TWO-LEVEL SYSTEM

COUPLED TO THE ELECTROMAGNETIC

RADIATION BATH

We model the quantum emitter as a TLS with the
ground state |g〉 and the excited state |e〉, separated in
energy by Ee−Eg = h̄ω1; below we set h̄ = 1. Initially, at
time t = 0, the excited state is occupied and the ground
state is empty. The TLS is coupled to a photon bath,
and is periodically driven by pulses of the laser field with
the Rabi frequency Ω. Within the rotating-wave approx-
imation (RWA)37, in the reference frame rotating at fre-
quency ω0, the system in question is described by the
Hamiltonian

H =
∑

k

ωka
†
kak +

∆

2
σz − i

∑

k

gk

(

a†kσ− − akσ+

)

+
Ωx(t)

2
(σ+ + σ−), (1)

where ∆ = ω1−ω0 is the detuning of the TLS’s transition
frequency from the carrier frequency of the pulses; here
we introduced the standard pseudo-spin Pauli operators
for the TLS, namely σz = |e〉〈e| − |g〉〈g|, σ+ = |e〉〈g|

and σ− = |g〉〈e| = (σ+)
†. Furthermore, a†k and ak are

respectively the creation and the annihilation operator
for a photon of mode k with the frequency ωk, and gk is
the strength of coupling to the TLS. Note that in the ro-
tating frame all frequencies are measured from the pulse
carrier frequency ω0, so that the zero frequency in the ro-
tating frame corresponds to ω0 in the lab frame; we take
it as the target frequency for our TLS. The detuning ∆
is assumed static on a timescale of interest, as is the case
for stable emitters, but the value of ∆ is not known to an
experimentalist because of the slow spectral diffusion, so
the goal is to make the absorption spectrum independent
of ∆.
The time-dependent driving Ωx(t) in Eq. (1) represents

the control pulses; here we consider the simple situation
of the square-shaped pulses, with Ωx(t) = Ω during the
pulses and zero otherwise. In fact, below we assume that
the pulses are almost instantaneous, i.e. that Ω is much
larger than all other relevant energy scales, and that each
pulse performs an almost instantaneous 180◦ rotation of
the TLS around the x-axis, interchanging |e〉 and |g〉;
this assumption will be discussed further below. In the
absence of control (Ωx(t) ≡ 0), the system exhibits spon-
taneous decay, and the corresponding emission rate is
Γ = 2π

∫

g2k δ(ωk − ∆) dk; we normalize our energy
and time units so that Γ = 2, and the corresponding
spontaneous emission line has a simple Lorentzian shape
1/(1+ω2), with the half-width equal to 1. In other words,
frequencies and times below are measured in units of Γ/2
and (Γ/2)−1 respectively.
The absorption spectrum is defined here as the energy

absorbed by the TLS during the time interval 0 ≤ t ≤ T
from a weak probing field of frequency ω. The probing
field is assumed to be weak enough that it does not signif-
icantly affect the population of each state28,38; our goal
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is to calculate the absorption as a function of frequency
and time T . Note that the shape of spectra calculated
below is established on a timescale of 1–2 spontaneous
emission times, and after that the spectral features in-
crease in amplitude almost linearly with time, so that
at longer times T the spectra can be re-interpreted in
a standard way, via the rate of the energy absorption
(absorbed power). In order to be able to describe the ab-
sorption/emission process at earlier times, we calculate
the absorbed/emitted energy, following the standard ide-
alized approach40. In general, definition and analysis of
the time-dependent spectrum is a non-trivial task30–32,
especially at very short times, where the non-Markovian
effects may play a role; this is beyond the scope of our
work.
To understand the dynamics of the system, we analyze

the time evolution of the density matrix of the emitter,
which is written as

ρ(t) = ρee(t)|e〉〈e|+ ρeg(t)|e〉〈g|

+ ρge(t)|g〉〈e|+ ρgg(t)|g〉〈g| , (2)

with ρ∗ge = ρeg. For the TLS described by the above
Hamiltonian (1), within the Markovian approximation,
the density matrix operator is governed by the master
equations37 in the rotating-wave approximation:

ρ̇ee = i
Ωx(t)

2
(ρeg − ρge)− Γρee ,

ρ̇gg = −i
Ωx(t)

2
(ρeg − ρge) + Γρee ,

ρ̇ge = (i∆−
Γ

2
)ρge − i

Ωx(t)

2
(ρee − ρgg) ,

ρ̇eg = (−i∆−
Γ

2
)ρeg + i

Ωx(t)

2
(ρee − ρgg) .

(3)

Since the pulse driving is assumed to be strong and short
(Ω ≫ ∆,Γ), the pulses can be considered as instanta-
neous; our previous studies23 have shown that even mod-
erate driving strength (of the order of 1 GHz for NV
centers) is already satisfactory. Each pulse inverts the
populations of the excited and ground state, and swaps
the values of ρeg and ρge, i.e.

ρ(nτ + 0) = σxρ(nτ − 0)σx (4)

where ρ(nτ − 0) and ρ(nτ + 0) are the density matrices
immediately before and after the pulse, correspondingly,
with n being an integer and τ the period of the pulse
sequence; in other words, the pulses interchange ρee with
ρgg, and ρeg with ρge.
We want to determine the energy absorbed from a

weak probing field by the TLS subjected to the periodic
sequence of the π-pulses. Since the effect of the probing
field is small, the absorption spectrum can be calculated
within the linear response theory, so that the absorbed
energy Q(ω) is given by28,38

Q(ω) = 2A2 (5)

× Re

{

∫ T

0

dt

∫ T−t

0

dθ 〈[σ−(t), σ+(t+ θ)]〉e−iωθ

}

,

where [O1, O2] is the commutator of the operators O1

and O2, and the angled brackets represent the expec-
tation values evaluated in the absence of the probing
field. σ−(t) and σ+(t + θ) are the time-dependent op-
erators in the Heisenberg representation, and the expec-
tation values are taken with respect to the initial state of
the two-level system (in our case, fully occupied excited
state and empty ground state). The constant A is inde-
pendent of the pulse parameters, and does not affect the
spectral shape, determining only the absolute scale of the
absorbed energy. The expression (5) can be rewritten as

Q(ω) = 2A2Re {P2(ω)− P1(ω)}

= P2(ω)− P1(ω) (6)

where

P2(ω) =

∫ T

0

dt

∫ T−t

0

dθ 〈σ−(t)σ+(t+ θ)〉e−iωθ (7)

and

P1(ω) =

∫ T

0

dt

∫ T−t

0

dθ 〈σ+(t+ θ)σ−(t)〉e
−iωθ (8)

The term P1(ω) = 2A2Re {P1(ω)} can be viewed as
the direct emission of the two-level system and P2(ω) =
2A2Re {P2(ω)} as the direct absorption, so that the dif-
ference yields the net absorption33. We evaluate the
terms P1(ω) and P2(ω) separately, and obtain the total
absorption spectrum Q(ω) by taking the difference.
To evaluate the emission spectrum, it is convenient

to re-express the two-time correlation function 〈σ+(t +
θ)σ−(t)〉 as a single-time expectation value33,40,41, ac-
cording to

〈σ+(t+ θ)σ−(t)〉 =

= Tr
[

ρ(0)U−1(0, t+ θ)σ+U(0, t+ θ)U−1(0, t)σ−U(0, t)
]

= Tr
[

σ−ρ(t)U
−1(t, t+ θ)σ+U(t, t+ θ)

]

= Tr [ρ′(t, t+ θ)σ+] (9)

where σ+ and σ− are the time-independent Pauli oper-
ators in the Schrödinger representation, and U(t1, t2) is
the evolution operator of the emitter from time t1 to time
t2, as determined by the master equations (3). The calcu-
lations are simplified by introducing the matrix ρ′(t, s);
its initial value at s = t is ρ′(t, t) = σ−ρ(t), and its
further evolution from s = t to s = t + θ is governed
by the emitter’s evolution operator U(t, t + θ), so that
ρ′(t, t + θ) = U(t, t + θ)ρ′(t, t)U−1(t, t + θ). In this way
the evaluation of the two-time correlators becomes rather
straightforward (although lengthy, see Appendix for de-
tails), and the function P1(ω) can be obtained analyti-
cally and/or numerically. In order to calculate the func-
tion P2(ω), we use the same procedure, simplifying the
two-time correlation function as

〈σ−(t)σ+(t+ θ)〉 = Tr [σ+ρ
′′(t, t+ θ)] , (10)

by introducing the matrix ρ′′(t) = ρ(t)σ−, whose time
evolution is also governed by U(t, t + θ), i.e. ρ′′(t, t +
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FIG. 2. (Color online) Absorption spectrum of a two-level
system with detuning ∆ = 3.0 driven by a periodic sequence
of π-pulses of period τ = 0.2 after Np = 8 pulses. Panels (a)
and (b) show the terms P1(ω) (direct emission) and P2(ω)
(direct absorption), correspondingly, and panel (c) shows the
difference between the two terms, which is the total absorp-
tion Q(ω). The results are obtained by solving the master
equation numerically (blue) and analytically in the limit of
a large number of pulses (red dashed). The two approaches
give very close results despite the assumed limit Np ≫ 1 in
the analytical result and finite timestep used in the Fourier
transform of the numerical results.

θ) = U(t, t + θ)ρ′′(t, t)U−1(t, t + θ). Note that ρ′ and
ρ′′ are not density matrices, and the symmetries of the
proper density matrix ρ(t) (such as ρgg = 1− ρee and/or
ρ∗ge = ρeg) are not applicable to ρ′ and ρ′′.

In the absence of the pulses, the absorption spectrum
has a Lorentzian-shaped profile centered at the emitter’s
frequency that equals to the detuning ∆ (Fig. 1). In
the presence of the pulses, we calculated the absorption
spectrum both analytically and numerically by itera-
tively evolving the density matrix operator between
successive pulses on a discrete time grid, using the
equations of motion (3), with the initial conditions
ρee = 1, ρeg = ρge = ρgg = 0, and then making use of (9)
and (10) to calculate the two-time correlation functions.
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FIG. 3. (Color online) Absorption spectrum of a two-level
system with detuning ∆ = 3.0, driven by a periodic se-
quence of π-pulses with period τ = 0.2, after Np = 8 (black),
Np = 12 (red), Np = 16 (green), and Np = 20 (blue) pulses.
The curves present analytical results, the arrows indicate
the increasing number of pulses (increasing total time of the
sequence). The overall spectral shape is established early,
within 1–2 spontaneous emission times, and at later times
the peaks/dips increase in amplitude.

A. Numerical solution

To find the solution numerically, we divide the time
axis in the intervals of length τ (equal to the inter-pulse
separation), and each interval between the pulses is fur-
ther discretized into smaller steps of length ∆t. The goal
is to find the two-time correlators 〈σ−(t)σ+(t + θ)〉 and
〈σ−(t)σ+(t + θ)〉 for each value of t and θ on this time
grid, and use Fourier transform to find P1(ω) and P2(ω),
whose difference gives the absorption spectrum Q(ω).

We start at t = 0 with the known initial conditions for
ρ(t), and use Eqs. 3 to evolve all elements of the density
matrix ρ(t) from time t to t + ∆t, and repeat this inte-
gration up to t = τ . Then the π-pulse is applied to the
system, transforming the density matrix in accordance
with Eq. 4, and the iterative integration is resumed to
propagate the density matrix from t = τ to t = 2τ , until
another pulse is applied at 2τ . The process is repeated
until time T = Npτ is reached, where Np is the total
number of pulses. In this way we can obtain the ele-
ments of ρ′(t, t) and ρ′′(t, t) for every t ∈ [0, Npτ ]. Then,
for each time t we propagate the matrices ρ′ and ρ′′ from
time t to time t+ θ by solving the master equations (3);
the values ρ′(t, t) and ρ′′(t, t) serve as initial conditions.
As a result, we obtain ρ′(t, t + θ) and ρ′′(t, t + θ) for all
values of θ ∈ [0, T − t]. This procedure produces the two-
time correlators 〈σ+(t + θ)σ−(t)〉 and 〈σ−(t)σ+(t + θ)〉,
see Eqs. (9) and (10). Finally, Fourier transform with
respect to θ and integration over t give us P1(ω) and
P2(ω), thus determining the absorption spectrum Q(ω).
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B. Analytical solution

The analytical solution for the density matrix evolu-
tion between the pulses can be obtained directly from
Eqs. 3, and combined with the analytically calculated
transformation of the density matrix by pulses as de-

scribed by Eq. 4, thus providing a fully analytical solu-
tion to the problem. The corresponding calculation is
quite lengthy, and is presented in detail in the Appendix.
In the limit of long T (i.e. large number of pulses Np),
the resulting expression for P1(ω) is

P1(ω) =
1

(1 + e−Γτ )γ0

[

(

1− e−Γτ

Γ
− e−γ0τ

eγ2τ − 1

γ2
+

eγ2τ − 1

γ2

1− e−γ0τ

e2γ1τ − 1

)(

Np +
e−Γτ

1 + e−Γτ

)

−
eγ2τ − 1

γ2

1− e−γ0τ

e2γ1τ − 1

(

2
e−Npγ1τ − 1

e−2γ1τ − 1
+ (e−Γτ − e−2Γτ )

e−Npγ1τ

e−2γ1τ − e−2Γτ

)

]

(11)

We have also performed the similar calculation for P2(ω), expressing it as P2(ω) = P3(ω)− P1(ω), and the resulting
expression for P3(ω) in the long-time limit is

P3 =
Npτ

γ0
−

Np

γ2
0

(1− e−γ0τ ) +
eγ0τ + e−γ0τ − 2

γ2
0(e

2γ1τ − 1)

[

Np −
2

1− e−2γ1τ

]

(12)
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FIG. 4. (Color online) Absorption spectrum of a two-level
system with detuning ∆ = 3.0 driven by a periodic sequence
of π-pulses with the periods τ = 0.2, τ = 0.3, τ = 0.4, and
τ = 0.5, after Np = 8 pulses. The curves present analytical
results.

where γ0 = i(ω − ∆) + Γ/2, γ1 = iω + Γ/2, and γ2 =
i(ω −∆)− Γ/2.

III. RESULTS

Fig. 2 shows the absorption spectrum obtained using
both analytical and numerical approaches for a two-level
system with ∆ = 3.0 and a pulse sequence with τ = 0.2
afterNp = 8 pulses. The panels 2(a) and 2(b) show P1(ω)
and P2(ω), respectively, while the panel 2(c) shows the
absorption spectrum obtained by taking their difference
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FIG. 5. (Color online) Absorption spectrum of the TLS with
detunings ∆ = 3.0(black), ∆ = 4.0(red), ∆ = 5.0(green),
and ∆ = 6.0(blue) driven by a periodic sequence of π-pulses
of period τ = 0.2 after Np = 8 pulses. The curves present
analytical results.

according to Eq. 6. In the presence of the pulse con-
trol we see the central feature in both spectra P1(ω) and
P2(ω): the peak in the absorption spectrum at the car-
rier frequency of the pulses (ω = 0 in the rotating frame),
and the satellite peaks at the multiples of ±π/τ . These
features produce the net absorption spectrum Q(ω).

A good agreement between numerics and analytics is
clearly seen, despite the limit Np ≫ 1 used in the ana-
lytical result and the numerical Fourier transform of the
finite-timestep data in the numerical result. The agree-
ment is further improved by considering the spectrum at
longer times, see Appendix. These results provide clear
validation of the tools used in these studies. Moreover,
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note that the absorption spectrum, as given by Eq. 5, is
the difference of two terms of comparable magnitude in
a broad frequency range. As a result, it is influenced by
numerical errors, but the small discrepancy between the
analytical and the numerical results shows that this kind
of errors is not critical. Thus, the numerical solution can
be used in the future studies of more complex driving
protocols, which may not be amenable to an analytical
solution.

Fig. 3 shows analytical results for the time evolution of
the absorption spectrum for ∆ = 3.0 and τ = 0.2. The
snapshots of the spectrum are presented after Np = 8
(black), Np = 12 (red), Np = 16 (green), and Np = 20
(blue) pulses. The absorption spectra feature a positive
part and a negative part. The the former corresponds to
the “true absorption”28,39, while the latter corresponds
to the stimulated emission, when a photon is absorbed
from the driving optical field, and another photon is emit-
ted at the probing field frequency. The central dip at
ω = 0 corresponds to the stimulated emission at the pulse
frequency, and the satellite dips at the multiples of ±π/τ ,
with amplitudes that decrease away from the central fre-
quency. Also, the net absorption peaks are clearly seen
on the sides. The overall shape of the spectrum is estab-
lished early, on a time scale of 1–2 spontaneous emission
times, and later the amplitude of the peaks/dips just in-
creases with time.

In Fig. 4 we present the dependence of the absorption
spectrum for ∆ = 3.0 on the period τ of the pulse se-
quence. The absorption spectrum is shown after 8 pulses
for τ = 0.2, τ = 0.3, τ = 0.4, and τ = 0.5. The satel-
lites move closer to the central dip, and their relative
amplitude increases as τ becomes longer. Also note the
increase in the positive fraction of spectral weight with
increasing τ .

Finally, we study the dependence of the absorption
spectrum on the detuning ∆, in order to demonstrate
that the pulse protocol stabilizes the positions of differ-
ent spectral features, making them independent of ∆, and
thus suppresses spectral diffusion. The corresponding re-
sults are shown in Fig.5 which presents the spectrum un-
der a pulse sequence of period τ = 0.2 for the detuning
values of ∆ = 3.0(black), ∆ = 4.0(red), ∆ = 5.0(green),
and ∆ = 6.0(blue) after 8 pulses. The shape of the spec-
trum remains almost the same for all four values of the
detuning parameter when τ is kept constant. In fact, we
observe that the lineshape of the absorption spectrum
shows little dependence on ∆ as long as ∆ · τ <

∼ 1. The
figure shows that the fraction of the spectral weight con-
tained in the positive-frequency satellites (with ω > ω0)
slightly increases with ∆, while the spectral weight of
the negative-frequency satellites (ω < ω0) correspond-
ingly decreases.

The effect of the control pulses on the spectra can be
understood qualitatively, by noticing that the shape of
the emission/absorption spectra is governed by the rate
of the phase accumulation between the ground and the
excited state of the emitter. Without pulses, in the co-

ordinate frame rotating with the carrier frequency of the
driving field ω0, the phase between the two states accu-
mulates over the time interval T , and is equal to ∆ · T ,
thus giving rise to a spectral peak at the relative fre-
quency ω = ∆. But the control pulses periodically invert
this phase, preventing its accumulation23. As a result,
when the phase is inverted sufficiently frequently (small
τ), the absorption/emission spectra are controlled pri-
marily by the value of τ , and become practically inde-
pendent of ∆ (see Appendix for theoretical details).
The spectrum created by the control pulses has sim-

ilarities with the situation of strong continuous driving.
The use of short strong pulses instead of strong continu-
ous driving can minimize some undesirable side effects of
strong driving, e.g. ionization of a NV center or a quan-
tum dot by the strong driving field, excitation of the
emitter to other (nonresonant) levels, possible ionization
of other photo-sensitive entities in the sample, increased
background photon count due to coherent scattering of
the driving laser light, etc. Even if the side effects cannot
be suppressed completely, the use of the pulses instead
of continuous driving restricts these effects to the narrow
time windows in the immediate vicinity of the pulses,
which could make it easier to detect and control them.
Moreover, control of the pulse period gives experimental-
ists an alternative way to change the system’s evolution,
that can facilitate engineering of the emission/absorption
spectra.

IV. CONCLUSIONS

We have studied the absorption spectrum of a two-level
system driven by a periodic sequence of the π-pulses.
This absorption spectrum is determined by the energy
absorbed by the emitter from a probing field weak enough
to not significantly affect the population of the excited
and ground states. We have solved the problem by in-
tegrating the master equation analytically and numeri-
cally, and obtained from both methods the results that
are in excellent agreement. The absorption spectrum has
a pronounced dip at the pulse carrier frequency (which
corresponds to stimulated emission), the net absorption
peaks on the sides, and the satellite peaks/dips at the
multiples of ±π/τ ; the spectral weights of the satellites
are suppressed away from the central peak. Our results
show that for reasonably small τ (say, smaller than half of
the spontaneous emission time, Γτ < 1/2), and for mod-
erate detunings, ∆ · τ <

∼ 1, the absorption spectrum has
the shape with little dependence on ∆, so that all fea-
tures (stimulated emission dips and the net absorption
peaks) are stabilized by the control pulses.
By using the optical control considered in this work

(with, possibly, more complex pulse protocols), it is pos-
sible to create pairs of quantum nodes, with one node
working as an emitter and the other as an absorber, with
precisely matching frequencies, and therefore greatly in-
creased entanglement efficiency. In a similar manner, one



7

can use it to improve the coupling of the emitters and ab-
sorbers to optical cavities, using the laser pulses to tune
both the emission and the absorption lines of the respec-
tive quantum nodes, bringing them in the resonance with
the respective cavities, and stabilizing both the emission
and the absorption features at the desired location.
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APPENDIX

Here we present the details of the analytical calcula-
tion of the absorption spectrum for a two-level system
subjected to a periodic sequence of control pulses. As
shown in Refs. 28 and 39, the absorption spectrum can
be determined from the two-time correlation functions of
the TLS:

Q(ω) = 2A2 × (13)

Re

{

∫ T

0

dt

∫ T−t

0

dθ 〈[σ−(t), σ+(t+ θ)]〉e−iωθ

}

,

where [, ] is the commutator of the two enclosed opera-
tors, and the angled brackets represent the expectation

values evaluated in the absence of the probing field. A is
a proportionality constant. This can be rewritten as:

Q(ω) = 2A2Re {P2(ω)− P1(ω)} (14)

= P2(ω)− P1(ω),

with

P2(ω) =

∫ T

0

dt

∫ T−t

0

dθ 〈σ−(t)σ+(t+ θ)〉e−iωθ (15)

and

P1(ω) =

∫ T

0

dt

∫ T−t

0

dθ 〈σ+(t+ θ)σ−(t)〉e
−iωθ. (16)

The terms P1(ω) = 2A2Re {P1(ω)} and P2(ω) =
2A2Re {P2(ω)} can be evaluated separately and the ab-
sorption spectrum obtained by taking the difference. To
find P2(ω), we express the correlation function as

〈σ−(t)σ+(t+ θ)〉 = Tr
[

ρ(0)U−1(0, t)σ−U(0, t)U−1(0, t+ θ)σ+U(0, t+ θ)
]

(17)

= Tr
[

σ+U(t, t+ θ)U(0, t)ρ(0)U−1(0, t)σ−U(0, t)U−1(0, t)U †(t, t+ θ)
]

= Tr
[

σ+U(t, t+ θ)ρ(t)σ−U
−1(t, t+ θ)

]

= Tr
[

σ+U(t, t+ θ)ρ′′(t, t)U−1(t, t+ θ)
]

= Tr [σ+ρ
′′(t, t+ θ)]

where σ+ and σ− are the Pauli operators, and U(t1, t2)
is the operator of the emitter’s evolution from t1 to t2, as
determined by the master equations (3). The subsequent
calculations are facilitated by introducing the matrix
ρ′′(t, s); its initial value at s = t is defined as ρ′′(t, t) =
ρ(t)σ−, and its further evolution from s = t to s = t+θ is
governed by the emitter’s evolution operator U(t, t+ θ),
so that ρ′′(t, t+ θ) = U(t, t+ θ)ρ′′(t, t)U−1(t, t+ θ).
It is informative to write ρ′′(t, s) explicitly as

ρ′′(t, s) =

(

ρ′′ee(t, s) ρ′′eg(t, s)
ρ′′ge(t, s) ρ′′gg(t, s)

)

(18)

so that

σ+ρ
′′(t+ θ) =

(

ρ′′ge(t, t+ θ) ρ′′gg(t, t+ θ)
0 0

)

, (19)

and the corresponding two-time correlation function is
obtained directly as

〈σ−(t)σ+(t+ θ)〉 = Tr [σ+ρ
′′(t, t+ θ)]

= ρ′′ge(t, t+ θ). (20)

The initial condition for ρ′′, corresponding to s = t, has
a form

ρ′′(t, t) = ρ(t)σ− =

(

ρeg(t) 0
ρgg(t) 0

)

, (21)

being determined by the elements of the “true” density
matrix ρeg(t) = 〈e|ρ(t)|g〉 and ρgg(t) = 〈g|ρ(t)|g〉, see
Eq. 2. Similarly, for ρ′(t, s) the initial condition at s = t
are

ρ′ee(t, t) = ρ′eg(t, t) = 0,

ρ′gg(t, t) = ρeg(t), ρ′ge(t, t) = ρee(t), (22)

and the corresponding two-time correlator is

〈σ+(t+ θ)σ−(t)〉 = Tr [ρ′(t, t+ θ)σ+]

= ρ′ge(t, t+ θ). (23)

Therefore, our task is reduced to to determining ρ′′ge(t, t+
θ) and ρ′ge(t, t+ θ).

The master equations characterizing the time evolution
of the TLS density matrix are given by Eqs. 3 and Eq. 4;
the time development of the matrices ρ′′(t, s) and ρ′(t, s)
also obeys these equations of motion as s increases from
t to t + θ. Specifically, when s corresponds to the time
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interval between the pulses, we have

d

ds
ρ′′ee(t, s) = −Γ ρ′′ee(t, s) (24)

d

ds
ρ′′gg(t, s) = Γ ρ′′ee(t, s) (25)

d

ds
ρ′′ge(t, s) =

(

i∆−
Γ

2

)

ρ′′ge(t, s) (26)

d

ds
ρ′′eg(t, s) =

(

−i∆−
Γ

2

)

ρ′′eg(t, s) (27)

for any value of the parameter t; the same equations gov-
ern the dynamics of ρ′. The effect of the pulses on ρ′′ and
ρ′ is also easily derived from Eq. 4: when t+ s coincides
with the time of the pulse application, i.e. when s = nτ
for some integer n, the matrix transforms as

ρ′′(t, nτ + 0) = σxρ
′′(t, nτ − 0)σx (28)

where ρ′′(t, nτ − 0) and ρ′′(t, nτ + 0) are the matrices
immediately before and after the pulse, correspondingly;
in other words, each pulse interchanges ρ′′ee with ρ′′gg, and
ρ′′eg with ρ′′ge; the transformation of ρ′ is the same.
Let us start with establishing the initial condition for

ρ′′(t, s) at s = t, which is determined by ρgg(t) and ρeg(t),
see Eq. 21. First, we note that ρeg(t) ≡ 0. Indeed, the
initial condition at t = 0 for the density matrix ρ are

ρee(0) = 1, ρgg(0) = ρge(0) = ρeg(0) = 0. (29)

As the master equations (3) show, both quantities ρeg
and ρge remain zero before the first pulse (when Ωx(t) ≡
0). The effect of the pulse is to interchange these two
values, i.e. they both remain zero after the pulse. The
same considerations can be applied for the second, third,
etc. pulse, showing that ρeg(t) = ρge(t) = 0 for all t.
Thus, to determine ρ′′(t, t) we only need to find ρgg(t).
We assume that the time instant t is between the M -th
and the (M +1)-th pulse, i.e. t = Mτ +(τ − τ1) for some
τ1 ∈ [0, τ ], as shown in Fig. 6. Immediately before the
first pulse, at the time moment τ − 0, we have:

ρee(τ) = e−Γτ

ρgg(τ) = 1− e−Γτ ; (30)

then at time 2τ − 0 we have:

ρee(2τ) = (1− e−Γτ )e−Γτ

ρgg(2τ) = 1− e−Γτ + e−2Γτ , (31)

at time 3τ − 0:

ρee(3τ) = e−Γτ − e−2Γτ + e−3Γτ

ρgg(3τ) = 1− e−Γτ + e−2Γτ − e−3Γτ , (32)

...

so that eventually, right before the M -th pulse, at time
Mτ − 0

ρee(Mτ − 0) =
M
∑

k=1

(−1)k−1e−kΓτ = −
M
∑

k=1

(−1)ke−kΓτ ,

(33)

� � + �

�� … ��

m pulses

…

M pulses

0

�

� = 	� + (� − ��) � = �� + ( − 1)� + ��

FIG. 6. (Color online) Schematic picture of the mutual po-
sitions of the time instants t and t + θ with respect to the
pulses.

and right after the M -th pulse, which interchanges ρee
and ρgg,

ρee(Mτ + 0) = 1− ρee(Mτ − 0) = 1 +
M
∑

k=1

(−1)ke−kΓτ .

(34)
Thus, at the time instant t = Mτ + (τ − τ1), we have

ρee(t) =

(

1 +

M
∑

k=1

(−1)ke−kΓτ

)

e−Γ(τ−τ1)

=

(

M
∑

k=0

(−1)ke−kΓτ

)

e−Γ(τ−τ1)

=
1− (−1)M+1e−(M+1)Γτ

1 + e−Γτ
e−Γ(τ−τ1), (35)

and, since ρgg(t) = 1− ρee(t), we obtain

ρgg(t) = 1−
1− (−1)M+1e−(M+1)Γτ

1 + e−Γτ
e−Γ(τ−τ1). (36)

Having established the explicit initial value of ρ′′(t, t),
now we can proceed evaluating the value of ρ′′ge(t, t+ θ).
Between the pulses both ρ′′ge and ρ′′eg evolve according to
Eqs. 26 and 27. Thus, if t and t + θ belong to the same
inter-pulse interval (i.e. when Mτ < t+θ < (M +1)τ),
we have

ρ′′ge(t, t+ θ) = e(i∆−Γ
2 )θρgg(t) and ρ′′eg = 0. (37)

With increasing θ, at some point it will become equal to
τ1, and then the instant t+θ will coincide with the instant
when a pulse is applied: t + θ = (M + 1)τ + 0. At this
point the time instants t and t+ θ will become separated
by one pulse, and the value of ρ′′eg will be interchanged
with ρ′′ge, i.e. when θ = τ1 + 0 we will have already

ρ′′ge(t, t+ θ) = 0 (38)

ρ′′eg(t, t+ θ) = e(i∆−Γ
2 )τ1ρgg(t).

At this point, the accumulation rate of the phase in ρ′′ge
and ρ′′eg changes sign: note that the factors on the right-
hand sides of Eqs. 26 and 27 have opposite imaginary
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parts, i∆ and −i∆, respectively. Thus, right before the
next pulse, when t + θ = (M + 2)τ − 0 (i.e. when θ =
τ + τ1 − 0), we will have

ρ′′ge(t, t+ θ) = 0 (39)

ρ′′eg(t, t+ θ) = e(i∆−Γ
2 )τ1e(−i∆−Γ

2 )τρgg(t)

and right after the pulse, when t+ θ = (M +2)τ +0 (i.e.
when θ = τ + τ1 + 0), the values will be interchanged
again:

ρ′′ge(t, t+ θ) = e(i∆−Γ
2 )τ1e(−i∆−Γ

2 )τρgg(t)

ρ′′eg(t, t+ θ) = 0. (40)

Proceeding further in this way, right before the next
pulse, at θ = τ1 + 2τ − 0, we get

ρ′′ge(t, t+ θ) = e(i∆−Γ
2 )τ1e−Γτρgg(t)

ρ′′eg(t, t+ θ) = 0. (41)

Note that the phase of ρ′′ge still equals to i∆τ1, because af-
ter each pulse the phase accumulation rate changes sign.
Further, at θ = τ1 + 3τ − 0,

ρ′′ge(t, t+ θ) = 0 (42)

ρ′′eg(t, t+ θ) = e(i∆−Γ
2 )τ1−i∆τ− 3Γ

2 τρgg(t)

Thus we obtain that for θ = τ1 + (m − 1)τ − 0 with m
even, as shown in Fig. 6,

ρ′′ge(t, t+ θ) = 0 (43)

ρ′′eg(t, t+ θ) = e(i∆−Γ
2 )τ1−i∆τ−

(m−1)Γ
2 τρgg(t),

and for θ = τ1 + (m− 1)τ + τ2 with m even and τ2 < τ ,

ρ′′ge(t, t+ θ) = e(i∆−Γ
2 )τ1−i∆τ− (m−1)Γ

2 τei∆τ2−
Γ
2 τ2ρgg(t)

= e−Γθ/2ei∆(τ1+τ2−τ)ρgg(t)

ρ′′eg(t, t+ θ) = 0. (44)

Altogether we can write

ρ′′ge(t, t+ θ) = f(t, θ)ρgg(t) (45)

with ρgg(t) given above by Eq. 36, and

• for t and t+ θ in the same pulse interval,

f(t, θ) = e(i∆−Γ
2 )θ (46)

• for t and t+θ separated by an odd number of pulses,

f(t, θ) = 0 (47)

• for t and t + θ separated by an even number m of
pulses, i.e. when θ = τ1 + (m− 1)τ + τ2 with even
m and τ2 < τ (Fig. 6),

f(t, θ) = e−Γθ/2ei∆(τ1+τ2−τ) = e−Γθ/2ei∆(θ−mτ). (48)

Note that, due to the pulses, the phase of the function
f(t, θ) does not grow linearly with θ, being confined to
the interval [−τ∆, τ∆] at all values of t and θ. This is the
reason why, for small inter-pulse delay τ ≪ ∆−1, both
emission and absorption are concentrated in the vicinity
of ω = 0 instead of ω = ∆.

With this result, we can now rewrite the direct absorp-
tion integral P2(ω) in the form

P2(ω) =

∫ T

0

dt ρgg(t)

∫ T−t

0

dθf(t, θ)e−iωθ (49)

First let us evaluate the inner integral, that we will
denote as Iθ, using the explicit form of f(t, θ) above:

Iθ =

∫ τ1

0

dθ e−iωθe(i∆−Γ/2)θ +

∫ τ1+2τ

τ1+τ

dθ e−iωθe−i2∆τ+(i∆−Γ/2)θ

+

∫ τ1+4τ

τ1+3τ

dθ e−iωθe−i4∆τ+(i∆−Γ/2)θ + · · ·+

∫ τ1+mτ

τ1+(m−1)τ
even m

dθ e−iωθe−im∆τ+(i∆−Γ/2)θ + · · ·

=
e[i(∆−ω)−Γ/2]τ1 − 1

i(∆− ω)− Γ/2
+

mmax
∑

m=2
even m

∫ τ1+mτ

τ1+(m−1)τ

dθ e−iωθe[−im∆τ+(i∆−Γ/2)θ] (50)

where the summation is over even values of m, and mmax is the maximum value of m; since it has to be even, its
specific value depends on whether M is odd or even, see below for details. Defining γ0 = i(ω−∆)+Γ/2, we can write

Iθ =
1− e−γ0τ1

γ0
+

mmax
∑

m=2
even m

e−im∆τ e
−γ0(τ1+(m−1)τ) − e−γ0(τ1+mτ)

γ0

=
1− e−γ0τ1

γ0
+

e−γ0τ1

γ0
(eγ0τ − 1)

1− e−mmaxγ1τ

e2γ1τ − 1
, (51)
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where we have introduced γ1 = Γ/2+ iω. Note that this
result correctly reproduces the situation of mmax < 2,
i.e. when mmax = 0; this happens when t belongs to the
last inter-pulse interval of the sequence, and θ varies only
from zero to τ1. Then the value of Iθ is given by the first
integral in Eq. 50, while the remaining sum over m is
zero. Thus, we do not need to worry about this special
case in the calculations below.
Now we need to evaluate the outer integral:

P2(ω) =

∫ T

0

dt ρgg(t)Iθ (52)

with the quantity ρgg calculated earlier,

ρgg(t) = 1− ρ0(M)e−Γ(τ−τ1)

= 1−
1− (−1)M+1e−(M+1)Γτ

1 + e−Γτ
e−Γ(τ−τ1), (53)

where we introduced the shorthand notation ρ0(M) for
the awkward fraction appearing on the second line. In
this way, we represent P2 as

P2 =

∫ T

0

dt Iθ −

∫ τ

0

dt ρ0(0)e
−Γ(τ−τ1)Iθ (54)

−

∫ 2τ

τ

dt ρ0(1)e
−Γ(τ−τ1)Iθ

− · · · −

∫ Npτ

(Np−1)τ

dt ρ0(Np − 1)e−Γ(τ−τ1)Iθ (55)

=

∫ T

0

dt Iθ

−

Np−1
∑

M=0

ρ0(M)

∫ τ

0

dt1 e−Γt1

(

1

γ0
+ e−γ0τ1I

(1)
θ

)

(56)

where we have defined t1 = t−Mτ = τ − τ1 and

Iθ =
1

γ0
+ e−γ0τ1I

(1)
θ

I
(1)
θ = −

1

γ0
+

eγ0τ − 1

γ0

1− e−mmaxγ1τ

e2γ1τ − 1

= −1/γ0 + I
(2)
θ (57)

where we introduced the shorthand notation I
(2)
θ for an-

other awkward fraction, the second summand on the sec-
ond line above.
Now we have

P2 =−

Np−1
∑

M=0

ρ0(M)

∫ τ

0

dt1 e−Γt1

(

1

γ0
+ e−γ0(τ−t1)I

(1)
θ

)

+

∫ T

0

dt Iθ

=−

Np−1
∑

M=0

ρ0(M)

[

1− e−Γτ

γ0Γ
+ I

(1)
θ e−γ0τ

eγ2τ − 1

γ2

]

+ P3 (58)

with P3 =
∫ T

0
dt Iθ and γ2 = γ0 − Γ = i(ω −∆)− Γ

2 .
Below we will show that the first sum gives exactly

the contribution from the stimulated emission P1(ω). It
is convenient to calculate the simpler term P3 first. We
can rewrite P3 as:

P3 =

∫ T

0

dt

γ0
+

∫ τ

0

dt e−γ0τ1I
(1)
θ

+ · · ·+

∫ Npτ

(Np−1)τ

dt e−γ0τ1I
(1)
θ

=
Npτ

γ0
+ e−γ0τ

Np−1
∑

M=0

I
(1)
θ

∫ τ

0

dt1 eγ0t1

=
Npτ

γ0
+

Np−1
∑

M=0

I
(1)
θ

1− e−γ0τ

γ0
(59)

With the explicit form of I
(1)
θ given above, we have

P3 =
Npτ

γ0
−

Np−1
∑

M=0

1− e−γ0τ

γ2
0

+

Np−1
∑

M=0

1− e−γ0τ

γ2
0

I
(2)
θ

=
Npτ

γ0
−

Np

γ2
0

(1 − e−γ0τ ) + P4 (60)

where

P4 =
1− e−γ0τ

γ0

eγ0τ − 1

γ0

Np−1
∑

M=0

1− e−γ1τmmax

e2γ1τ − 1

=
eγ0τ + e−γ0τ − 2

γ2
0(e

2γ1τ − 1)



Np −

Np−1
∑

M=0

e−γ1τmmax





(61)

In order to calculate the last sum in the equation
above, we need to determine mmax. To do this let us
consider the case of Np = 2K, i.e. when the number K
of the full cycles of the sequence has been applied to the
TLS. Let us recall that we represent t = Mτ + (τ − τ1),
i.e. M is the number of pulses between zero and t. The
number of pulses separating t and t + θ is m, and the
maximum value of θ is θmax = T − t, which limits the
maximum value of m; however, f(t, θ) is zero if m is odd,
so that mmax should be even. Therefore, starting from
larger values of t, we obtain:

* if t ∈ [T −τ, T ] then θmax = (T − t) ∈ [0, τ ], so that
if M = 2K − 1 then mmax = 0,

* if t ∈ [T − 2τ, T − τ ] then θmax = (T − t) ∈ [τ, 2τ ],
so that if M = 2K − 2 then mmax = 0 because
mmax should be even,

* if t ∈ [T−3τ, T−2τ ] then θmax = (T −t) ∈ [2τ, 3τ ],
so that if M = 2K − 3 then mmax = 2,

* if t ∈ [T−4τ, T−3τ ] then θmax = (T −t) ∈ [3τ, 4τ ],
so that if M = 2K − 4 then mmax = 2 (should be
even),
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* if t ∈ [T −5τ, T−4τ ] then θmax = (T−t) ∈ [4τ, 5τ ],
so that if M = 2K − 5 then mmax = 4,

* if t ∈ [T −6τ, T−5τ ] then θmax = (T−t) ∈ [5τ, 6τ ],
so that if M = 2K − 6 then mmax = 4 (should be
even),

* · · ·

* if t ∈ [τ, 2τ ] then θmax = (T − t) ∈ [T − 2τ, T − τ ],
so that if M = 1 then mmax = 2K − 2,

* if t ∈ [0, τ ] then θmax = (T − t) ∈ [T −τ, T ], so that
if M = 0 then mmax = 2K − 2 (should be even).

To summarize, if we parametrize M = 2n for even M
and M = 2n + 1 for odd M , where n varies from 0 to

K − 1, then mmax = 2(K − n− 1) for both M = 2n and
M = 2n+ 1.

Thus, the last sum in Eq. 61 is calculated as

Np−1
∑

M=0

e−γ1τmmax = 2
K−1
∑

n=0

e−2γ1τ(K−n−1)

= 2
1− e−γ1τNp

1− e−2γ1τ
, (62)

where the factor 2 appears because mmax is the same for
both M = 2n and M = 2n+1, so that the sums over odd
M and evenM are combined. Putting all terms together,
we obtain

P3 =
Npτ

γ0
−

Np

γ2
0

(1− e−γ0τ ) +
eγ0τ + e−γ0τ − 2

γ2
0(e

2γ1τ − 1)

[

Np − 2
1− e−γ1τNp

1− e−2γ1τ

]

(63)

Now, the calculation of the emission term P1 can be
simplified if we notice that ρ′(t, s) obeys the same equa-
tions of motion as ρ′′(t, s), and is transformed by the
pulses in exactly the same way. Therefore, the quan-
tity ρ′ge(t, s) (that determines P1) evolves in exactly
the same way as ρ′′ge(t, s), and the difference between
them is only in the initial condition: at s = t we have
ρ′ge(t, t) = ρee(t), while ρ′′ge(t, t) = ρgg(t) = 1 − ρee(t).
Thus, the reasoning that was used in deriving Eqs. 37–44
can be directly applied to ρ′ge(t, s) if ρgg(t) is substituted
by ρee(t), due to the linearity of the master equations.
As a result, we immediately see that ρ′ge(t, t+ θ) has the
form

ρ′ge(t, t+ θ) = f(t, θ)ρee(t) (64)

with the same function f(t, θ). Thus, the integral Iθ can
be used without modifications in the calculation of P1,
and, since ρgg(t) = 1− ρee(t), we immediately obtain

P1(ω) =

∫ T

0

ρee(t)Iθ dt =

∫ T

0

[1−ρgg(t)]Iθ dt = P3−P2.

(65)
Comparing this expression with Eq. 58 above, we obtain
an explicit expression

P1 =

Np−1
∑

M=0

ρ0(M)

∫ τ

0

dt1 e−Γt1

(

1

γ0
+ e−γ0(τ−t1)I

(1)
θ

)

=

Np−1
∑

M=0

ρ0(M)

[

1− e−Γτ

γ0Γ
+ I

(1)
θ e−γ0τ

eγ2τ − 1

γ2

]

(66)

Now let us evaluate the sums appearing in this expres-
sion. First, we need the sum

Np−1
∑

M=0

ρ0(M)=
1

1 + e−Γτ

Np−1
∑

M=0

[

1 + e−Γτ (−e−Γτ )M
]

=
Np

1 + e−Γτ
+

e−Γτ

1 + e−Γτ

1− (−e−Γτ )Np

1 + e−Γτ
(67)

and for sufficiently large Np, when the exponentially
small terms can be omitted, this yields

Np−1
∑

M=0

ρ0(M) ≈
Np

1 + e−Γτ
+

e−Γτ

(1 + e−Γτ )2
, (68)

The second required sum is

Np−1
∑

M=0

ρ0(M)e−γ1τmmax , (69)

and in order to evaluate it we use the same parametriza-
tion as above, M = 2n for even M and M = 2n+ 1 for
odd M , with n = 0, . . . ,K − 1. We pair the neighboring
terms, i.e.

Np−1
∑

M=0

ρ0 (M)e−γ1τmmax (70)

=

[

∑

evenM

+
∑

oddM

]

ρ0(M)e−γ1τmmax

=

K−1
∑

n=0

[ρ0(2n) + ρ0(2n+ 1)] e−2γ1τ(K−n−1).

Since

ρ0(2n)+ρ0(2n+1) =
2 + e−Γτ(2n+1) − e−Γτ(2n+2)

1 + e−Γτ
, (71)
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FIG. 7. (Color online) Absorption spectrum of a two-level
system with detuning ∆ = 3.0 driven by a periodic sequence
of π-pulses of period τ = 0.2 after 20 pulses. The results
are obtained by solving master equation numerically (blue)
or analytically in the limit of a large number of pulses (red
dashed). We see that indeed the agreement between the nu-
merical and analytical results is better at longer times (for a
large number of pulses).

we obtain

Np−1
∑

M=0

ρ0 (M)e−γ1τmmax

=

K−1
∑

n=0

2− e−Γτ(2n+1) + e−Γτ(2n+2)

1 + e−Γτ
e−2γ1(K−n−1)τ

=
e−2γ1(K−1)τ

1 + e−Γτ

[

2
e2Kγ1τ − 1

e2γ1τ − 1

+ e−Γτ (1− e−Γτ )
e2K(γ1−Γ)τ − 1

e2(γ1−Γ)τ − 1

]

(72)

Substituting these results into Eq. 66 for P1, we obtain
Eq. 74 in the limit of large Np and the net absorption
spectrum is obtained as

Q(ω) = 2A2Re {P2(ω)− P1(ω)}

= 2A2Re {P3(ω)− 2P1(ω)} (73)

with the explicit analytical expressions for P1 and P3

given by Eq. 74 and Eq. 63.
In the limit of largeNp (long times), the net absorption

spectrum is simply proportional to Np, in a way similar
to Eq. 63. Numerical calculations show that this limit is
achieved within 1–2 spontaneous emission times, so that
the further evolution of the spectrum is mostly limited to
a linear increase of the amplitude with time, so that the
spectrum can be characterized by the energy absorption
rate per unit time. At shorter times, when the shape of
the spectrum is still forming, the energy itself should be
considered.

P1(ω) =
1

(1 + e−Γτ )γ0

[

(

1− e−Γτ

Γ
− e−γ0τ

eγ2τ − 1

γ2
+

eγ2τ − 1

γ2

1− e−γ0τ

e2γ1τ − 1

)(

Np +
e−Γτ

1 + e−Γτ

)

−
eγ2τ − 1

γ2

1− e−γ0τ

e2γ1τ − 1

(

2
e−Npγ1τ − 1

e−2γ1τ − 1
+ (e−Γτ − e−2Γτ )

e−Npγ1τ

e−2γ1τ − e−2Γτ

)

]

(74)

In Fig.7 we show a comparison of the numerical re-
sult and the analytical result described above for the ab-
sorption spectrum of a two-level system with detuning
∆ = 3.0 driven by a periodic pulse sequence of period

τ = 0.2 after 20 pulses. The comparison reveals a very
good agreement between the solutions, and the agree-
ment indeed improves as the number of pulses increases.


