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We present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spec-
tra of polarons in a semiconducting π- conjugated polymers. We show that the contact hyperfine
coupling and the dipolar interaction between the polaron and the proton spins give rise to different
features in the ESEEM spectra. Our theory enables direct selective probe of different groups of nu-
clear spins which affect the polaron spin dynamics. Namely, we demonstrate how the signal from the
distant protons (coupled to the polaron spin via dipolar interactions) can be distinguished from the
signal coming from the protons residing on the polaron site (coupled to the polaron spin via contact
hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction,
that would enable detailed study of the polaron orbital state and its immediate environment. We
also analyze the decay of the spin echo modulation, and its connection to the polaron transport.

I. INTRODUCTION

Over the past decades, semiconducting organic π- con-
jugated small molecule and polymer materials have been
become widely used in optoelectronic devices such as
light-emitting diodes and solar cells.1,2 This triggered an
increasing interest in the area of organic electronics, un-
covering a variety of new concepts. Remarkably, it was
established that the charge carrier spin is fundamental to
electrical and optical properties of organic semiconduc-
tors. However, because of the extremely complex nature,
many important aspects of the spin dynamics and un-
derlying microscopic mechanisms are not yet well under-
stood. This includes the microscopic structure of charge-
carrier polaron states, and the resulting hyperfine cou-
pling of polaron spin to the local magnetic environment,
which is a key for understanding the spin-dependent pro-
cesses in organic semiconductors.

Optically and electrically detected magnetic resonance
(ODMR and EDMR, respectively) are highly efficient
spectroscopic tools for the investigation of microscopic
properties of organic semiconductors.3 While the con-
ventional electron spin resonance (ESR) techniques mea-
sure the spin polarization, ODMR and EDMR probe
optically and electrically active paramagnetic states,4–6

which are crucial to many organic semiconductor appli-
cations. Moreover, as the spin polarization in organic
semiconductors is typically low, ODMR and EDMR are
much more sensitive than the conventional ESR.7–9

Substantial progress in this direction was made by
the pulsed EDMR (pEDMR) experiments.10–16 Unlike
the continuous wave measurements, these experiments
are capable of probing the coherent spin dynamics, and
thus provide a closer view on the spin-dependent pro-
cesses. Importantly, pEDMR (and pODMR) offer the
implementation of various spin-echo based spectroscopic
techniques in the study of organic semiconductors.14,15

This motivates the present theoretical study of a spec-
troscopic method based on the two-pulse (Hahn) echo
and three-pulse echo sequences.17

In many organic semiconductors the spin-orbital cou-
pling is very weak, and the polaron spin dynamics is

governed mainly by the hyperfine interaction (HFI) of
the polaron spin with the surrounding proton spins.18,19

Therefore, probing the polaron’s HFI is very important.
In particular, electron spin echo envelope modulation
(ESEEM) spectroscopy20,21 is a very informative mag-
netic resonance technique that is widely used for investi-
gation of the hyperfine interactions of paramagnetic cen-
ters. The pEDMR implementation of this technique,
applied to organic polymer poly[2-methoxy-5-(2′-ethyl-
hexyloxy)- 1,4-phenylene vinylene] (MEH-PPV), was re-
cently reported by Malissa et al.15 Employing a version of
ESEEM, the authors of Ref. 15 have been able to resolve
the proton spectral line in MEH-PPV and the deuteron
and the proton lines in partially deuterated MEH-PPV.
In this paper we develop a theory of ESE modulations

in organic semiconducting polymers for two most com-
mon pulse experiments, the two-pulse primary echo, and
the three-pulse stimulated echo (corresponding to pri-
mary and stimulated ESEEM, respectively). Our theory
enables direct selective probe and investigation of differ-
ent groups of nuclear spins which affect the polaron spin
relaxation. For instance, we show that, by appropriately
choosing the experimental parameters, it is possible to
selectively measure the signal from the distant protons
(coupled to the polaron spin via dipolar interactions) and
distinguish it from the signal coming from the protons re-
siding on the polaron site (coupled to the polaron spin
via contact HFI). Based on our theoretical analysis, we
conclude that the spectral lines observed in Ref. 15 come
from the distant protons, while the same-site protons are
not detected. We propose a method for directly probing
the contact HFI, that would enable detailed study of the
polaron orbital state and its immediate environment.
The paper is organized as follows. In the next Section

we discuss the hyperfine interaction between the polaron
and the proton spins, particularly in polymer poly[p-
phenylene vinylene] (PPV) and its derivative, MEH-
PPV. The analytical description of ESEEM is given in
Section III. In Section IV we analyze the effect of ran-
dom orientations of the polymer chains. The polaron
hopping and the resulting ESE modulation decay is con-
sidered in Section V. We discuss our results in Section
VI. Appendices contain the details of our analytical and



2

numerical calculations.

II. POLARON SPIN IN A π- CONJUGATED

ORGANIC SEMICONDUCTING MATERIAL

The polarons in organic semiconductors reside on cer-
tain molecular or polymer sites and hop between the
sites. While residing on a site the polaron spin S interacts
with N surrounding hydrogen nuclear spins Ij = 1/2,
j = 1, .., N . In a strong static magnetic field B0 = B0ẑ

the polaron spin dynamics is described by the Hamilto-
nian,

H = ΩSz +

N
∑

j=1

Sz
(

AjI
z
j +BjI

x
j

)

− ωI

N
∑

j=1

Izj , (1)

where Ω = γe~B0 and ωI = γn~B0 are the polaron and
the nuclear Larmor frequencies, respectively, and {Aj},
{Bj} are the coupling constants that correspond, depend-
ing on the location of the nuclear spin, either to the con-
tact hyperfine [Eq. (3)] or to the dipole-dipole interac-
tion [Eq. (5)]. This (pseudo)secular description17 implies
that B0 greatly exceeds the local magnetic fields created
by the nuclear magnetic moments, i.e., Ω ≫ ωhf, where

ωhf =
1
2

√

∑

j(A
2
j +B2

j ) is the average polaron precession

frequency in the local field of the surrounding nuclear
spins. Assuming measurements in the X – band,14,15 we
will take B0 ≈ 345 mT and ωI/2π ≈ 14.7 MHz.
The coupling constants in Eq. (1) depend on the rel-

ative orientation of B0 and the polaron host molecu-
lar or polymer site. Typically, organic semiconductors
are amorphous materials lacking any long range order in
molecular or polymer orientations. Thus, the coupling
constants {Aj, Bj} differ from site to site, even if the
sites have the same microscopic structure.

Polarons in conjugated polymer PPV and

MEH-PPV

The hyperfine interaction between the polaron and the
proton spins is determined by the chemical structure of
host molecule or polymer, which also governs the orbital
state of the polaron. To be specific, we focus on the
polymer PPV and its derivative, MEH-PPV (see Fig. 1).
We base our consideration on the picture of the polaron
wavefunction and underlying HFI advocated in Refs. 24–
27; for a comprehensive review, see Ref. 28.
The protons can be naturally divided into two groups.

The first group includes protons located within the en-
velope of the polaron’s orbital wavefunction, thus con-
tributing to the contact HFI. These are the protons of the
C–H groups covalently coupled to the polymer backbone
carbons, where the polaron wavefunction resides. Be-
cause of the exponentially fast spatial decay the polaron
wavefunction covers a finite number of such protons. As
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FIG. 1: (Color online) Conjugated polymer PPV (a) and its
derivative, MEH-PPV (b). Upper and middle panels show
the chemical structures and the unit cells. The principal x, y
axes of the C–H proton hyperfine tensors at B and C′ carbon
sites are different from those at B′, C, E, and F carbon sites,
while the z axes are the same and perpendicular to the plane
of the picture (in MEH-PPV there are no C–H protons at B′

and C sites). Lower panels: half-widths of the spatial extents
of polarons (orange ovals), according to Ref. 26.

discussed below, in PPV and MEH-PPV this number is
order of few tens. Therefore we neglect the contact pro-
tons which are coupled to the polaron spin weaker than
0.5 MHz; the number of such contact protons is small,
and their overall effect is inessential.
Distant protons, which form the second group, cou-

ple to a polaron spin via magnetic dipolar interactions.
These protons belong both to polymer backbones and
substituent side-groups. Simple estimates show that
nearly every distant proton couples to a polaron spin with
less than 1 MHz strength. However, because of the slow,
∝ 1/r3 decay of the dipolar interaction the effective num-
ber of these protons is of the order of few thousand, so
that their overall effect can be noticeable, and sometimes
even dominant.

1. Contact hyperfine interaction

The polaron spin S couples to a C–H proton spin I

via the hyperfine interaction S · ρSÂ · I, where ρS is the
polaron spin density on the carbon pπ orbital and Â is
the hyperfine tensor. Thus the polaron contact hyperfine
interaction is completely described in terms of Â and ρS.
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From the analysis of unpaired carbon orbital states it
was established29 that the principal x and z axes of the
hyperfine tensor are parallel to the C–H bond and the pπ
orbital axes, respectively (see Fig. 1). Principal elements
of the hyperfine tensor are approximately expressed as

(

Ax, Ay, Az

)

= −
(

[1− α]AH , [1 + α]AH , AH

)

, (2)

where AH/2π = 60 to 80 MHz is the McConnell’s con-
stant, and α = 0.5 to 0.6 is the degree of anisotropy.29

Equation (2) is quite generally applicable to organic
π-electron radicals. For PPV and MEH-PPV, the ex-
perimental studies suggest AH/2π = 70 MHz and α =
0.5.24–26 These numerical values are used in our calcula-
tions. The remaining ingredient needed for description
of the polaron contact HFI is the polaron spin density
at the carbon sites, ρS. In our subsequent calculations
we use the spin density presented in Table I. The num-
bers presented there have been obtained from a model
calculation,27 and have been verified by the analysis
of spectral lineshapes in ENDOR24,25 and light-induced
ESR26 experiments.
Formally, ρS in Table I is calculated for PPV. However,

the same data can be used for other PPV derivatives,26

particularly for MEH-PPV, neglecting the effect of sub-
stituent groups on ρS.
The consideration below is focused primarily on MEH-

PPV, since its ESEEM spectra have been studied in Ref.
15. According to Table I and Fig. 1, in MEH-PPV there
are Nc = 22 contact proton spins coupled to the polaron
spin at sites B, C′, E, and F , distributed over 7 consec-
utive unit cells which are covered by the polaron wave-
function (note that in MEH-PPV the C–H protons at car-
bon sites B and C′ are replaced by substituent groups).
In the Hamiltonian (1) we label the contact protons by

j = 1, .., Nc. The coupling constants {Aj , Bj}Nc

j=1 de-
pend on the relative orientations of the corresponding
C–H bonds and the applied magnetic field, B0 = B0ẑ.
We denote the components of ẑ in the principal basis
of the j- th hyperfine tensor by qµj , µ = x, y, z. The

TABLE I: Spin density of a polaron in PPV chain, ρS, taken
from Ref. 27. Small values, |ρS| < 0.005, are neglected. The
site assignment corresponds to that of Fig. 1. The unit cell
at the polaron center is denoted by 0, thereby the unit cells
with significant values of ρS range from −3 to 3.

site\cell -3 -2 -1 0 1 2 3

A – 0.01 0.04 0.08 0.04 – –

B – 0.01 -0.015 0.035 -0.005 0.03 -0.005

B′ – 0.01 -0.015 0.04 – 0.03 –

C – – 0.03 – 0.04 -0.015 0.01

C′ – -0.005 0.03 -0.005 0.035 -0.015 0.01

D – – – 0.04 0.08 0.04 0.01

E 0.01 -0.01 0.09 0.08 – 0.035 –

F – 0.035 – 0.08 0.09 -0.01 0.01

coupling constants are related to the hyperfine tensor el-
ements Eq. (2) as

Aj = ρS(j)
∑

µ

Aµq
2
µj , A2

j +B2
j = ρ2S(j)

∑

µ

A2
µq

2
µj . (3)

For each j, ρS(j) is given in Table I, and qµj can be found
for any direction of B0 from the description of the princi-
pal hyperfine axes in Fig. 1. The protons coupled to the
polaron via contact HFI create a random local magnetic
field. The number of such protons is quite large, so the
random field has almost Gaussian probability distribu-
tion. From Table I we calculate its standard deviation,
ωhf,c/~γe, where the hyperfine frequency

ωhf,c =

〈

1

2

√

∑

j≤Nc

(

A2
j +B2

j

)

〉

≈ 2π × 7.25MHz (4)

is an average over the polaron random orientations. The
corresponding ESR line would have a Gaussian shape
with the full width at half maximum of 6.1 G, in agree-
ment with Ref. 26.

2. Interaction with the distant protons

Distant protons couple to the polaron spin via mag-
netic dipolar interaction. The strength of this interac-
tion is determined by the material morphology, includ-
ing the molecular packing and the average density of
protons. Relying upon the reported data on the molec-
ular packing30–32 and van der Waals radii of hydrogen
and carbon33–35, we restrict the minimal distance be-
tween the polymer backbone carbons and distant pro-
tons to dmin = 2.2 Å. Furthermore, based on the MEH-
PPV mass density 1 g/mL31,32 and its chemical struc-
ture shown in Fig. 1, we infer the average proton density
55 nm−3. Correspondingly, we assume that the protons
are uniformly randomly distributed over the sample with
the average density of 55 nm−3, except for the (distant)
proton-free cylindrical regions of the radius dmin around
the polymer backbone. The polaron spin density, being
strongly concentrated around the 38 carbon sites given
in Table I, can be approximated as a sum of 38 delta
function-like peaks. Therefore, the coupling constants
Aj and Bj which describe the dipolar interaction between
the j-th distant proton and the polaron spin, include the
summation over the 38 point-like regions, i.e.

Aj = ~ γeγn

38
∑

l=1

ρS(l)
1− 3 cos2 θlj

R3
lj

,

Bj = ~ γeγn

38
∑

l=1

ρS(l)
3 sin θlj cos θlj

R3
lj

. (5)

Here, ρS(l) is the polaron spin density at the carbon site
l, Rlj is the vector connecting the distant proton to this
carbon site, and θlj is the angle between Rlj and B0.
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A large number of distant protons is included in our
numerical simulations. The locations of the distant pro-
tons are sampled from the distribution described above
(uniform, with the exception of the proton-free cylinders
around the polymer chains), and the averaging over many
different samples is performed. In our simulations the re-
sults converge for about Nd = 2000 distant protons, and
do not change appreciably if this number is increased by
an order of magnitude. This is because we deal with spa-
tial integrals of ∼ A2, B2, and their combinations, which
vanish as∝ R−6 or faster, and thus converge quickly. Av-
eraging over the random orientations of polymer chains
should be performed additionally, as the polaron spin
density is not spherically symmetric and different chain
orientations are inequivalent.
The random local frequencies created by the distant

protons will have a typical magnitude of ωhf,d ≈ 2π ×
2 MHz, leading to the the total linewidth,

ωhf =

〈

1

2

√

∑

all j

(

A2
j +B2

j

)

〉

≈ 2π × 7.52MHz. (6)

From Eqs. (4) and (6) it is seen that, on average, the
distant protons are responsible only for a small fraction
of the local hyperfine field. Yet they have a strong effect
on the fine structure of ESEEM, as will be seen shortly.
Note that the distinction between contact and distant

protons is rather sharp, with a well defined dmin con-
trolled by the molecular packing. Although for some
contact-coupled protons the hyperfine coupling is some-
what weak (comparable to the coupling of the distant
protons), the number of such protons is small, and their
influence on the spectra is negligible.
In theoretical studies of the spin dynamics in or-

ganic semiconductors the semiclassical approach22 is of-
ten used. While this approach does not capture all details
of the ESEEM signal, it provides a convenient way for the
characterization of signal decay. Within the semiclassical
treatment, the nuclear spin dynamics given by the last
term of Eq. (1) is ignored, and the on-site hyperfine in-
teraction is replaced by a random local static magnetic
field experienced by the polaron spin.22 Accordingly, the
on-site semiclassical Hamiltonian in the secular approxi-
mation reads:

HSC =
(

Ω+ ωz)S
z, (7)

where ωz is random and uncorrelated from site to site.
This random frequency is approximately described by
the Gaussian distribution, with the standard deviation
ωhf [see Eq. (6)]. Note that the distribution of random
fields resulting from the bath of dilute spins is Lorentzian,
rather than Gaussian,23 and may provide an alternative
description for the distant protons in highly deuterated
samples. However, because of moderate dilution of pro-
tons even in the deuterated samples and overall small
contribution of distant protons to ωhf, the Gaussian dis-
tribution of local frequencies is sufficiently accurate for
the purposes of our study.
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FIG. 2: (Color online) The ESEEM pulse sequences consid-
ered in the text. (a) Primary ESEEM. (b) Stimulated ES-
EEM.

III. SPIN ECHO WITH IDEAL PULSES

Generally, ESEEM spectroscopy is used to investigate
the hyperfine interactions of paramagnetic species.20 To
set a framework for discussing the application of spin
echo experiments to organic semiconductors, we discuss
the ESEEM in the case of the two-pulse Hahn echo se-
quence, Fig. 2(a) (primary ESEEM), and the three-pulse
sequence, Fig. 2(b) (stimulated ESEEM). In Fig. 2, π/2
and π denote the rotation angle of spins around the x-axis
in the rotating frame, induced by resonant microwave
pulses, whereas τ and T are the free evolution periods
between the pulses. The pulses are assumed to be ideal.
Depending on τ and T the echo amplitude, which we de-
note by E(2τ) for the primary ESEEM and E(τ, T ) for
the stimulated ESEEM, undergoes modulation caused by
the coupling to the nuclear spins.
Using the density matrix formalism, the (normalized)

echo amplitudes can be written as

E(2τ) = −2Tr
[

U(τ)ρ̂(0)U †(τ)Sy
]

, (8)

E(τ, T ) = −2Tr
[

U(τ, T )ρ̂(0)U †(τ, T )Sy
]

, (9)

where ρ̂(0) is the density operator before the first pulse,
and the evolution operators are given by

U(τ) = e−iτH
[

π
]

e−iτH
[

π/2
]

,

U(τ, T ) = e−iτH
[

π/2
]

e−iTH
[

π/2
]

e−iτH
[

π/2
]

,

where [φ] = exp(iφSx) denotes the rotation operator for
an ideal pulse with the flip angle φ, andH is the Hamilto-
nian, as given by Eq. (1). We consider the initial density
operator ρ̂(0) = (1/2 + Sz) ⊗ ρI that describes the po-
laron spin ensemble polarized along the z-axis. We can
neglect the thermally-induced polarization of the nuclear
spin ensemble and take the nuclear density operator pro-
portional to the unity, ρI ∝ 1. The explicit calculation
of modulation functions is facilitated by the fact that
the Hamiltonian, Eq. (1), preserves the z-component of
polaron spin. One gets20

E(2τ) =

N
∏

j=1

(

1− 2kj sin
2 ωj+τ

2
sin2

ωj−τ

2

)

(10)
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for the primary ESEEM and

E(τ, T ) =
1

2

N
∏

j=1

(

1− 2kj sin
2 ωj+[τ + T ]

2
sin2

ωj−τ

2

)

+
1

2

N
∏

j=1

(

1− 2kj sin
2 ωj+τ

2
sin2

ωj−[τ + T ]

2

)

(11)

for the stimulated ESEEM, where the frequencies,

ωj± =
[

(ωI ±Aj/2)
2 +B2

j /4
]1/2

, (12)

are the nuclear spin precession frequencies corresponding
to the polaron spin being up (+) and down (−), and

kj =

[

ωIBj

ωj+ωj−

]2

(13)

are the modulation depths.
Two major factors influencing modulation signals Eqs.

(10) and (11) in a real experiment are the orientation dis-
order of the polymer chains and random hopping of the
polaron between different sites. In the next two Sections
we study the effects of these factors.

IV. THE EFFECT OF ORIENTATION

DISORDER

In the typical experiments the samples are the dis-
ordered films of the organic polymer, so the observed
signals include contributions from all orientations of the
polymer chains. Therefore we average Eqs. (10) and
(11) over random orientations of the polymer chains,
and consider the disorder-averaged modulation signals,
〈E(2τ)〉, 〈E(τ, T )〉, together with their spectra given by

the cosine Fourier transforms,36 Ẽ(ω) = Fτ [〈E(2τ)〉],
Ẽ(τ, ω) = FT [〈E(τ, T )〉].

A. Orientation-averaged primary ESEEM

The HFI described above leads to small modulation
depths, kj ≪ 1. Moreover, the sum of all modulations
depths, κ =

∑

kj , is also small. This allows expansion of
Eq. (10) in terms of small kj (for details see Appendix
A). We write:

E(2τ) = 1− 1

2

∑

j

kj

[

1− cos(ωj+τ) − cos(ωj−τ)

+
1

2
cos
(

[ωj+ − ωj−]τ
)

+
1

2
cos
(

[ωj+ + ωj−]τ
)

]

. (14)

Equation (14) shows that the primary ESEEM spectrum
involves four groups of carrier frequencies, {ωj±} and
{ωj+ ± ωj−}. We also approximate

ωj± ≈ ωI ±Aj/2. (15)
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FIG. 3: (Color online) (a) and (c): the functions Fc(τ ) and
Fd(τ ), introduced in Eqs. (17) and (18) respectively, are plot-
ted with blue. (b) and (d): The respective cosine Fourier

transforms, F̃c(ω) and F̃d(ω), are plotted with magenta, in
the same units.

For the distant protons Eq. (15) follows from the weak
coupling, Aj , Bj ≪ ωI . For the contact protons with
a stronger coupling Eq. (15) is valid due to the weak
anisotropy of the contact HFI, see Appendix A. Equa-
tion (15) reveals the four frequency groups in the ESEEM
signal, namely {|Aj |}, {ωI − |Aj |/2}, {ωI + |Aj |/2}, and
2ωI . The relation37 ωI > 3

2 |Aj | means that the informa-
tion about {|Aj |} is encoded in the low-frequency modu-
lations of the ESEEM signal, which is well separated from
the higher frequency groups. Besides, the second and the
third groups are close to ωI , mirroring each other about
this frequency.
Another conclusion from Eq. (14) is that the contribu-

tions of the contact and the distant protons in E(2τ) are
simply additive. We separate these contributions by in-
troducing the notations, Ec(2τ) and Ed(2τ), respectively.
More specifically, Ec(2τ) is the partial sum of the first
Nc terms in Eq. (14), whereas Ed(2τ) includes the terms
with j > Nc, and thus E(2τ) = 1 + Ec(2τ) + Ed(2τ).
Using Eq. (15) in Eq. (14) and averaging the result over
the disorder in polymer chain orientations we obtain:

〈Eβ(2τ)〉 = −〈κβ〉
2

− 1

4
Fβ(2τ)−

〈κβ〉
4

cos(2ωIτ)

+Fβ(τ) cos(ωIτ), (16)

where the subscript, β = c, d, refers to the contact and
the distant protons, respectively, and the partial sums

Fc(τ) =
〈

∑

j≤Nc

kj cos(Ajτ/2)
〉

, (17)

Fd(τ) =
〈

∑

j>Nc

kj cos(Ajτ/2)
〉

, (18)

with κc = 〈∑Nc

j=1 kj〉 and κd = 〈∑j>Nc
kj〉 are intro-

duced. Equation (16) gives the orientation-averaged ESE
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modulation function in terms of Fc(τ) and Fd(τ). Par-
ticularly, the low-frequency modulations are included in
the second term of Eq. (16). The third term of Eq.
(16) describes oscillations of a constant amplitude at the
frequency 2ωI , and includes both the contact and the dis-
tant protons. Finally, modulations with the frequencies
close to ωI are incorporated in the last term of Eq. (16).
First we discuss the contribution of distant protons.

On the timescale, τ ∼ 1/ωI, the function Fd(τ), Fig. 3(c),
varies only slightly. Thus the last term of 〈Ed(2τ)〉 in
Eq. (16) represents oscillations with the frequency ωI

and the envelope Fd(τ). The cosine Fourier transform,

F̃d(ω), plotted in Fig. 3(d), shows a sharp peak at ω =
0. Through this function the cosine Fourier spectrum of
the distant protons is described. It involves three well-
resolved features; a dip of the form − 1

4 F̃d(ω/2) near the

origin, a sharp peak at ωI of the shape F̃d(ω − ωI), and
a sharper negative δ- peak at 2ωI .
In the case of the contact proton contribution, the

function Fc(τ) shown in Fig. 3(a) changes considerably
on the timescale τ ∼ 1/ωI because of the presence of
large Aj ∼ ωI . Therefore, the last term of 〈Ec(2τ)〉 in
Eq. (16) does not admit a simple interpretation in terms
of the oscillations with the frequency ωI and a smooth
envelope. Its cosine Fourier transform, F̃c(ω−ωI), incor-
porates two bands mirroring each other about ωI , as can
be inferred from Fig. 3(b). These bands come from the

modes with frequencies {ωI ± |A|j/2}Nc

j=1, spread by the
orientation disorder. Besides these two bands and the
negative δ- peak at 2ωI , the cosine Fourier spectrum of
contact protons involves a low-frequency band of the form
− 1

4 F̃c(ω/2), originating from the frequencies {|A|j}Nc

j=1.

Figure 4 plots the primary ESEEM spectrum Ẽ(ω),
calculated from Eq. (10) by a Monte Carlo sampling of
the polymer chain orientations, employing Eqs. (3), (5).
Its structure near ωI = 14.7 MHz includes a sharp peak
at ωI and two wider side-bands mirroring each other
about ωI . Based on the above analysis, we identify the
side-bands with the contribution of contact protons and
the sharp peak with the influence of the distant protons.
Thus, the shapes of the side-bands and of the sharp peak
are given by F̃c(ω−ωI) and F̃d(ω−ωI), respectively. This
identification is clearly confirmed in Fig. 4(b), where we
separately plot the contributions of the contact and the
distant protons.

B. Orientation-averaged stimulated ESEEM

The stimulated ESEEM can be analyzed along the
same lines. Expanding Eq. (11) in terms of small kj
and keeping the leading terms, one gets:

E(τ, T ) = 1−
∑

j

kj
2

[

sin2
ωj+τ

2

(

1− cosωj−[τ + T ]
)

+sin2
ωj−τ

2

(

1− cosωj+[τ + T ]
)

]

. (19)
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FIG. 4: (Color online) The primary ESEEM spectrum Ẽ, cal-
culated from orientation disorder averaged Eq. (10) numeri-
cally, is plotted in black. (a): The cosine Fourier transform of
the sum, 〈Ec(2τ )〉 + 〈Ed(2τ )〉, is plotted with yellow dashed
line, from Eq. (16). (b): Zoom in of the region indicated in

the left panel with a rectangle. F̃c(ω − ωI) and F̃d(ω − ωI)
are plotted with the cyan and magenta dotted lines, respec-
tively. It is seen that the spectral peak at ωI = 14.7 MHz is
exclusively due to the distant protons, whereas the side bands
come from the contact protons.

Thus, the stimulated ESEEM spectrum involves only two
groups of frequencies, {ωj+} and {ωj−}. Our subsequent
analysis employs the approximation given by Eq. (15).
By separating the contact and the distant proton con-
tributions in Eq. (19) and averaging over the polymer
chain orientations, we get 〈E(τ, T )〉 = 1 + 〈Ec(τ, T )〉 +
〈Ed(τ, T )〉, where the T - dependent parts of 〈Eβ(τ, T )〉,
β = c, d, are

〈Eβ(τ, T )〉 ≃
1

2
Fβ(τ + T ) cos(ωI [τ + T ]) (20)

−1

4
Fβ(T ) cos(ωI [2τ + T ])− 1

4
Fβ(2τ + T ) cos(ωIT ).

As a function of T , 〈Ed(τ, T )〉 involves only modula-
tions with the proton Zeeman frequency ωI , and its cosine
Fourier transform36 Ẽd(τ, ω) demonstrates just a sharp
peak around that frequency. The τ - dependence of the
modulation depth can be understood even without per-
forming the disorder averaging. Indeed, Eq. (19) shows
that the modulation amplitude is reduced if τ can be cho-
sen in such a way that sin(ωj±τ/2) ≈ 0 for all protons.
Since for the distant protons all ωj± are close to ωI , one
can expect a reduction of the modulation amplitude of
〈Ed(τ, T )〉 for the values of τ satisfying sin(ωIτ/2) = 0.
Similarly, one can anticipate an increase of the modula-
tion amplitude for the values of τ satisfying the condition
sin(ωIτ/2) = ±1.
In Appendix A we show that the T - modulation am-

plitude of 〈Ed(τ, T )〉 is reduced when τ = τn = (π/ωI)n
with even integer n, and increases when n is an odd inte-
ger. We also show that, for n ≤ 30, the difference in the
amplitudes of 〈Ed(τn, T )〉 between odd n and even n is
more than two orders of magnitude for small n and more
than a factor of 15 for large n. Note that this includes all
τn within the interval 0 < τ < 1µs, which corresponds
to the experimentally plausible values of τ .
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FIG. 5: (Color online) The stimulated ESEEM 〈E(τn, T )〉,
calculated from orientation disorder averaged Eq. (11) nu-
merically, is plotted against T at fixed τn = (π/ωI)n for
n = 3, τ3 ≈ 102 ns (a), and n = 4, τ4 ≈ 136 ns (c). The

corresponding spectra Ẽ(τn, ω), n = 3 (b) and n = 4 (d),
are plotted against ω. The strong reduction of the peak at
ωI = 14.7 MHz for even n, allowing the observation of the
contact proton hyperfine coupling, is obvious.

The T - modulation of 〈Ec(τ, T )〉 given by Eq. (20)
cannot be interpreted as having a single frequency ωI ,
because the function Fc varies rapidly on the timescale,
T ∼ 1/ωI. Similar to the case of the primary ESEEM,

its cosine Fourier transform36 Ẽc(τ, ω) demonstrates two
bands near ωI . However, in this case these bands are
not quite symmetric with respect to ωI . Importantly,
choosing τ = τn is not critical for 〈Ec(τ, T )〉, and there
is no reduction of modulation at even n, as shown in
Appendix A.

Summarizing, the stimulated ESEEM spectra at τ =
τn with odd n demonstrate a strong peak at ωI , which
could make it difficult to experimentally observe the
weaker contact proton sidebands. On the other hand, re-
duction of the peak occurs at τ = τn with even n, while
the contribution of the contact protons is preserved. This
provides a method of distinguishing the signal coming
from the distant protons from the modulation caused by
the contact protons, coupled to the polaron via HFI.

To illustrate the method, in Fig. 5 we plot the time-
domain signals 〈E(τn, T )〉 along with their spectra for
n = 3 and n = 4, as calculated from the orientation-
averaged Eq. (11). The spectra plotted in Figs. 5(b)
and (d) demonstrate the suppression of the peak at ωI =
14.7 MHz when changing n from odd to even.

V. ECHO MODULATIONS OF HOPPING

POLARONS

The random hopping of the polaron leads to the decay
of ESEEM, thus imposing limitations on the observabil-
ity of modulations. On the other hand, this decay can
serve as a probe for understanding the polaron transport.
In this Section we investigate the ESEEM of polarons
performing random walk over orientationally disordered
polymer sites and coupling to the nuclear spins accord-
ing to Eq. (1). Our main goal is to reveal the hopping
regimes where the ESEEM signal, and particularly the
contact hyperfine spectrum, is not distorted.
The spin dynamics of a randomly hopping polaron de-

pends on the dimensionality of the sample.38–41 Its ana-
lytical description is the simplest in 3D, where the self-
intersections of the polaron random walk trajectories can
be neglected. This is equivalent to the strong collision
approximation which provides a simple way of describ-
ing the spin relaxation of a randomly hopping carrier.42

The multiple trapping model43–46 is an implementa-
tion of the strong collision approximation, often used to
explain the transport in organic materials,47 and particu-
larly in PPV and its derivatives.48 We base our consider-
ation on the multiple trapping model. Within this model
the polaron hopping from a polymer site is described by
the rate,

Wr = ν exp
[

εr/kBT
]

, (21)

where ν is the hopping attempt frequency, εr is the trap-
ping energy at the site r, kB is the Boltzmann constant,
and T is the temperature. The trapping energies are all
negative and random, with the exponential distribution,
N (ε) ∝ exp

[

ε/kBT0

]

. Hence the model is defined by
two parameters: the frequency ν and the dispersion pa-
rameter α ≡ T/T0. In the high-temperature or shallow-
trap limit, when α → ∞, the hopping rates are uniform
and the waiting time statistics of the polaron random
walk obeys the Poisson distribution, P (t) = ν exp(−νt).
For finite α this distribution assumes the algebraic form,
P (t) ∝ t−1−α, reflecting the broad distribution of the
hopping rates.

A. Primary ESEEM of hopping polarons

The generalization of Eq. (10) for hopping polarons
and the evaluation of the resulting echo modulation func-
tion, E(2τ), is described in Appendix B. We calculate
E(2τ) by Monte-Carlo sampling of the random-walk tra-
jectories over the orientation disordered polymer sites.
But before turning to our results on E(2τ) we introduce
the echo modulation function of hopping carriers calcu-
lated from the semiclassical Hamiltonian (7), ESC(2τ),
which is the semiclassical counterpart of E(2τ).
ESC(2τ) is a non-oscillatory, monotonously decreasing

function of the delay time τ . In the high-temperature
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limit, α → ∞, the perturbative treatment over small
η ≡ ν/ωhf ≪ 1 given in Appendix C yields

ESC(2τ) =
[

1 + η
√
π erf(ωhf τ)

]

e−2ντ , (22)

where erf(x) is the error function. For τ > 2/ωhf the error
function in Eq. (22) changes very little, so that ESC(2τ)
assumes the exponential form, ESC(2τ) ∝ exp(−2τ/T2),
with the decoherence time, T2 = 1/ν. The decay of
ESC(2τ) with τ is exponential also in the fast hopping
regime, η ≫ 1. However, due to the motional narrow-
ing, the dependence of T2 on ν in this regime is reversed;
T2 = ν/ω2

hf. Combining the two forms, we write:

T2 = 1/ν + ν/ω2
hf. (23)

Even though the decay of ESC(2τ) in the intermediate
regime η ∼ 1 is not exponential, the dephasing time
Eq. (23) gives the correct timescale for that decay too.
Our numerical simulations show that with decreas-

ing α the decay of ESC(2τ) becomes slower and non-
exponential, with a progressively stronger long-time tail.
For η ≪ 1 this can be explained as follows. The depen-
dence of ESC(2τ) on α is stipulated by the number of
deep traps, which grows with decreasing α. A trapped
polaron is subject to a static hyperfine magnetic field.
Because the echo pulse sequence eliminates the dephas-
ing caused by static field components,17,23 the decay of
ESC(2τ) becomes slower with the increasing fraction of
trapped polarons. The effect is most pronounced at long
times due to the slow, algebraic decrease of the waiting
time distribution, resulting in the overall non-exponential
dephasing of ESC(2τ).
The dependence of ESC(2τ) on α for η ≫ 1 is less trans-

parent. Nevertheless, the non-exponential character of
ESC(2τ) at finite α, observed in our numerical simula-
tions, is established analytically also for this case.49

Summarizing, the exponential behavior of ESC(2τ) is
a signature of the uniform hopping rates with either fast
or slow hopping (i.e., away from η ∼ 1), whereas in all
the remaining situations ESC(2τ) is non-exponential.
The analysis of E(2τ) reveals different types of τ - de-

pendence in slow (η ≪ 1) and fast (η ≫ 1) hopping
regimes. In the slow hopping regime, where this depen-
dence is more complex, we numerically find that E(2τ) is
quite accurately quantified by

E(2τ) = 〈E(2τ)〉ESC(2τ), (24)

where 〈E(2τ)〉 is established in the previous Section. To
substantiate this relation, in Fig. 6 we plot E(2τ) numer-
ically calculated for four different small values of η, and
compare them with the curves resulting from Eq. (24).
The plots confirm the validity of Eq. (24) for the hopping
attempt frequencies up to η = 0.21.
Equation (24) suggests that the fine structure of E(2τ)

is totally described by 〈E(2τ)〉, whereas its decay is given
by ESC(2τ). Important to us is the question whether the
decay destroys any information on the spectrum of con-
tact HFI, enclosed in 〈E(2τ)〉, i.e., in 〈Ec(2τ)〉. The an-
swer is found from Fig. 3(a), indicating that Fc(τ) almost
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FIG. 6: (Color online) The decay of echo modulation for slow
polaron hopping, η ≡ ν/ωhf ≪ 1. The right-hand sides of
Eq. (24) are plotted for α ≡ T/T0 ≫ 1 (green), and α =
2 (magenta). The corresponding left-hand sides are plotted
with black dotted lines. The hopping attempt frequencies and
corresponding values of η are: ν = 0.4 MHz, η = 0.0085 (a),
ν = 1 MHz, η = 0.021 (b), ν = 3 MHz, η = 0.063 (c), and
ν = 10 MHz, η = 0.21 (d). The plots clearly confirm the
validity of Eq. (24).

disappears for τ > 1µs. Thus, one is able to capture the
complete spectrum if E(2τ) is detectable for τ ≤ 1µs.
Assuming that E(2τ) ≥ 0.05 E(0) is the restriction for
the observation time, we find that for α → ∞ the con-
tact HFI spectrum is not distorted if ν ≤ 1.5 MHz. At
the same time, from Fig. 3(a) one can see that Fc(τ)
is essentially non-zero for τ ≤ 0.5µs, meaning that the
basic spectral features are detectable for ν ≤ 3 MHz.

For α → ∞ and larger ν the signal decay is faster and
the spectrum distortion is progressively stronger. Fur-
thermore, in the regime of fast hopping, η ≫ 1, the fine
structure of E(2τ) is completely destroyed, even though
the signal decays slower because of the motional narrow-
ing. Instead of Eq. (24), here we get

E(2τ) = ESC(2τ). (25)

Therefore, for ν > 3 MHz low-temperature (small-α)
measurements can be crucial for the assessment of the
primary ESEEM spectrum.

The experiment Ref. 14 confirms that the primary
echo signal in MEH-PPV decays exponentially, for at
least T ≥ 10 K. This experiment does not address the fine
structure of E(2τ). However, the results of Ref. 14 sug-
gest a uniform polaron hopping; α ≫ 1. At T = 10 K the
hopping rate is estimated to be ν ≈ 1.64 MHz, whereas
at T = 295 K it is ν ≈ 2.87 MHz. This refers to the
slow hopping regime, where the ESEEM fine structure is
shown to be observable.
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B. Stimulated ESEEM of hopping polarons

The stimulated ESEEM of an ensemble of hopping po-
larons, E(τ, T ), is treated in the same way. We introduce
its semiclassical counterpart, ESC(τ, T ), and determine
its T - dependence. Unlike the above analysis, however,
here we restrict ourselves to the hopping regime, η < 1,
relevant for MEH-PPV.
In the high-temperature limit, α → ∞, we find the

simple exponential decay,

ESC(τ, T ) = ESC(2τ) exp(−νT ). (26)

For finite α this decay slows down and becomes non-
exponential. Similar to the primary ESEEM, the fine
structure of the stimulated ESEEM is accurately de-
scribed by the relation,

E(τ, T ) = 〈E(τ, T )〉ESC(τ, T ), (27)

with 〈E(τ, T )〉 characterized in the previous Section.
The same question as to whether the decay destroys

any information enclosed in 〈E(τ, T )〉 on the contact HFI,
i.e., in 〈Ec(τ, T )〉, should be answered in this case. The
question is relevant for stimulated ESEEMmeasurements
aimed at the detection of the contact HFI, which imply
τ = (π/ωI)n with even n. The answer is found from Eqs.
(26), (27), and the fact that the amplitude of 〈Ec(τn, T )〉
is very small for T > 0.5µs and nearly vanishing for
T > 0.75µs (see Appendix A). Assuming that the obser-
vation time is restricted by E(τn, T ) ≥ 0.05 E(τn, 0), for
α ≫ 1 the complete contact HFI spectrum of the stim-
ulated ESEEM is detectable for ν ≤ 4 MHz, while its
essential spectral features are preserved for ν ≤ 6 MHz.
These limits are less restrictive than those on the pri-
mary ESEEM also because the decay of ESC(τ, T ) with
T is twice slower than that of ESC(2τ) with τ , cf. Eqs.
(22) and (26).
Thus, in the absence of hopping, when the coherence

of individual polaron and nuclear spins is retained, the
total time-domain signal decays because of the orienta-
tional disorder (Sec. IV). The functions Fc and Fd, as
introduced in Eqs. (17) and (18), describe the corre-
sponding decrease of the signal. However, the spectral
analysis still provides convenient means for probing the
system, since the spectra remain undistorted. The distor-
tion happens only when the coherence between polaron
and the proton spins is reduced. This reduction happens
primarily due to the polaron hopping, and in the situ-
ation of very slow polaron motion, the spectra remain
reasonably undistorted.
Generally, the polarons undergoing multiple hops dur-

ing an experimental run do not contribute in the ESEEM
spectrum. The regimes where the spectrum is not dis-
torted are characterized by a slow polaron motion. The
polaron hopping destroys the coherence between the po-
laron and nuclear spins; already a single hop of the po-
laron destroys this coherence, and the signal from that
individual polaron vanishes (the only exception is the

case when the hop occurs either right after initial pulse
or right before the final echo detection). As a result, the
contribution of the polarons undergoing multiple hops is
almost completely suppressed. The ESEEM signal can be
detected when only a few hops occur, or no hops at all.
Thus, our use of the multiple trapping model is justified
by the physics of the problem, capturing the most im-
portant phenomena occurring in experiments. Based on
these arguments we expect that using the multiple hop-
ping or other transport models instead of the multiple
trapping model will have only marginal consequences.

VI. CONCLUDING REMARKS

We have studied the ESEEM spectroscopy of the po-
larons in organic semiconductors, focusing on the exper-
imentally relevant example of the π-conjugated polymer
MEH-PPV. We use the microscopic picture of the po-
laron orbital state derived from earlier experiments.24–26

Our study incorporates the random orientations of poly-
mer chains and the polaron random hopping. The result-
ing ESEEM spectra demonstrate features caused by the
interaction of the polaron spin with different groups of
protons. In particular, for the stimulated ESEEM exper-
iments we formulate a method that allows separate ob-
servation of the distant protons (coupled to the polaron
spin via long-range dipolar interactions) and the nearby
protons (coupled to the polaron via contact HFI).
Electrical or optical detection of any magnetic res-

onance relies upon the phenomenon of spin-dependent
charge carrier recombination and transport. Since the
work of Kaplan, Solomon, and Mott,50 this phenomenon
in commonly explained in terms of weakly coupled po-
laron spin pairs. Correspondingly, the pEDMR based
ESEEM studies should take into account the weak cou-
pling between the spins of different polarons. The pertur-
batively established effect of such a coupling on ESEEM
spectra51 results in the partial shifts of modulation fre-
quencies δω± ≈ ±(J +D)2/ωI , where J and D are the
strengths of the polaron pair spin exchange and dipo-
lar coupling, respectively. In the case of MEH-PPV it
is reasonable to neglect the spin exchange. The dipolar
coupling can be neglected if D2/ωI ≪ ωI . This condi-
tion is met for the polaron separation greater than 2 nm.
We neglected the effect of polaron-polaron spin coupling,
assuming such large inter-polaron distances.
In a conventional ESR experiment the echo modu-

lation decays due to the electron-nuclear, spin-lattice,
and dipole-dipole interactions. In addition, in the pulse
ODMR and EDMR experiments on organic semicon-
ductors various recombination-dissociation processes can
contribute to the ESEEM decay. However, the decay
timescales measured so far10,14,16 show that the polaron
hopping constitutes the fastest channel of decay. We ad-
dress the destructive effect of the polaron hopping and
determine the hopping regimes where the ESEEM spec-
tral features are not distorted. Based on the experiment
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of Ref. 14 we conclude that the polaron hopping in MEH-
PPV is within this regime and our approach is correct.
A pulse EDMR study of the stimulated ESEEM spec-

trum of polarons in MEH-PPV15 reports the observation
of a single spectral peak at about 14.5 MHz in regular
MEH-PPV and two peaks at 2.2 MHz and 14.5 MHz in
deuterated MEH-PPV. The ESEEM sidebands are not
observed in either of these cases. Apparently, the work-
ing point in Ref. 15 is close to τ = (π/ωI)n with n = 3,
where the signal of the nearby protons is suppressed, and
the spectral peak originating from the distant protons is
dominant. We believe that by choosing the parameters
as proposed above it is possible to measure the spec-
trum of the nearby protons using the same experimental
settings. Moreover, the theory can be straightforwardly
generalized to other organic semiconductors.
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Appendix A

In this Appendix we describe the details of the the-
oretical framework for the analysis in Section IV. Par-
ticularly, we address the disorder-averaged time-domain
modulation signals 〈E(2τ)〉, 〈E(τ, T )〉, and their spectral

functions, Ẽ(ω) and Ẽ(τ, ω), in line with Ref. 20.
In real experiments, as well as during numerical simu-

lations, time-domain signals are found at discrete values
of time. Typically, one obtains an array of values, f(tk),
for equidistant time points, tk = k∆t, k = 0, 1, .., L.
For the spectral analysis of such a signal it is conve-
nient to introduce the discrete cosine Fourier transform,
Ft[f(t)](ω) ≡ f̃(ω), as

f̃(ωj) =
L
∑

k=0

2f(tk) cos(ωjtk)− f(t0) + f(tL), (A1)

where ωj = j∆ω with ∆ω = 2π/(∆t[L + 1]) and in-
teger j, while the last two terms are included to en-
sure a zero background. Because of the symmetry,
f̃(ωj) = f̃(2π/∆t − ωj), it is appropriate to confine
0 ≤ j ≤ L/2, restricting the frequency domain to
0 ≤ ω < π/∆t. Without going into the details we assume
∆t small enough to cover the necessary frequencies, and
L large enough to ensure small frequency steps. Then
one can regard f̃ as a function of continuous ω. This
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FIG. 7: (Color online) Comparison of the polymer chain orien-
tation disorder averaged exact relation Eq. (10) (black points)
and approximation Eq. (A4) (red line).

defines the cosine Fourier transforms we employ for the
spectral analysis of modulation signals:

Ẽ(ω) = Fτ [〈E(2τ)〉], Ẽ(τ, ω) = FT [〈E(τ, T )〉]. (A2)

Direct numerical evaluation of modulation depths from
Eq. (13) shows that, for all orientations of the polymer
chains, the maximum modulation depth of the contact
hyperfine protons is 0.05 and the maximum depth of the
distant protons is 0.007 (recall that, for MEH–PPV, in
Eqs. (10) and (11) the contact protons are labelled by the
subscript, 1 ≤ j ≤ Nc, where Nc = 22, and the distant
protons are labelled by Nc < j ≤ N). This allows us
to approximate the factors in Eqs. (10) and (11) with
exponents. For the primary ESEEM one gets:

E(2τ) = exp



−
N
∑

j=1

2kj sin
2
(ωj+τ

2

)

sin2
(ωj−τ

2

)



. (A3)

To some extent, the argument in Eq. (A3) is character-

ized by the sum of all depths, κ =
∑N

j=1 kj . With the
polymer orientation, κ varies between 0.03 and 0.242, and
averages at about 0.136. The contribution of distant pro-
tons in this sum, κd =

∑

j>Nc
kj , is less than 0.06, with

the average over the orientation disorder, 〈κd〉 = 0.047.
Dominant in κ is the contribution of contact hyperfine

protons, κc =
∑Nc

j=1 kj , which has a maximum of 0.2 and
averages at about 0.089. However, the contact hyperfine
protons have a large dispersion of modulation frequen-
cies, and even relatively large fluctuations of κc do not
generate a large argument in Eq. (A3). Therefore it is
reasonable to expand the exponent (A3) and write:

E(2τ) ≈ 1−
N
∑

j=1

2kj sin
2
(ωj+τ

2

)

sin2
(ωj−τ

2

)

. (A4)

This approximation is further reinforced by averaging
Eqs. (10) and (A4) over orientation disorder numeri-
cally and comparing the results in Fig. 7. After a simple
transformation Eq. (A4) goes into Eq.(14) of the main
text.
The approximation Eq. (15) in the main text for the

distant protons is based on the fact that the polaron spin
coupling to these protons is weak, Aj , Bj ≪ ωI . The
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following arguments substantiate the same approxima-
tion for the contact protons. From Eq. (12) it is seen
that the approximation error is ∝ B2

j /(ωI ±Aj/2). Con-
sistent with this, we numerically find the largest error,
ωj+ − (ωI + Aj/2) ≈ 0.1 MHz, occurring for the largest
Bj . It results for a C–H proton at vinyl site E, when the
external magnetic field is parallel to x̂+ ŷ in the princi-
pal axes at E (see Fig. 1). This error is about 1% of the
corresponding frequency values, so the approximation is
quite accurate.
The stimulated ESEEM is analyzed in a similar way.

By virtue of small values of kj , Eq. (11) is reduced to the
sum Eq. (19) in the main text. After averaging over the
disorder in polymer chain orientations and separating the
contact and the distant proton contributions 〈Eβ(τ, T )〉,
β = d, c, one gets

〈Eβ(τ, T )〉 = −1

2
κβ +

1

2
Fβ(τ) cosωIτ

+
1

2
Fβ(τ + T ) cosωI [τ + T ] (A5)

−1

4
Fβ(T ) cosωI [2τ + T ]− 1

4
Fβ(2τ + T ) cosωIT,

from which Eq. (20) of the main text is written.
The T - dependence of 〈Ed(τ, T )〉 is simple modulation

with the frequency ωI . To find its τ - dependence we
rewrite the modulation part of Eq. (A5) as

〈Eβ(τ, T )〉 ≃
1

2
Λβ(τ, T ) cos

(

ωIT + ϕβ(τ, T )
)

, (A6)

with ϕβ = argZβ(mod π) and Λβ = Zβe
−iϕβ , where

Zβ = eiωIτFβ(τ + T )− 1

2
e2iωIτFβ(T )−

1

2
Fβ(2τ + T ).

(A7)
As defined, Λd(τ, T ) and ϕd(τ, T ) are smooth functions
of T , varying insignificantly at times, T ∼ 1/ωI . In con-
trast, their τ - dependence is abrupt, because of the pres-
ence of exponential factors in Eq. (A7). The largest and
smallest values of Λd(τ, T ) for a fixed T can be found in
an adiabatic accuracy, by differentiating the fast expo-
nents with respect to τ , while regarding the Fd factors
as constants. It is in fact more convenient to use the
relation, Λ2

d = |Zd|2, and differentiate |Zd|2. One gets:

∂τ |Zd|2 ≈ ωI sinωIτ
[

Fd(τ + T )Fd(2τ + T ) (A8)

+Fd(T )Fd(τ + T )− 2 cosωIτFd(T )Fd(2τ + T )
]

.

This yields minima at ωIτn = πn for even integer n and
maxima at ωIτn = πn for odd integer n, as expected.
To visualize the modulation reduction, in Fig. 8 we

plot Λd(τn, T ) against T for n = 1, .., 30. We note that
these τn include all possible critical values within the
interval, 0 < τ < 1µs, which covers the experimentally
available τ - domain, taking into account the decay of the
signal in a real experiment. It is seen that for small n
the reduction is more than two orders of magnitude, and
for large n it is more than 15 times.
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FIG. 8: (Color online) Plots of the amplitude, Λd(τn, T ), ver-
sus T at fixed τn = (π/ωI)n, for (a) odd n = 1, 3, .., 29, and
(b) even n = 2, 4, .., 30. The plots demonstrate the reduction
of Λd(τn, T ) when going from odd to even n. For small n the
decrease of Λd(τn, T ) from odd to even n is more than two
orders of magnitude. For large n it is more that 15 times.

For the contribution of contact hyperfine protons,
〈Ec(τ, T )〉, the modulation given by Eqs. (A5) and
(A6) cannot be interpreted as having a single frequency,
because the function Fc, and therefore Λc(τ, T ) and
ϕc(τ, T ), vary abruptly on the timescale, T ∼ 1/ωI . Still,
Λc(τ, T ) gives the overall strength of this modulation and
it is useful to inspect this quantity for the above critical
values of τ . Figure 9 plots Λc(τn, T ) versus T for the first
20 values of τn. Overall, the magnitudes of Λc(τn, T ) in
Fig. 9 are close to each other for even and odd n, meaning
that there is no particular reduction of the correspond-
ing modulation. From Fig. 9 we also infer that Λc(τn, T ),
and therefore 〈Ec(τn, T )〉, is very small for T > 0.5µs,
and nearly vanishes for T > 0.75µs.

Appendix B

In this Appendix we outline the generalization of
Eqs. (10), (11) for an ensemble of polarons hopping over
the polymer sites of random orientations. Consider pulse
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FIG. 9: (Color online) The amplitude, Λc(τn, T ), is plotted
versus T at fixed τn = (π/ωI)n, for (a) odd n = 1, .., 19, and
(b) even n = 2, .., 20. Though the individual curves are not
well resolved, it is seen that there is no notable difference in
the orders of magnitude of Λc(τn, T ) with even and odd n.
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sequences similar to those in Fig. 2(a), but with unequal
delay times; π/2 - τ1 - π - τ2 - echo, and π/2 - τ1 - π/2 -
T - π/2 - τ2 - echo. Using the density matrix formalism,
the modulation functions are

E(τ1, τ2) = N Tr
[

U(τ1, τ2)ρ̂(0)U
†(τ1, τ2)S

y
]

, (B1)

E(τ1, T, τ2) = N Tr
[

U(τ1, T, τ2)ρ̂(0)U
†(τ1, T, τ2)S

y
]

,

where ρ̂(0) ∝ (1/2+Sz) is the initial density operator in-
troduced in Eq. (8) and N−1 = Tr

(

[3π/2]ρ̂(0)[3π/2]†Sy
)

is the normalization factor. The evolution operators are
given by

U(τ1, τ2) = e−iτ2H̃
[

π
]

e−iτ1H̃
[

π/2
]

, (B2)

U(τ1, T, τ2) = e−iτ2H̃
[

π/2
]

e−iT H̃
[

π/2
]

e−iτ1H̃
[

π/2
]

,

where H̃ is the Hamiltonian (1) in the coordinate sys-
tem rotating around ẑ with the frequency Ω. For later
reference, we also consider the free induction decay,

F (t) = −N Tr
[

e−itH̃
[

π/2
]

ρ̂(0)
[

π/2
]†
eitH̃Sy

]

. (B3)

By taking the traces over the polaron spin space, Eqs.
(B1), (B3) are reduced to the nuclear spin traces, involv-
ing the nuclear spin Hamiltonians,

h± = ±1

2

N
∑

j=1

(

AjI
z
j +BjI

x
j

)

−
N
∑

j=1

ωII
z
j . (B4)

Subsequently, the nuclear spin traces are calculated ex-
plicitly. More specifically, we have:

F (t) = 2−NTrI

[

e−ith−eith
+
]

=

N
∏

j=1

fj(t), (B5)

E(τ1, τ2) = 2−NTrI

[

e−iτ2h
+

e−iτ1h
−

eiτ1h
+

eiτ2h
−
]

=

N
∏

j=1

ǫj(τ1, τ2), (B6)

E(τ1, T, τ2) = 2−N−1TrI

[

e−i(τ2+T )h+

e−iτ1h
−

ei(τ1+T )h+

eiτ2h
−
]

+
(

+ ↔ −
)∗

=
1

2

N
∏

j=1

ǫ+j (τ1, T, τ2) +
(

+ ↔ −
)∗
, (B7)

where (+ ↔ −)∗ denote the complex conjugates of previous expressions with the superscripts swapped, and the
functions

fj(t) = cos
ωj+t

2
cos

ωj−t

2
+

ω2
I −A2

j/4−B2
j /4

ωj+ωj−
sin

ωj+t

2
sin

ωj−t

2
, (B8)

ǫj(t1, t2) = fj(t1 − t2)− 2kj sin
ωj+t1
2

sin
ωj−t1
2

sin
ωj+t2
2

sin
ωj−t2
2

,

ǫ±j (t1, T, t2) = fj(t1 − t2)− 2kj sin
ωj±(t1 + T )

2
sin

ωj±(t2 + T )

2
sin

ωj∓t1
2

sin
ωj∓t2
2

,

are introduced, with ωj± and kj given in Eqs. (12), (13).

To generalize Eqs. (B5) for hopping polarons, consider
a polaron random walk right after the initial π/2-pulse
(time t = 0) from some polymer site, r0. Its trajectory,
R(t), specifies the waiting time, δtn, which the polaron
spends at rn. Other necessary details of R(t) are repre-
sented in Fig. 10(a), showing that for time t the polaron
performes M hops, arriving in the site rM time δt′M be-
fore the detection. The prime indicates that δt′M is not
the total waiting time at rM . By this definition,

t = δt′M +

M−1
∑

n=0

δtn, δtM = δt′M + δt′′M , (B9)

The free induction decay of a polaron undergoing such a
random walk is given by

FR(t) = 21−N(M+1)Tr
[

uR(t)Syu†
R
(t)Sy

]

, (B10)

with the time-ordered operator uR(t), replacing the ex-
ponential factors in Eq. (B3),

uR(t) = e−iδt′MHM

M−1

←−
∏

n=0

e−iδtnHn . (B11)

Here the arrow indicates the inverse order of factors in
the products. The transient Hamiltonians in Eq. (B11)
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are

Hn =

N
∑

j=1

Sz
(

Aj,rnI
z
j,rn +Bj,rnI

x
j,rn

)

−
M
∑

l=0

N
∑

j=1

ωII
z
j,rl ,

(B12)
where Ij,r is the spin operator and Aj,r, Bj,r are the hy-
perfine coupling constants of the j-th proton located at
site r, and the sum over l includes all M + 1 molecular
sites visited for the random walk R(t). The time depen-
dence of the spin Hamiltonian is thus incorporated in the
first term of Eq. (B12), describing the hyperfine coupling
of the polaron spin with protons near the site, rn = R(t),
occupied by the polaron at time t.
The trace over the polaron spin space in Eq. (B10)

can be easily taken as the transient Hamiltonians (B12)
conserve Sz. The result is written in terms of the trace
over the nuclear spins:

FR(t) = 2−N(M+1)TrI

[

uR,−(t)u
†
R,+(t)

]

. (B13)

where we have introduced

uR,±(t) = e−iδt′Mh±
M

M−1

←−
∏

n=0

e−iδtnh
±
n . (B14)

The spin Hamiltonians, h±
n , are given by Eq. (B4), with

the coupling constants and spin operators of protons at
rn. Note that unlike Eq. (B12), the last term in Eq. (B4)
involves nuclear spin operators only for a single site. This
simplification is general for transport models neglecting
the polaron returns to the sites visited previously, such as
the multiple trapping model adopted in this study. More-
over, neglecting the polaron returns allows to calculate
the trace in Eq. (B13) explicitly. One finds:

FR(t) =

(

M−1
∏

n=0

Fn(δtn)

)

FM (δt′M ), (B15)

where Fn(t) is the free induction decay Eq. (B5) calcu-
lated for the single site, rn.
Similar expressions can be written for the primary and

stimulated ESE modulation functions, provided the po-
laron random walk trajectory is specified relative to the
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FIG. 10: (Color online) Schematic definitions of polaron ran-
dom walk trajectories, R(t), for free induction decay (a), and
primary echo (b). The blue lines denote the pulses. The green
lines show the detection points. The red bars are polaron ran-
dom hops.
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FIG. 11: (Color online) Illustration of notations for polaron
random walk trajectories during the stimulated pulse se-
quence. The blue bars symbolize the pulses. The green bars
show the detection. The red lines are polaron random hops.
(a) Trajectories of type R0, Eq. (B17); no polaron hop occurs
in the time interval T . (b) Trajectories of type R1, Eq. (B17);
at least one hop occurs in the time interval T .

pulse sequence. Namely, for the primary sequence let
R(τ1+τ2) = rM , and the instantaneous π-pulse is applied
δt′M1

time after the polaron arrives in the site rM1
, and

δt′′M1
time before it makes the next hop, see Fig. 10(b).

The primary ESE modulation from a spin with this tra-
jectory is found to be

ER(τ1, τ2) =

(

M1−1
∏

n=0

Fn(δtn)

)

EM1
(δt′M1

, δt′′M1
) (B16)

×
(

M−1
∏

n=M1+1

Fn(δtn)

)

FM (δt′M ),

where En(t1, t2) is the modulation function (B6), for rn.
The stimulated ESE modulation critically depends on

whether a random walk involves a hop in the interval
T or not. We separate these cases in Fig. 11(a) and
(b). The trajectories with no hops during the interval T ,
Fig. 11(a), are denoted by R0, while those incorporating
hops in T , Fig. 11(b), by R1. With the further details of
trajectories specified in Fig. 11, one gets:

ER0
(τ1, T, τ2) =

(

M1−1
∏

n=0

Fn(δtn)

)

EM1
(δt′M1

, T, δt′′M1
)

×
(

M−1
∏

n=M1+1

Fn(δtn)

)

FM (δt′M ), (B17)

where En(t1, T, t2) is is given by Eq. (B7) at rn, and

ER1
(τ1, T, τ2) =

(

M1−1
∏

n=0

Fn(δtn)

)

FM1
(δt′M1

)

×FM2
(δt′′M2

)

(

M−1
∏

n=M2+1

Fn(δtn)

)

FM (δt′M ). (B18)
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Finally, the free induction decay and the ESE modu-
lations of the ensemble of randomly walking polarons is
found from Eqs. (B15) – (B18), via averaging over the
random-walk trajectories:

F(t) = 〈FR(t)〉{R} , (B19)

E(τ1, τ2) = 〈ER(τ1, τ2)〉{R} , (B20)

E(τ1, T, τ2) = 〈ER(τ1, T, τ2)〉{R} . (B21)

The averages are evaluated numerically, by a Monte
Carlo sampling of random walk trajectories, including
the random on-site trapping energies defining the waiting
time statistics via Eq. (21). In our simulations we also
incorporate the random orientations of polymer chains.

Appendix C

In this Appendix we investigate F(t), E(τ1, τ2), and
E(τ1, T, τ2) analytically, within the multiple trapping
model at α → ∞. This implies uniform hopping rates,
Wr = ν, entailing the Poissonian waiting time distribu-
tion, P (δt) = ν exp(−νδt). In this limit the free induc-
tion decay obeys the Dyson-type integral equation,42,52

F(t) = g(t)e−νt + ν

∫ t

0

dt′e−νt′g(t′)F(t− t′), (C1)

where the on-site relaxation function,

g(t) =
〈

F (t)
〉

, (C2)

is introduced. Here, F (t) is given by Eq. (B5), and the
brackets mean the average over random orientations of
molecular sites. In Eq. (C1) the first term is the relax-
ation if for time t the polarons do not hop, which occurs
with the probability e−νt, and the integral accounts for
the relaxation with the first hop happening at time t′ < t.
The formal solution of Eq. (C1) is given in terms of

the Laplace transform:

F̃(s) =
g̃(s+ ν)

1− νg̃(s+ ν)
, (C3)

where f̃(s) =
∫∞

0
exp(−st)f(t)dt denotes the Laplace

transform of f(t). However, from this equation F(t) can
be found only numerically, as the inverse Laplace trans-
form of Eq. (C3) is not accessible analytically.

Semiclassical description

A semiclassical approximation for F and E follows
upon replacing the Hamiltonian in Eqs. (B2), (B3) by its
semiclassical counterpart, Eq. (7). The resulting on-site
free induction decay has the simple form,

g0(t) = 〈cos(ωzt)〉ωz
= exp

(

−ω2
hft

2/2
)

. (C4)

Still, the solution for the semiclassical free induction de-
cay, F0(t), using the inverse Laplace transform (C3), can
be found only numerically.52

In what follows we give a perturbative treatment for
the semiclassical echo modulation functions, ESC(2τ) =
E(τ, τ) and ESC(τ, T ) = E(τ, T, τ), from which Eqs. (22)
and (26) of the main text result. In the semiclassical
approximation and within the multiple trapping model
at α → ∞, Eqs. (B19) – (B21) are related as

ESC(2τ) = e−2ντ

[

1 + 2ν

∫ τ

0

e2νtF 2
0 (t)dt

]

, (C5)

ESC(τ, T ) = e−νTESC(2τ) + F 2
0 (τ)

(

1− e−νT
)

, (C6)

detailed derivation of which will be given elsewhere.53

Thus, ESC(2τ) and ESC(τ, T ) are determined by F0(t).
Note that the first term in Eq. (C6) is the contribution
of type R0 trajectories, Fig. 11(a), while the last term is
that of the type R1 trajectories, Fig. 11(b).

In the regime of slow hopping, η ≡ ν/ωhf ≪ 1, a rea-
sonably good approximation can be made for F0(t) from
Eq. (C1) iteratively. To the linear order in η one gets:

F0(t) = e−νt

[

g0(t) + ν

∫ t

0

dt′g0(t
′)g0(t− t′)

]

. (C7)

Using this in Eq. (C5) leads to Eq. (22) in the main
text. Equation (C7) also shows that the decay of F0(t) is
nearly Gaussian and fast, so that for τ > 1/ωhf the last
term in Eq. (C6) can be neglected, and Eq. (26) in the
main text can be written.

In the fast hopping regime, η ≫ 1, the Laplace trans-
form appears to be useful. One has:

F0(t) =
1

2πi

∫ i∞

−i∞

ds estF̃0(s), (C8)

with F̃0(s) given by Eq. (C3) and the Laplace transform,

g̃0(s) =
√

π/2ω−1
hf exp

(

s2/2ω2
hf

)

erfc
(

s/
√
2ωhf

)

, (C9)

where erfc(x) is the complementary error function. F̃0(s)
is holomorphic on the complex half-plane, Re(s) < 0,
excluding the simple poles determined by the denomi-
nator of Eq. (C3). A thorough analysis of the inverse

Laplace transform (C8) shows that F̃0(s) has one real
negative pole, s0, and infinitely many complex poles.53

Also, for η ≫ 1 the contribution of s0 dominates in the
integral (C8), giving F0(t) = −(ω2

hf/νs0) exp(s0t). From
the large-argument asymptote of Eq. (C9) one finds
s0 = −ω2

hf/ν, leading to the well-known result in the mo-
tional narrowing regime, F0(t) = exp(−ω2

hf t/ν). With
this F0(t), the integral term in Eq. (C5) is dominant,
yielding ESC(2τ) = exp(−2ω2

hf τ/ν).
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(2014).
47 V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier,

R. Silbey, and J.-L. L. Brèdas, Chem. Rev. 107, 926
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