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CNRS UMR 7590, Muséum National d’Histoire Naturelle,
IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France

Alexei Grechnev, S. M. Tretyak, and Yu. A. Freiman
B. Verkin Institute for Low Temperature Physics and Engineering,

National Academy of Sciences, Prospekt Nauky 47, 61103 Kharkiv, Ukraine
(Dated: May 17, 2017)

The elasticity at high pressure of solid hydrogen in hexagonal close-packed (hcp) phase I has been
examined experimentally by laser acoustics technique in a diamond anvil cell, up to 55 GPa at
296 K, and theoretically using pair and three-body semi-empirical potentials, up to 160 GPa. In the
experiments on H2 and D2, the compressional sound velocity has been measured; the Poisson’s ratio
has been determined by combining these data with the previously reported equation of state. At
room temperature, the difference between adiabatic and isothermal process vanishes above 25 GPa
but can not be neglected at lower pressure. Theoretically, all five elastic constants of hcp hydrogen
have been calculated, and various derived elastic quantities are presented. The elastic anisotropy of
hcp hydrogen was found to be significant, with ∆P ≈ 1.2, ∆S1 ≈ 1.7, and ∆S2 ≈ 1. Calculations
suggest the Poisson’s ratio to decrease with pressure reaching a minimum value of 0.28 at 145
GPa. In the experiment, the Poisson’s ratio is also found to decrease with pressure. Theoretical
calculations show that the inclusion of zero-point vibrations (ZPV) on the elastic properties of H2

does not result in any drastic changes of the behavior of the elastic quantities.
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I. INTRODUCTION

Solid hydrogen1–3 has a rich phase diagram at high
pressures (P ), where a number of solid phases have been
discovered. Below 200 GPa there are three major phases
I, II, and III that correspond to a plastic (rotationally dis-
ordered) phase I and two orientationally ordered phases
II and III4,5. Phases I and II show clear quantum prop-
erties related to the molecular rotational states2,6, while
phase III is suggested to be oriented in a classic sense7,8.
Recently a number of new phases (IV to VI) have been
discovered at pressures above 200 GPa9–13; these phases
have been inferred to possess some features of atomic
chemical structure. Interestingly, phase IV was proposed
to have quantum properties related to the proton tunnel-
ing and pair fluctuations14 and even unique mass-induced
localization effects for the H2-D2 mixtures15. Due to
highly diverse structural properties of H2 solid phases,
it is hard to follow the trend in the quantum properties
with compression. This is magnified by the lack of di-
rect structural information, which is essentially limited
to phase I (see Ref.16 for the latest on the subject and
the available literature).

Quantum phenomena play important role for phase di-
agrams and various properties of low-Z materials, such as
hydrogen. Solid hydrogen is the only molecular diatomic

crystal which shows macroscopic quantum phenomena.
However, at high pressures the balance between large
zero-point vibrations (ZPV) and static lattice energy can
be modified17. It is a surprisingly non-trivial question
whether quantum effects become stronger or weaker as
the pressure increases. Quantum effects in molecular
systems were proposed to play an increasingly important
role in the limit of very high densities resulting in melting
in the T = 0 K limit18,19 or even a transition to a super-
conducting superfluid state20. Other works argue that
quantum effects become less substantial at high pres-
sure21,22 as the steeper interatomic potentials become a
dominating factors over short-range correlations. How-
ever, one should point out that this discrepancy can be at
least partially terminological. Under pressure, all energy
scales are expected to increase as the interatomic poten-
tials become steeper, including ZPV. Thus in order to
understand the importance of quantum effects it is more
informative to look at the relative strength of quantum
effects, as done here by monitoring the pressure evolution
of the Poisson’s ratio (PR).

The strength of quantum effects can be estimated ex-
perimentally23 by comparing results for H2 and D2 (the
latter having twice the mass of the former and thus
presenting a much less quantum behavior). Calcula-
tions offer the simpler option by comparing results with
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and without ZPV included. In H2 at low pressures,
both translational and rotational excitations have strong
quantum nature that is the consequence of the weak in-
termolecular interaction and light mass2. ZPV in hydro-
gen is anharmonic, thus strictly speaking quasi-harmonic
(QH) lattice dynamics cannot be applied in this regime.
In practice, however, QH approximation is often used as
an approximate estimate of the translational ZPV. As
the result of the strong translational ZPV, solid H2 is
highly compressible23. Also the molecular positions are
highly spread out, thus the intermolecular interactions
are sometimes renormalized to account for lowering of
phonon frequencies2.

Phase I (hcp) of solid hydrogen is stable up to 100-
250 GPa, depending on the temperature4,5,12. It consists
of nearly freely rotating molecules, and this motion is
quantized (J = 0, 1, 2, . . .) resulting in a number of ro-
tational energy levels that can be probed through the
observations of transitions between them. The molecules
are spherically symmetric in the J = 0 ground state. At
higher pressures hydrogen I undergoes phase transitions
to orientationally ordered (II, III) and partially atomized
(IV-VI) phases. The presence of quantum effects in hy-
drogen at very high pressures has been recently shown ex-
perimentally: quantum tunneling effects and phonon lo-
calization were found in phase IV above 250 GPa10,14,15.

High-pressure elastic properties of solid hydrogen give
insight into anisotropy, equation of state, thermodynamic
properties, and intermolecular potentials of this material.
Potentially, they can also provide an important link to
structural phase transitions in H2 and ultrahigh pres-
sure behavior approaching transformation to metallic or
atomic phases. The Poisson’s ratio (PR)24 defined as
a ratio of the negative lateral to the axial strain for an
axially strained sample has been recognized as one of
fundamental thermodynamic properties of an isotropic
elastic medium, and a polycrystalline solid is usually a
good approximation to the isotropic one. The PR (σ) is
uniquely determined by the ratio of the bulk modulus K
to the shear modulus G

σ =
3K/G− 2

2(3K/G+ 1)
(1)

In principle, it can vary from -1 to 0.5 since the K/G
ratio may vary from 0 to infinity. However, a more de-
tailed analysis shows that PR normally lies between 0.2
and 0.5 unless the samples are very hard or porous25. In
fact, a typical PR value for metals is about 0.3. Under
pressure, PR increases if the increase with pressure of
the shear modulus is slower than that of the bulk modu-
lus, and decreases in the opposite case. It has been also
shown26 that dσ/dP is related to the pressure depen-
dence of the Grüneisen parameter and other thermody-
namic quantities. Thus, the pressure dependence of the
PR can be used as a sensitive test of materials behavior
including interatomic interactions and, through this, of
quantum effects. Due to the way the PR is constructed, it
can be used to evaluate the effect of the relative strength

of the quantum effects as we do below by calculating its
values with and without ZPV included.

In the pressure range of tens of GPa the problem
has been investigated by Brillouin scattering for a num-
ber of materials27–29. The σ(P ) dependence is usually
monotonous. It has been speculated27 that most mate-
rials reach the asymptotic value close to 0.3 (character-
istic for metals) at very high pressures, thus σ is com-
monly expected to increase with pressure if σ(0) < 0.3,
and decreases with pressure in the opposite case. From
a theoretical point of view, it has been demonstrated30

that PR decreases monotonously for hcp helium in agree-
ment with the experiment28, reaching the value of 0.29
at 30 TPa. For hcp hydrogen in phase I it has been es-
timated31, based on the behavior of the elastic constant
C44, that σ also decreases with pressure but no calcula-
tion of all five independent elastic constants Cij has been
performed until now.

The stiffness tensor Cij of solid hexagonal close-packed
(hcp) H2 has been determined experimentally up to
24 GPa from single-crystal sound velocities measured
with the Brillouin scattering technique29,32,33. Also,
the elastic anisotropy, Cauchy violations, and aggregate
elastic properties (within the Voigt-Reuss-Hill averaging
scheme) such as the sound velocities, the bulk and shear
moduli, and the Poisson’s ratio have been derived29.

The goal of the present paper is to examine the elas-
ticity and the Poisson’s ratio of hcp hydrogen phase I
at pressures higher than the 24 GPa of Ref.29 to deter-
mine the trend in the highly compressed states. However,
Brillouin spectroscopy measurements at pressures above
24 GPa are challenging because of the reduced sample
volume and the necessity to have a large angular opti-
cal access. In the present work, we report compressional
sound velocity measurements up to 55 GPa by picosecond
laser acoustics (PLA) technique34–36, which has much
less strict limitations for the scattering volume and opti-
cal access. We have combined the direct measurements of
the compressional sound velocities of this work with the
equation of state determined previously25, to determine
the transverse sound velocities and the Poisson’s ratio
up to 55 GPa. On the theoretical side, we calculated the
five elastic constants Cij of H2-I up to 160 GPa using
2- and 3-body semi-empirical (SE) potentials, and em-
ploying the procedure we used previously for helium30.
Knowledge of Cij allows us to obtain a number of elastic
quantities, including the PR, which we compare to the
Brillouin scattering data29 and to our PLA data where
applicable.

II. METHODS

A. Experiment

Hydrogen and deuterium were loaded in a diamond
anvil cell (DAC) with flat 300 µm culets together with Al
transducers which convert laser radiation to sound waves
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(Fig. 1). This configuration is necessary for transparent
samples, but not for experiments with opaque samples,
where sample itself serves as a transducer34–36. A rhe-
nium gasket was precompressed to 40 µm thickness, and
a round hole of 180 µm in diameter was drilled in the
middle of the indentation using a sub-ns laser drilling
machine. The diamond culets were partially coated by
thin (≈ 0.2 µm) Al layers formed by compressing small
Al particles between two anvils with parallel culets. The
thickness of the Al coatings was estimated to be close
to 210 nm at 2.5 GPa using the observations of interfer-
ence fringes which occur in spectrally analyzed reflected
white light beam probing the area adjacent to the de-
formed aluminum particle. To reduce the scattering of
the probing laser beams, we avoid using ruby for pres-
sure measurements. Pressure in the cavity was deter-
mined using the spectral position ν(P ) of the H2 (or D2)
molecular vibron band measured before and after each
PLA measurement. These measurements were also com-
plemented by the Raman measurements of the stressed
diamond anvils. In the pressure range near the max-
imum of the ν(P ) curves of H2 (or D2), pressure was
determined using the extrapolated linearly stressed dia-
mond pressure. The pressure accuracy was estimated to
be ±0.25 GPa using this approach. H2 and D2 of re-
search purity were gas-loaded in a high-pressure vessel
at approximately 0.17 GPa. All experimental measure-
ments have been performed at T=297 K. Thus, we refer
our measurements to mixed ortho-para hydrogen (n-H2

or n-D2).

FIG. 1. Experimental details: (a) The experimental
schematic of picosecond laser acoustic measurements in a
DAC. The pump and the probe beams are introduced through
the opposite diamond anvils. The pump beam is focused into
a transducer made of a 0.2 µm thick Al layer that partially
coats a culet of one anvil. A second but smaller Al layer (op-
tional) which is deposited on the second diamond culet serves
as a transducer for the echo probe from acoustic wave travers-
ing the cavity, while the Brillouin probe records the spatially
resolved sound wave propagating through the cavity. (b) A
microphotograph of a sample at 1 GPa after high-pressure H2

gas loading.

An picosecond laser acoustic setup for measurements
of sound velocities at high pressures at IMPMC has been

previously described34. An extensive experimental and
theoretical review of the capabilities of the PLA has
been published in a dedicated volume of Ultrasonics37.
In brief, a λ=800 nm wavelength pulse train of about
100 fs delivered by a Ti-Sapphire femtosecond oscilla-
tor with 80 MHz repetition rate, is split into pump and
probe beams. The pump beam, which is modulated by an
acousto-optic modulator at a 1 MHz, periodically heats
and locally expands an internal Al transducer creating a
compressional acoustic wave propagating across the sam-
ple (Figs. 1- 2). The probe beam passes a controllable
mechanical scanning optical delay line and is split by
a stabilized Michelson interferometric system38 into two
channels in one of which the beam is focused to the sam-
ple area from the opposite side of the DAC. A lock-in
amplifier synchronized with the modulation frequency is
used to improve the signal-to-noise ratio.

Two techniques were used to extract the compressional
sound velocities of the sample. In the Brillouin configura-
tion (which is different of a conventional Brillouin spec-
troscopy where the experiments is performed in a fre-
quency domain), the probe beam is focused in the trans-
ducer which is directly pumped and the reflected light is
modulated by interference between the probe beam and
the propagating acoustic wave fronts (Fig. 2(a)) recorded
in the time domain. The sound velocity c is extracted
from the relation f = 2nc/λ, where f is the frequency of
oscillations, n is the refractive index and λ is the laser
wavelength. In principle, the increased bandwidth of the
laser contributes to the uncertainty in the frequency de-
termination. However, the oscillations in the time do-
main are quite well modulated making the frequency ex-
traction quite certain thereby allowing to record the spa-
tial variations (Fig. 3). In the echo configuration, the
probe beam is focused on the surface of the second trans-
ducer and the reflected beam records an anomaly (bump
or dip) corresponding to the time of arrival of the acoustic
wave passing the whole cavity (Fig. 2(b)). As the second
transducer does not cover the entire diamond surface,
collection of both the Brillouin signal from the H2 sam-
ple and the echoes is expected as it can be seen on the
figure 2(b).

The probe beam reflected from the primary transducer
is modulated by an acoustic wave for a period of time of
about 1 ns (up to 4 ns in liquid) after the arrival of the
pump beam (Fig. 2(a)). This corresponds to a distance
of approximately 10 µm across the sample, where the
different parts of the sample can be effectively probed
locally. In the liquid state, we naturally observe that
the Brillouin frequency is spatially uniform (Figs. 3(a,c)).
However, in the solid state the compressional sound ve-
locity varies from point to point across the sample with
a typical characteristic length of > 0.3 µm, which should
be understood as due to a directional dependence of the
compression sound velocity in the moderately elastically
anisotropic solid hcp-H2

29 (Figs. 3(b,d)). The ability of
PLA to measure sound velocity variations in spatially in-
homogeneous sample (see also Ref.39) suggests that the
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FIG. 2. Experimental observables : (a) The reflectivity signal
(raw data) of the Al transducer measured as a function of
time delay showing the Brillouin modulation superposed on
the expected base line (smoothened line in red) in absence of
Brillouin signal; (b) An example of the echo observation (red
curve) which corresponds to the time of arrival of the acoustic
wave propagated across the sample. Also plotted (in the same
time-scale) is the raw signal of the first transducer including
echo (acoustic wave reflected from the second transducer back
to the first one) and Brillouin signal (extracted blue curve);
(c) White light transmission spectrum (normalized) through
the DAC cavity which shows Fabry-Perot interference fringes
due to multiple reflections of the diamond-sample interfaces.

acoustic anisotropy can be evaluated by probing crystal-
lites with various crystallographic orientations thus mak-
ing it possible to assess the stiffness tensor; this is beyond
the scope of this work. Nevertheless these assumptions
have been tested at 25.3 GPa on a grained H2 sample,

and all the measured longitudinal sound velocities are in
a 16-17 km/s range in very good agreement with expected
values (16-16.9 km/s) derived from the Cij quantities at
23.6 GPa reported by Zha et al.29.

a

b

c

d

FIG. 3. Brillouin sound velocity determination in H2 in liquid
(a,c) and solid (b,d) states. (a,b) Time series of the reflectiv-
ity for liquid (2.5 GPa) and solid (25.3 GPa); (c,d) Brillouin
frequencies determined from fitting of the data in (a,b) as a
function of time delay corresponding to spatial probing of H2

sample along the DAC axis.

Both the techniques used here to determine the com-
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pressional sound velocity (time-resolved Brillouin and
pulse-echo techniques) require the knowledge of the re-
fractive index n of H2. We have used the results of
Refs.40,41 for the wavelength dependent n in liquid H2

and for the pressure dependent n of H2 in liquid and
solid phases, respectively. We assumed that the refrac-
tive index of D2 is identical following the results of Bril-
louin measurements of Shimizu et al.33. The wavelength
dispersion of n in Ref.40 can be conveniently expressed
as

n(λ) =

[
1 +

F (P )

1− (E(P )/λ)2

]1/2
(2)

where F (P ) and E(P ) are the pressure dependent os-
cillator strength and energy, respectively, related to the
effective oscillator corresponding to the electronic valence
band transition. We used the literature data for the pres-
sure dependent electronic oscillators to determine the dis-
persion correction of n from λ= 632.8 nm (used in Ref.41)
to 800 nm. To determine the DAC cavity thickness at
each P point, we have measured white light interference
fringes in transmission spectra between 550 to 800 nm
(Fig. 2(c)). The DAC cavity thickness was determined
by fitting it by the standard Fabry-Perot interferometry
formalism using the refractive index expressed by Eq. 2.
To determine the sample path length we have corrected
for the two Al transducer thicknesses, which were deter-
mined using the observations of echo in the Al foils for
each pressure points (from 32.5 ps at 2.6 GPa to 18 ps
at 55 GPa) and the known compressional sound velocity
of Al, yielding a small decrease of the transducers thick-
nesses from about 210 nm at room pressure to 180 nm
at the highest pressure reached in the experiment. Small
disagreements between the time-resolved Brillouin and
pulse-echo techniques could be due to non-perfect con-
tact between diamond tips and Al foil determined to be
within 500 nm, which is consistent with the optical ob-
servations. This effect results in overestimation of the
distance between the Al foils and hence of the sound ve-
locity. On the other hand, the effect of diamond cup-
ping which was not taken into account here would tend
to underestimate this distance as the diamond-diamond
distance was measured closer to periphery where it is
smaller. In the case of D2 experiment the results ob-
tained with the echo technique disagree substantially be-
cause the second transducer peeled off once the sample
solidified; these results were not included in the reported
data set.

The measured compressional sound velocity in combi-
nation with the EOS from Ref.23 can be used to find the
shear sound velocity and the Poisson’s ratio. Equation 1
can be easily transformed to

σ =
3KS −M
3KS +M

(3)

where KS is the adiabatic bulk modulus and M = ρc2P ,
where cP is the compressional sound velocity and ρ the

density. Note that the isothermal bulk modulus KT de-
duced from the EOS needs to be transformed to adia-
batic one by the following relation KS = KT + ρCV Γ2T ,
where CV is the specific heat at constant volume, Γ the
Grüneisen parameter, and T the temperature. This cor-
rection corresponds to the Laplace coefficient γL

γL = CP /CV = KS/KT =
(
1 + ρCV Γ2T/KT

)
(4)

(CP the specific heat at constant pressure) which has
been shown to be strongly pressure dependent; the cor-
rection decreases from 13% to 1.5% between 6 and
24 GPa29.

B. Theory

We have calculated the five elastic constants Cij (de-
fined as stress-strain coefficients) of hcp phase I of H2 at
variable pressures using semi-empirical pair and three-
body potentials as presented in details in Refs.30 and42.
The elastic constants were found from the equation of
state and three independent isochoric strains : uniaxial
(varying c/a ratio), orthorhombic, and monoclinic. The
aggregate properties (sound velocities, Poisson’s ratio)
were then calculated from the Cijs using Voigt-Reuss-
Hill averaging scheme. Zero-point vibrations were intro-
duced within the quasi-harmonic Debye approximation
for hydrogen. All our calculations have been done at
T=0 K. The long-distance cutoffs of 50.2 and 10.2 lattice
constants have been used for pair and triple forces respec-
tively. A few issues must be clarified here. First, unlike
helium30, hydrogen has rotational degrees of freedom. In
our present calculations we ignore rotations and treat H2

molecules as spherically symmetric. This is a reason-
able approximation for the low pressure phase I, where
H2 molecules are quantum rotors in the J = 0 ground
state to a good extent. Second, our quasi-harmonic treat-
ment of the zero-point vibrations of molecules is rather
crude. As discussed above, ZPV of hydrogen molecules
is anharmonic, at least at low pressures. However, the
calculation of elastic constants requires a high numerical
accuracy and a large number of total-energy calculations,
including ones for deformed (non-hcp) lattices. This is
why we decided to start with a simpler approach which
nevertheless allows us to estimate the magnitude of the
quantum effects. Third, we used exactly the parametriza-
tion of pair and three-body forces as previously done in
Refs.31,43–46. Specifically, the pair potential (energy of a
pair of H2 molecules) is

U2(R) = exp(α− βR− γR2)− fC(R)
∑

n=6,8,10

CnR
−n

fC(R) =

{
exp[−(R∗/R− 1)2] , R < R∗

1 , R > R∗

R being the distance between two molecules and R∗ ≡
DRm. The pair potential parameters are α = 1.713, β =
1.5671, γ = 0.00993, C6 = 12.14, C8 = 215.2, C10 =
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4813.9, D = 1.28, Rm = 6.44, all in Hartree atomic units.
The three-body potential (energy of a triangle) is

U3(r1, r2, r3) = (1 + 3 cos Φ1 cos Φ2 cos Φ3)×

−A exp

{
−B(r1 + r2 + r3) + C

√
fC(r1)fC(r2)fC(r3)

r21r
2
2r

2
3

}
where A = 6.085, B = 0.737858, C = 49.49815, r1, r2,
r3 are the three sides of the triangle and φ1,φ2,φ3 are the
three angles between the sides. The total energy of the
crystal is

E =
1

2

∑
R1 6=R2

U2(|R1 −R2|)

+
1

3!

∑
R1 6=R2 6=R3

U3(R1 −R2, R2 −R3, R3 −R1)

where Ri are the crystal lattice sites.

III. RESULTS

A. Elastic constants, anisotropy, Cauchy violations

The five elastic constants (independent components of
the stiffness tensor Cijkl) of hcp hydrogen obtained with
semi-empirical potentials are presented in Fig. 4 versus
pressure up to 160 GPa. The results obtained without
zero-point vibrations (ZPV) are also shown. We compare
our computational data to the Brillouin spectroscopy
data of Zha et al.29 (up to 24 GPa), the only available
experimental data on the elastic moduli of H2 in the GPa
pressure range. There is a reasonable agreement between
our data and the experiment. Also, note that the exper-
iment29 has been performed at room temperature, while
our calculations were done for T=0 K.

The hcp structural stability conditions47,48 C44 > 0,
C11 > |C12| and C33(C11 + C12) > 2(C13)2 are ful-
filled, which means that hcp hydrogen is mechanically
stable over the whole considered pressure range. Note,
a somewhat nonlinear behavior of C13 with pressure and
the crossing of C13 and C44 pressure curves at about
70 GPa (Fig. 4). No experimental data on Cij exist for
this pressure range at present, so we cannot test this
prediction obtained with 2- and 3- body SE potentials.
From the comparison of solid (with ZPV) and dotted
(without ZPV) curves in Fig. 4 one can see that within
our quasi-harmonic Debye approximation the quantum
effects, while noticeable, do not alter the behavior of
Cij(P ) in any drastic way, at least for pressures up to
160 GPa. Figure 5 presents the three elastic anisotropy
parameters of hcp hydrogen

∆P =
C33

C11
,

∆S1 =
C11 + C33 − 2C13

4C44
,

∆S2 =
2C44

C11 − C12
=
C44

C66
.

FIG. 4. The elastic constants of hcp H2 versus pressure ob-
tained with semi-empirical potentials with and without in-
cluding zero-point vibrations (ZPV). Experimental data of
Zha et al.29 are also presented.

These parameters characterize the anisotropy of the
three major acoustic modes, which in turn indicate the
anisotropy of the stiffness tensor Cijkl. For an isotropic
solid ∆P = ∆S1 = ∆S2 = 1. Note that the physi-
cal quantities represented by a second rank tensor (such
as conductivity, dielectric permittivity, etc.) are exactly
isotropic for cubic crystals and approximately isotropic
for hcp crystals. This is not the case for tensors of rank
4 such as Cijkl. Indeed, for most crystals, including cu-
bic and hcp ones, the stiffness tensor Cijkl is far from
isotropic. One can see from Fig. 5 that ∆S2 is close to
1, while ∆S1 ≈ 1.7 and ∆P ≈ 1.2. The theory pro-
vides a correct order of magnitude of these three param-
eters compared to the experiment of Zha et al.29, only
slightly overestimating the anisotropy for ∆S1. Again,
there could be a difference between T=0 K (theory) and
room temperature (experiment) values, which can ex-
plain a small disagreement. However, one can see that
the pressure dependencies of ∆P , ∆S1, ∆S2 disagree
substantially but we will see later in this paper (Fig. 11
and Sec. III C) that the low pressure experimental re-
sults are biased by an underestimation of the adiabatic
to isothermal correction. Finally, the effect of ZPV on the
elastic anisotropy is small and the largest contribution is
found for ∆P . The Cauchy violations 3C12 − C11 − 4P
and C13 − C44 − 2P , where P is the hydrostatic pres-
sure, are presented in Fig. 6. In this case, there is a
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FIG. 5. The elastic anisotropy parameters of hcp H2 versus
pressure.

reasonably good agreement between our theory and the
experiment. Note that the effect of ZPV is significant for
C13 − C44 − 2P , but not for 3C12 − C11 − 4P .

B. Aggregate sound velocities, bulk and shear
moduli

Aggregate physical quantities are defined for an
isotropic (or polycrystalline) solid. They include bulk
and shear moduli K and G, the Poisson’s ratio defined
in Eqs.(1, 3) and the compressional (cP ) and shear (cS)
sound velocities

cP = [(K +
4

3
G)/ρ]1/2, cS = (G/ρ)1/2. (5)

The bulk sound velocity determined as cB = (K/ρ)1/2,
corresponds to the compressional mode of the liquid
phase. Among the three sound velocities only two are
independent, since c2B = c2P − 4c2S/3. In theoretical

treatment, they are linked to C11, C12 and C44 the elas-
tic constants obtained from single crystal Cij and the

Voigt-Reuss-Hill averaging procedure with c2P = C11/ρ,

c2S = C44/ρ and c2B =
(
C11 − 4C44/3

)
/ρ.

Experimentally, aggregate quantities are found either
from experiments on polycrystalline samples, or using
some kind of averaging procedure of the single-crystal

FIG. 6. Cauchy violations of hcp H2 versus pressure.

sound velocities. In our experiment, the average com-
pressional velocities were found from the experimental
Brillouin frequencies.

Our data at 25 GPa (Figs. 3(b, d)) show a span of val-
ues (cmin=16 km/s, cmax=17 km/s, δc/c=0.06) of com-
pressional sound velocities determined from their spatial
dispersion, which compares well with those (16 km/s-
16.9 km/s, 0.06) determined in Ref.29 from the angular
dispersion of the compressional velocity at 23.6 GPa. On
some runs the sample was found to be highly disordered
with a good polycrystalline quality as shown in Fig 7.
and give access directly to the mean values of the elastic
constants C11, C12 and C44 = (C11−C12)/2 expected for
an isotropic crystal.

The experimental compressional sound velocities of H2

and D2 as a function of pressure are presented in Fig. 8.
For D2 we have included the usual

√
2 scaling factor due

to the difference in molecular masses. We can see that
they differ by a few percent at most in the pressure range
considered. This difference (with the

√
2 scaling factor in-

cluded) is a measure of the quantum effects in hydrogen.
The results show strong pressure dependence in a good
general agreement with the previously reported data at
smaller pressures29,32,33. Both in the liquid and solid
phase, our data agrees well with the Brillouin results of
Shimizu et al.33. Following Shimizu, in the solid phase,
our data on the compressional sound velocity cP are best
approximated by the simple equation cP = aP b, where P
is in GPa, a=6.02 km/s and b=0.311 (respectively 5.75
km/s and 1/3 in Ref.33).

The isotropic elastic constants C11, C12 and C44 de-
duced from these results and a hypothesis of the perfect
polycrystal are shown in Fig. 9. The longitudinal and
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FIG. 7. Brillouin frequency distribution in H2 at 55 GPa. The
Brillouin frequencies are determined from fitting of the data
as a function of time delay corresponding to spatial probing
of H2 sample along the DAC axis. In contrast to Fig. 3(b,d),
the sample exhibits very high polycrystallinity and Brillouin
frequency is almost constant over the whole sample volume.

FIG. 8. Compressional sound velocity of H2 and D2 at high
pressure measured in this work using PLA in comparison to
the previous results obtained using a conventional Brillouin
spectroscopy29,33. The sound velocities of D2 are multiplied
by
√

2. The solid line corresponds to the best fit of expression
cP (P ) = aP b with a=6.02 km/s and b=0.311 .

transverse velocities reported by Shimizu et al.33 have
been combined with the EOS reported by Loubeyre et
al.23. The results of Zha plotted here have been obtained
using the Voigt-Reuss-Hill averaging procedure. There is
a good agreement between our results, previous experi-
mental data and our theoretical values except for the C12

values deduced from Shimizu’s data.

FIG. 9. H2 isotropic elastic constants derived within the
perfect polycrystal approximation. The solid lines are our
theoretical results with ZPV (solid lines) and without ZPV
(dashed lines). The results referred to Zha et al. have been
obtained from ref.29 using the classical Voigt-Reuss-Hill av-
eraging procedure. To extract Cij from Shimizu et al.33 we
combined their raw data and the EOS published in Ref.23.

The theoretical velocities cP , cS and cB are presented
in Fig. 10 in a wider pressure range (up to 160 GPa).
There is a good agreement with the experiment29. It
should be noticed that the effect of ZPV (quantum con-
tribution) on the sound velocities is small in our calcula-
tions in the whole pressure range. Without any surprise,
our calculation of theoretical aggregate bulk (K), shear
(G) moduli of hcp H2, which are directly related to cB
and cS , compared favorably to the experimental data.

FIG. 10. Compressional, bulk and shear sound velocities of
hcp H2 in the 160 GPa pressure range. Theoretical (this work)
and experimental (this work and Refs.29,33) results are pre-
sented.

The Debye temperature (TD) of hcp H2 can be easily
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extracted from the mean sound velocities cP and cS

TD =
~
kB

[
Vmol

18π2NA

(
1

c3P
+

2

c3S

)]−1/3
(6)

and used to calculate the specific heat at constant volume
CV since

CV = 9NAkB

(
T

TD

)3 ∫ TD/T

0

x4ex

(ex − 1)2
dx (7)

At room temperature and for pressure lower then 25 GPa,
the integral part is far from 4π4/15 and has to be cal-
culated since the T � TD condition is not fulfilled (see
Fig. 11). Finally, the determination of the Grüneisen
parameter Γ

Γ =
1

3
+
∂lnc

∂ρ
(8)

where c is the mean velocity, allows the calculation of
the Laplace coefficient γL (see Eq. 4). The main re-
sults are shown in Fig. 11. Clearly, all results are in
good agreement except for the low pressure experimen-
tal Laplace coefficient values determined from the ex-
perimental Cij from Zha et al.29. At room tempera-
ture, above 25 GPa, the difference between adiabatic and
isothermal bulk modulus vanished since the Laplace co-
efficient γL ≈ 1.

FIG. 11. Theoretical and experimental results for the Debye
temperature and the Laplace coefficient of hcp H2.

C. Poisson’s ratio

The Poisson’s ratio as a function of pressure obtained
from our experimental data and the EOS of Ref.23

through Eq. 3 is shown in Fig. 12. Our data on PR
below 24 GPa are expected to be in agreement with the
results of Zha et al.29 as the compressional sound veloci-
ties agree and also the equations of state which have been

used here and in Ref.29 are very similar23,49. The values
proposed by Zha correspond to our raw data without the
isothermal to adiabatic correction of the bulk modulus
used to extract the PR values. This is due to the use
of the non adiabatic equation (7) in the Zha et al. pa-
per29 to obtain an essential relation between elastic con-
stants. Nevertheless, as the pressure increases this cor-
rection decreases and becomes negligible at high pressure
(less than 1% above 30 GPa). As for the helium case28,30,
the calculated PR of hydrogen decreases with pressure,
supporting the idea27 of PR approaching an asymptotic
value close to 0.3 as pressure increases. Our experimental
data, while showing some scattering, qualitatively agree
with this prediction (Fig. 12). However, higher pressure
data are needed to accurately establish the asymptotic
behavior. Our theoretical results in the 160 GPa pres-
sure range are presented in Fig. 13. Our theory finds a
shallow minimum at about 145 GPa (or 120 GPa if ZPV
are not included), where PR is approximately 0.28, which
is slightly less than the value 0.3 suggested in Ref.27, and
close to the PR in helium at terapascal pressures30.

FIG. 12. The Poisson’s ratio of H2 deduced using Eq. 3 from
our measurements of the compressional sound velocity and
the EOS of Ref.23

A pseudo-Poisson’s ratio, which uses C44 instead of G,

σ′ =
3K/C44 − 2

2(3K/C44 + 1)
, (9)

is also presented in Fig. 13. This quantity has been used
previously31 to estimate the pressure dependence of σ.
The behavior of σ′ is qualitatively similar to that of σ,
but quantitatively they are rather different.

Let us now return to the question of the importance of
quantum effects, and how their magnitude changes with
pressure. By comparing the behavior of PR calculated
with and without ZPV (Fig. 13), one can see that the
ZPV contribution to the PR value is rather substantial,
larger than for the majority of quantities described above,
but it does not change its pressure dependence in any fun-
damental way. We therefore speculate that the pressure
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FIG. 13. Theoretical and Pseudo Poisson’s ratio of H2 in the
160 GPa pressure range compared to experimental data.

dependence of PR is classical in nature with significant
quantum corrections originating from translational de-
grees of freedom (rotational and vibrational degrees of
freedom are considered as inherently quantum in phase I
of H2). The relative ZPV contribution to PR and other
quantities presented above decreases slowly with pressure
in the 5-160 GPa pressure range. Our previous work on
helium30 showed similar behavior in the same pressure
range, and the ZPV contribution decreased even more
noticeably in the terapascal range.

IV. CONCLUSION

We have measured the compressional sound velocity in
hcp hydrogen phase I up to 55 GPa at T=297 K using the
picosecond laser acoustics technique. By combining these
results with the previously reported equation of state23

we determined the Poisson’s ratio versus pressure. The
Poisson’s ratio decreases with pressure with a possible
minimum at about 50 GPa.

We have also calculated the five independent elastic
constants Cij of hcp H2 up to 160 GPa at T=0 K using
semi-empirical pair and three-body potentials. Pressure
dependencies of various elastic quantities derived from
Cij are examined : elastic anisotropies, Cauchy viola-
tions, bulk and shear moduli, aggregate sound velocities,
Debye temperature, Laplace coefficient and the Poisson’s
ratio. There is a generally good agreement with the
available experimental data except for some previously
reported results at low pressure. We point out that at
room temperature, the difference between adiabatic and
isothermal process vanishes only above 25 GPa but can
not be neglected at lower pressure which can contribute
to the mentioned above discrepancy. The theoretical
Poisson’s ratio shows a decrease with increasing pressure
and reaches a shallow minimum at 145 GPa and σ =
0.28. The quantum effects (introduced as translational
ZPV) are significant for the PR values but do not change
qualitatively the σ(P ) dependence. The quantum effects
affect less other examined elastic quantities. Overall, the
quantum contribution to the elastic quantities is found
to be marginal and to decrease slowly with pressure.
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