
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Formation enthalpies for transition metal alloys using
machine learning

Shashanka Ubaru, Agnieszka Międlar, Yousef Saad, and James R. Chelikowsky
Phys. Rev. B 95, 214102 — Published  1 June 2017

DOI: 10.1103/PhysRevB.95.214102

http://dx.doi.org/10.1103/PhysRevB.95.214102


Formation enthalpies for transition metal alloys using machine learning

Shashanka Ubaru1, Agnieszka Międlar2, Yousef Saad1, and James R. Chelikowsky3

1Department of Computer Science and Engineering, University of Minnesota,
Twin Cities, MN 55455, USA. [ubaru001,saad]@umn.edu.

2Department of Mathematics, University of Kansas,
Lawerence, KS 66045-7594, USA. amiedlar@ku.edu.

3Center for Computational Materials, Institute for Computational Engineering and Science,
and Departments of Physics and Chemical Engineering,

University of Texas, Austin, TX 78712, USA. jrc@utexas.edu.

The enthalpy of formation is an important thermodynamic property. Developing fast and accurate
methods for its prediction is of practical interest in a variety of applications. Material informatics
techniques based on machine learning have recently been introduced in the literature as an inexpen-
sive means of exploiting materials data, and can be used to examine a variety of thermodynamics
properties. We investigate the use of such machine learning tools for predicting the formation en-
thalpies of binary intermetallic compounds that contain at least one transition metal. We consider
certain easily available properties of the constituting elements complemented by some basic proper-
ties of the compounds, to predict the formation enthalpies. We show how choosing these properties
(input features) based on a literature study (using prior physics knowledge) seems to outperform
machine learning based feature selection methods such as sensitivity analysis and LASSO (Least
Absolute Shrinkage and Selection Operator) based methods. A nonlinear kernel based support vec-
tor regression method is employed to perform the predictions. The predictive ability of our model is
illustrated via several experiments on a dataset containing 648 binary alloys. We train and validate
the model using the formation enthalpies calculated using a model by Miedema, which is a popular
semi-empirical model used for the prediction of formation enthalpies of metal alloys.

I. INTRODUCTION

The thermodynamic data of alloys such as the
standard enthalpy of formation ∆H (also known as
standard heat of formation) plays an important role
in several applications, e.g., in the calculation of
phase diagrams and materials design, in the explo-
ration of new materials having high melting points
that can be used in advanced coal-fired plants, build-
ing heat-exchangers, filters, and turbines, and many
more. The heat of formation of an alloy indicates
its stability, i.e., a more negative enthalpy of for-
mation implies a more stable alloy. Also, the sign
of ∆H is a fundamental property that can serve as
an indicator for the stability of a given alloy. Sys-
tems with a positive ∆H are only stabilized by en-
tropy considerations. In addition, the formation en-
thalpies of compounds are also significant for certain
high-throughput density functional theory (DFT)
calculations1. Unfortunately, it is well known that
determining such thermodynamic properties via ex-
periments is difficult, especially for compounds with
high melting points.

Since the experimental determination of thermo-
dynamic properties of a vast combinations of ele-
ments is inefficient, recent research has focused on
developing various computational approaches to pre-
dict and estimate these properties of interest. In the

case of the enthalpies of formation of compounds,
several different approaches have been proposed over
the years. For example, we note the Hildebrand
formula2 for enthalpy of solutions, a semi-empirical
model of alloy cohesion by Miedema et al.3, and a
modified embedded atom model for random alloys4.
Popular among these, particularly for binary metal
alloys, is Miedema’s model.

In a series of papers3,5–7, Miedema and his co-
authors developed a semi-empirical method for pre-
dicting the heat of formation of binary intermetal-
lic compounds that contain at least one transition
metal. They showed that the formation enthalpies
of such binary alloys can, in general, be described
in terms of a simple atomic model, that depends
only on two parameters of the constituent atoms.
Their model has been very successful in predicting
correctly the signs for the heats of formation. How-
ever, it is less quantitative for predicting the mag-
nitude of the enthalpy change and requires certain
experimental information.

With the advent of density functional theory and
its concurrent implementations for realistic compu-
tations8,9, using first principles or ab initio calcu-
lations for predicting and understanding material
properties has become popular10–12. One can com-
pute accurate values for the formation enthalpies of
compounds using such calculations. Also, some com-



parative studies between the Miedema model pre-
dictions and the ab initio calculations for transition-
metal compound formation now exist13,14. However,
a major drawback of DFT calculations is the rela-
tive high computational cost, especially for a quick
screening of a large database, and the need for cer-
tain prior information such as a known crystal struc-
ture.

In recent years, as a result of the Material Genome
Initiative15, machine learning (ML) techniques have
emerged among other ‘material informatics’ meth-
ods, for exploiting materials data. A popular ap-
proach in the literature is to apply tools from ma-
chine learning on certain DFT calculations to ac-
celerate prediction of various properties of com-
pounds16–22. Ideas from machine learning have been
coupled with databases of ab initio calculations to
estimate molecular electronic properties in chemical
compound space, including the enthalpy of forma-
tion of compounds23,24. However, these methods
still have the major disadvantage of requiring re-
sults from many DFT calculations, which may not
be possible for alloys without given crystal struc-
tures, i.e., amorphous or noncrystalline alloys. Re-
cently, a machine learning approach to predict the
density functional theory total energies has been im-
plemented and these predictions are used to compute
the enthalpies of formation of metal-nonmetal com-
pounds1.

Our paper presents an alternative machine learn-
ing approach to predict the formation enthalpies of
binary metal alloys. The method we propose differs
from previous ML techniques in that it uses read-
ily available properties of the constituting elements
(elemental properties), complemented by some ba-
sic properties of the compounds that are available
in popular databases (e.g., Materials Project25), to
predict the formation enthalpies.

A large set of (publicly available) elemental prop-
erties is considered and three different methods are
explored to select (a smaller set of) appropriate ele-
mental properties for enthalpy prediction from this
large set. The three sets of elemental properties
used are: (i) properties selected based on a litera-
ture study, (ii) properties obtained through sensi-
tivity analysis. (iii) properties selected by a mod-
ified LASSO (Least Absolute Shrinkage and Selec-
tion Operator) method26–28. The first set can be
viewed as a set selected based on prior physics
knowledge, while the latter two are based on ma-
chine learning methods (do not take into account
any physics knowledge), these methods are defined
in Section III A. Our results indicate that features
(elemental properties) selected based on the prior

physics knowledge perform better in predicting en-
thalpies than those obtained through machine learn-
ing techniques.

A well-known method exploited in machine learn-
ing and known as “Support Vector Regression” is em-
ployed for the formation enthalpy predictions. The
approach proposed in this work is fast and does
not require DFT calculations, since the model takes
available properties of elements and compounds as
input, and is trained and validated against (or re-
produces) the formation enthalpies calculated using
Miedema’s model, which are also easily available for
many binary alloys. Since the Miedema’s model is
itself not very accurate, the proposed machine learn-
ing approach cannot give highly accurate formation
enthalpies. However, the presented method is an
extremely inexpensive technique aimed at predict-
ing formation enthalpies of new compounds (as ac-
curately as Miedema’s model) without any empiri-
cal information. Such enthalpy predictions suffices
in many applications such as new material discov-
ery, stability analysis and melting point predictions.
In applications where accurate formation enthalpies
are required, these predictions can be coupled with
simple DFT calculations (which are less expensive
than full DFT calculations taking elemental proper-
ties as an input) to obtain accurate enthalpies. This
is a popular approach used to improve Miedema’s
model predictions13,14.

Section II briefly describes the Miedema’s model
for prediction of enthalpy of formation. The two
key components of our approach, the feature selec-
tion method and the machine learning model are dis-
cussed in Section III. Experimental results with ac-
companied analysis, discussion and final conclusions
are presented in Section IV. Appendix provides some
additional details.

II. STANDARD ENTHALPY OF

FORMATION

The standard enthalpy of formation ∆H
[

kJ
mol

]
of

a compound, also known as the standard heat of for-
mation, measures the change of enthalpy during the
formation of 1 mole of the compound from the indi-
vidual constituting elements. Formation enthalpies
play a fundamental role in predicting the thermo-
dynamical stability of new materials. For example,
they are crucial in evaluating the performance of Li-
ion batteries29,30, in designing materials for chemical
hydrogen storage31 and in modeling the formation
energies of metal oxides32,33.
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Although the advent of DFT made calculations
of enthalpies of formation possible34, the calculated
values of ∆H are available only for a limited number
of compounds7,35. As such, we focus on the Miedema
model for predicting the enthalpy of formation given
by

∆H ∝ f(c)
(
− P (∆φ∗)2 +Q(∆n1/3

ws )
2
)
, (1)

where ∆φ∗ denotes the difference in the work func-

tions of the two metals, ∆n
1/3
ws the difference in elec-

tronic densities at the boundary of the Wigner-Seitz
cell of the pure metals, f(c) is an unknown function
of concentration, and P,Q are empirical constants.
Miedema’s model assumes that the formation en-
thalpy depends on the two parameters, φ∗ and n

1/3
ws .

The first parameter arises from the charge transfer
between neighboring cells which is proportional to
∆φ∗, and accounts for attractive forces within the
compound. The second parameter arises from a sur-

face tension term, proportional to ∆n
1/3
ws , which ac-

counts for repulsive forces. Note that a slightly mod-
ified formulation of the formation enthalpy is needed
for alloys involving a transition metal and one of the
polyvalent non-transition metals, namely,

∆H ∝ f(c)
(
− P (∆φ∗)2 +Q(∆nws)

2 −R
)
, (2)

with R being a constant.
The work function φ∗ characterizes the electroneg-

ativity parameter or the chemical potential for elec-
tronic charge. Since the work function φ∗ can be
hard to compute, it is replaced by an experimental
work function φ7. A problem with this substitu-
tion is that various experimental values have been
reported for the work function, and it is not known
how to select the best one. Also, the work function
can depend on the nature of the surface structure of
the elemental crystal.

Obtaining values for nws can also be problem-
atic, depending on the anisotropy of the elemental
bonding. In Miedema’s model, this value is approx-
imately calculated as5

(nws)
2 =

B

V
,

where B is the experimental bulk modulus and V
is the molar volume of pure metals. The compu-
tation of the above ratio may be an issue owing to
inaccurate or missing experimental data. In many
cases, the above equation is used to predict the bulk
modulus of elements36. The constants P and Q de-
pend on the type of metals that are present in the
alloy37; their values are not universal7. Thus, using

Miedema’s model for predicting the formation en-
thalpies of new compounds not only require certain
experimental results, but may also yield unreliable
results due to the variations in these constants.

Here, we present a non-empirical method to
rapidly predict the formation enthalpies of binary
transition metal alloys (including their signs) using
machine learning techniques.

III. MACHINE LEARNING FOR

PREDICTION

In this work, we apply well-known supervised re-
gression techniques to predict properties of com-
pounds that are hard and expensive to compute
otherwise, using easily available physical, chemical
and structural properties of the compounds, known
as features in machine learning or descriptors in ma-
terial science. In many cases, the atomic and elemen-
tal properties of the constituting atoms of the com-
pounds are included as input features. The perfor-
mance of these machine learning predictions depends
primarily on the following two aspects: the feature
selection and the machine learning model used.

A. Features Selection

A quintessential step for successful predictions is
identifying the key characteristics of the constituting
elements (elemental features), that dictate or affect
the properties of the compounds that we wish to
predict. In this paper, we consider three different
approaches for feature selection.

a. Literature study: In order to identify a good
set of elemental features that influence the forma-
tion enthalpies of compounds, let us first look at
Miedema’s model3. It has been known for a long
time38 that the work function φ is correlated to the
ionization energy, the electron affinity and the elec-
tronegativity of constituting elements. While ion-
ization energy and electron affinity are properties of
isolated atoms, the electronegativity provides infor-
mation about the attraction the given atom has for
electrons in an ionic (or partially ionic) bond formed
with another atom. For pure metals, the theoretical
electron density values nws depends on bulk modu-
lus B and molar volume V . Thus, Miedema’s model
suggests that the following features of the consti-
tuting elements are crucial for the prediction of the
formation enthalpies: ionization energy, electroneg-
ativity, electron density and molar volume.

3



Another model which helps to identify the elemen-
tal features that affect the formation enthalpies, is
the Hildebrand formula for the enthalpy of solution
of two liquids2. This formula depends on two proper-
ties of the constituting liquids, namely, the enthalpy
of vaporization of the liquids and their molar vol-
umes. The development of Miedema’s model was in-
fluenced by this formula6. The formation enthalpies
describe the cohesion in the metal alloys7. The mod-
ified embedded atom method by Ouyang et al.4 uses
the cohesive energy, formation energy and atomic
volumes of pure elements to describe the work func-
tion φ in Miedema’s model. From the above studies,
we expect that the following seven elemental prop-
erties are likely to be the most influential features
in predicting the formation enthalpy: ionization en-
ergy, electron affinity, electronegativity, electron den-
sity, enthalpy of vaporization, cohesive energy and
molar volume.

b. Sensitivity method: A machine learning ap-
proach to identify the elemental features that pro-
vide good property predictions is to use the ‘sensitiv-
ity method’ described by Saad et al.39. To verify the
impact of elemental features on the enthalpy predic-
tion accuracy, we find the sensitivity of each of the
available properties of the constituting atoms (we
collected d′ = 49 properties of each element, see Ap-
pendix D, and hence obtained d = 2d′ = 98 features
in total after concatenation to represent the binary
alloys).

The sensitivity method applied to our model can
be described as follows: Let X ∈ R

n×d be a matrix
that contains the known properties (the input fea-
tures/descriptors) of the individual compounds as
columns (since X is a concatenation of the d′ prop-
erties of the two elements forming a compound, the
number of columns is d = 2d′). First, for a consid-
ered feature k, we perturb the values of this feature
for both elements of each compound, i.e., the vectors
X(:, k) and X(:, k+d′) are perturbed respectively by
ε ≈ c10−8‖[X(:, k);X(:, k + d′)]‖, where c is a ran-
dom number.

Second, we calculate a new coefficient vector aε,
using the least squares solution aε = (X⊤X)−1X⊤v,
where v is a vector containing the actual formation
enthalpies of the compounds. Next, the norm of
the difference between the original (obtained with-
out perturbing columns of X) and the perturbed co-
efficient vector ‖aε − a‖ is computed.

Finally, the ratio ‖aε−a‖
ε is assigned as the sensi-

tivity measure of the k-th feature. The top seven
most sensitive features for the prediction of forma-
tion enthalpies are : the electrochemical equivalent

weight40, first oxidation state, group number, effec-
tive nuclear charge (Slater’s rule), metal radius, elec-
tronegativity and distance core electron.

c. LASSO method: Another alternative
method used recently in the literature27,28 for
feature selection is the so called compressed sensing
approach, which is a LASSO26 type method. Given
a large feature matrix X ∈ R

n×d, and the output
vector v (property to be predicted), the LASSO
method yields a sparse relation between X and v
by solving the convex optimization problem

arg min
β∈Rd

‖v −Xβ‖2
2
+ λ‖β‖1, (3)

where the ℓ1-norm
(
‖β‖1 =

∑
i β(i)

)
promotes the

sparsity in vector β. Thus, the sparsity of vector
β helps us to select the descriptors (columns of X)
that best describe v in the least squares sense. How-
ever, recall that the matrix X is formed by simply
concatenating the properties of the two constitut-
ing elements. Using the LASSO method directly
will not guarantee selection of the same set of prop-
erties for the two elements. That is, the vector β
need not have same nonzero coordinates in the first
d′ = 49 coordinates (β(1 : 49)) and last d′ coordi-
nates (β(50 : 98)). We indeed obtained different sets
of features being selected for the two elements when
the LASSO method was used directly in our exper-
iments. In order to overcome this issue, we propose
the following modified LASSO problem obtained by
splitting vector β as β = [β1;β2],

min
β∈Rd

‖v −Xβ‖2
2
+ µ‖β1 − β2]‖

2

2
+ λ‖β‖1

or min
β∈Rd

‖v −Xβ‖2
2
+ µ‖Jβ‖2

2
+ λ‖β‖1,

where J = [I,−I] with the identity matrix I. We
include the additional term µ‖Jβ‖2 to ensure that
the two halves of the vector β are close (equal),
such that the same set of properties is selected for
the two elements (from the first 49 and the last 49
features). This modified LASSO problem is still a
convex optimization problem and therefore can be
easily solved using any of the available optimization
packages, e.g. the CVX package41,42. The parame-
ters λ and µ were adjusted such that the modified
LASSO selects exactly seven properties from both
elements, i.e., both β1 and β2 have exactly seven
nonzero entries. The following seven properties were
selected by the LASSO method for the two elements:
atomic weight, density, energy ionization first, tem-
perature boiling, temperature melting, electronegativ-
ity and bulk modulus. The modified LASSO method
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for property selection is also robust, i.e., changing
slightly the parameters λ and µ does not give differ-
ent set of features.

Since the feature matrix X ∈ R
n×d consists of

two subsets (first 49 and the remaining 49 features)
corresponding to the two constituting elements, we
can assume that the d features are divided into
two groups and use either the group LASSO43 or
the sparse group LASSO44 methods to select ap-
propriate features from these two groups. However,
these methods will not guarantee the selection of the
same set of properties from the two groups (for the
two constituting elements). Consequently, we will
still have to include the additional constraint term
µ‖Jβ‖2

2
proposed above in the optimization objec-

tive.
In the presence of compound features, the Pearson

product-moment correlation coefficient (r)45 can be
used to determine the correlation between two given
properties of a compound. That is, given the values
of properties x = {x1, . . . , xn} and y = {y1, . . . , yn}
for each of the n compounds in the dataset, the Pear-
son correlation coefficient is:

r =

n∑
i=1

(xi − x̄)(yi − ȳ)

√
n∑

i=1

(xi − x̄)2

√
n∑

i=1

(yi − ȳ)2

, (4)

with x̄ := 1

n

n∑
i=1

xi (analogously for ȳ). Table II

lists the Pearson correlation coefficients between the
standard enthalpy of formation and several other
compound properties, for the binary alloys in our
database.

B. Machine Learning Model

In this work, we use a supervised learning regres-
sion method to predict the formation enthalpies of
binary metal alloys.

Given n compounds and d specific features (de-
scriptors) we build a matrix X ∈ R

n×d that stores
the features of each compound as a column of X .
We assume that a certain property being studied,
e.g., enthalpy of formation, is known for each of the
n compounds. We are now presented with a new
compound, which is not among the n ones already
studied, and whose same d features, as those of the
data, are known and stored in a vector z ∈ R

d.
Regression methods attempt to answer the question:
“What is our best guess of the enthalpy of formation

for this new compound?” Regression methods use X
to build a mapping that will yield the desired prop-
erty from z. In the simplest case of linear regression,
this mapping is just a linear combination of the val-
ues of the features, and the coefficients of the linear
combination are extracted by solving a least squares
problem that involves X and the right-hand side of
the properties of the n compounds.

Linear regression is often too simple model, and
is rarely used to predict complex physical proper-
ties. A common and efficient regression technique
used for real world data applications is the support
vector regression or SVR4647. In SVR, the idea of
support vector machines (SVM) developed by Vap-
nik and Chervonenkis48 is extended to handle re-
gression problems49. SVR is a nonlinear regression
technique that employs kernels to implicitly map
the inputs into high-dimensional (nonlinear) feature
spaces. The details of the SVR method are given in
Appendix A.

Since the relation between the elemental prop-
erties and the desired thermodynamic property of
the compound is typically highly nonlinear, in this
work, we consider a nonlinear kernel based regres-
sion method. A variety of support vector machine
methods for regression have been developed in the
literature, see e.g.,47,49–53. Among these, the most
suitable SVR variant for our purposes, is the ε-SVR
method with RBF or Gaussian kernels given by

k(xi, xj) = exp
(
−γ‖xi − xj‖

2
)
,

see Appendix A for details. For our experiments, we
consider the ε-SVR method implemented in the lib-

SVM Matlab library54. For the optimal γ value in
the kernel, we sweep from 0.1 to 1 with increments of
0.1 and choose the value that yields the best results
(smallest error). In Appendix A, we also provide a
justification for this choice of the regression method
by comparing the prediction performance of SVR
against several other popular regression techniques.

IV. RESULTS AND DISCUSSION

Here, we present our results for the prediction of
formation enthalpy for transition metal alloys using
the support vector regression (SVR) model. The
results obtained using other regression methods are
reported in the Appendix A. We found that, SVR
outperforms the other regression approaches.
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FIG. 1. Predictions of enthalpies of formation obtained using (i) the elemental properties from the literature, (ii)
the elemental properties from the sensitivity analysis, (iii) the elemental properties from the modified LASSO, (iv)
the elemental properties from the literature and the compound properties, (v) the elemental properties from the
sensitivity analysis and the compound properties, and (vi) the elemental properties from the modified LASSO with
the compound properties.

TABLE I. Relative errors in standard enthalpy of formation predictions for different feature sets. MAE: Mean
Absolute Error; RMSE: Root Mean Square Error; MRRE: Mean-Regularized Relative Error; NRE: Net Relative
Error. See Appendix A2 for details.

Feature Set MAE RMSE MRRE NRE R
2

Literature 1.3809 5.5598 0.0157 0.0286 0.9563

Sensitivity 1.7657 5.7145 0.0195 0.0365 0.9468

LASSO 4.6838 9.0660 0.1049 0.2004 0.6858

Literature+compound 1.3682 5.4965 0.0156 0.0283 0.9556

Sensitivity+compound 1.6422 5.5695 0.0181 0.0340 0.9508

LASSO+compound 2.2960 6.9060 0.0580 0.1096 0.8704

Standard Enthalpy of Formation for Transition

Metal Alloys

To illustrate the use of machine learning tools
for the prediction of the enthalpy of formation for
binary metal alloys, we considered 648 transition
metal alloys whose formation enthalpies are avail-
able7. These formation enthalpies are computed us-
ing the Miedema et al. model. Details about these

compounds are given in Appendix C.

Previously, we discussed feature selection. Col-
lecting such features/properties of the constituting
elements is the first step of the prediction. We ac-
quired 49 different chemical properties of all the el-
ements from the Database on Properties of Chem-
ical Elements55, see Appendix D for more details.
Next, six different physical properties of the 648
compounds (compound features) were collected from
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the Materials Project database5657.
These six properties were: band gap, number of

atoms per unit cell (nsite), volume, magnetic mo-
ment, density and energy-per-atom (energy normal-
ized to per atom in the unit cell), see57 (The Ma-
terials API). We also collected six different crystal
properties of these 648 compounds from the same
database, namely the three unit cell dimensions
a, b, c and the three unit cell angles α, β, γ. Var-
ious experiments were conducted using these data
features. Figure 1 and Table I present the re-
sults obtained from these experiments for the predic-
tion of the formation enthalpies of these 648 transi-
tion metal alloys using the support vector regression
method and various feature sets.

As mentioned in Section III A, we considered three
approaches to select the appropriate elemental fea-
tures (feature selection) that affect the formation en-
thalpies of the metal alloys the most. The first set
of features was based on the literature study, and we
refer to this set of features as the ‘literature set’. In
this set, we considered 7 elemental properties of the
two constituting elements of the binary alloys as the
input features (14 values in total), namely, ioniza-
tion energy, electronegativity, electron density, en-
thalpy of vaporization, cohesive energy, electrochem-
ical equivalent weight and molar volume. The order
of concatenation of features is done based on the
atomic number. The features of the element with
smaller atomic number are chosen as first 7 columns
of the feature matrix. Concatenating the elemental
features does not incorporate the stoichiometric in-
formation (the ratios of the individual elements in
the compound). We feed this information to the
regression model as two new features. That is, we
include two additional features as inputs, whose val-
ues are the ratios of the first and the second ele-
ment of the compound, respectively. For example,
for compound ScGe, the values of these two features
will be [0.5, 0.5], and for ScGe2, their values will be
[0.33, 0.67]. Thus, we consider 16 features in total.
In practice, we need to choose only one of these two
stoichiometric features since the other seems redun-
dant.

Figure 1(i) presents the formation enthalpies pre-
dicted by the SVR model against the actual for-
mation enthalpies (obtained from7) using the liter-
ature set of elemental properties as input features.
The errors obtained for this experiment are listed
in Table I. Details about different error measures
can be found in the Appendix A. We used a 10
fold cross-validation method to predict the forma-
tion enthalpies of the 648 compounds. That is, we
repeated the experiments 10 times with 10% of the

TABLE II. Pearson’s correlation coefficients between the
compound features and the formation enthalpy vs. sen-
sitivities of compound features.

Name of the feature Correlation r Sensitivity

magnetic moment 0.2010 0.5842

energy-per-atom 0.1558 0.3961

density 0.1025 0.2108

n-cell-length-c 0.0885 0.8734

nsite 0.0644 0.6565

n-cell-length-a 0.0615 1.7345

band gap 0.0350 8.5279

dataset (around 65 compounds) chosen at random
without replacement from the 648 compounds used
as test data. Hence, after the 10 trials we have all
648 alloys’ formation enthalpies predicted once by
the model. These predicted values of the test data
are those presented in the figure. Note that we do
not present the formation enthalpies predicted for
the training data since these predictions are typi-
cally good. A good prediction for training data does
not indicate that the model has a good prediction
ability, since such a model might perform poorly for
a given test dataset.

The second set of features considered was based on
the sensitivity method39 discussed in Section III A,
and we denote this set as ‘sensitivity set’. In this
set, we considered 7 features selected from the 49
elemental properties using the sensitivity method.
These features are expected to significantly influence
the prediction accuracy. According to the sensitivity
model, the seven most effective features in predicting
the formation enthalpy are: electrochemical weight
equivalent, oxidation state first, group number, nu-
clear charge effective, radii metal, electronegativity
and distance core electron. Figure 1(ii) presents the
formation enthalpies predicted by the SVR model,
using the sensitivity set of elemental features (16
in total, including the two stoichiometric features),
against the actual formation enthalpies.

The third set of features was selected based on the
modified LASSO method described in Section II. We
call this set a ‘LASSO set’. The parameters µ and
λ were adjusted such that the same seven features
were selected for both the elements (same nonzero
entries in β1 and β2). The selected features were:
atomic weight, density, energy ionization first, tem-
perature boiling, temperature melting, electronegativ-
ity and bulk modulus. Figure 1(iii) presents the for-
mation enthalpies predicted by the SVR model, us-
ing the LASSO set of elemental features (16 in total),

7
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FIG. 2. Predictions of enthalpies of formation of Sc binary alloys obtained using (i) the elemental properties from the
literature, (ii) the elemental properties from sensitivity analysis, (iii) elemental properties from the modified LASSO
method.

TABLE III. Predicted and actual formation enthalpies (FE) of Sc binary alloys using the 14(+2) elemental properties

(literature set) and compound properties as input features. Values in
[

kJ
mol

]

.

Chemical formula Actual FE Predicted FE Chemical formula Actual FE Predicted FE

best worst

Sc5Ge3 -75 -75 ScBe5 -31 -58

Sc3Ga2 -63 -63 Sc3In -39 -69

ScCd -55 -56 ScN -184 -152

Sc5Sn3 -76 -78 ScIr -92 -60

ScAl -68 -66 Sc3P2 -157 -110

ScGe -85 -88 ScP -172 -124

against the actual formation enthalpies.

For the following numerical experiments, we con-
sidered the compound features (6 physical and 6
crystal properties of the alloys) along with the el-
emental and stoichiometric information as the input
features for the SVR model. Figure 1(iv) presents
predicted versus actual formation enthalpies ob-
tained using collectively the literature and the com-
pound feature sets (16+12 = 28 in total). Similarly,
Figure 1(v) presents the results obtained when the
sensitivity and the compound feature sets were used
in the SVR model. The results obtained when the
LASSO and the compound feature sets were used
together are presented in Figure 1(vi). The various
error measures obtained for each of these six exper-
iments are listed in Table I.

To complete our investigations, we also tried to
extend the size of our input feature sets by consider-
ing some (six) prototypical functions of the features,

namely, x, x2, x3,
√
|x|, log(1 + |x|), and ex, where x

represents the given feature. That is, we expanded

the 14 initial features to 14 × 6 = 84 features using
the above functions. This heuristic was previously
used in some material informatics literature27,28,58.
However, we did not observe any significant improve-
ments in the resulted predictions after applying such
heuristics since we are already using a nonlinear ker-
nel. In article58 these nonlinear functions are cou-
pled with a nonlinear kernel method. Results when
such nonlinear functions of the features were used
with the LASSO feature selection method are dis-
cussed in the Appendix.

In order to understand the influence of the com-
pound features on the formation enthalpy, we addi-
tionally computed Pearson’s correlation coefficients
r, defined in (4), between the 12 aforementioned
compound properties and the formation enthalpies
of the compounds. Table II contains the top seven
most correlated features along with the calculated
Pearson’s correlation values. For the sake of com-
pleteness, we also present the associated sensitivi-
ties. An interesting observation here is that, the

8



sensitivity value obtained for unit cell length a is
almost twice of the sensitivity of unit cell length c.
This makes sense since the volume of a compound
V ∝ a2c, and volume is an important property that
influences the formation enthalpy of a compound.
This shows how some of the physical interactions
are captured by ML methods.

The aforementioned experimental results lead to
the following observations. Firstly, we note that the
three feature selection methods select three differ-
ent sets of features with little overlap. This shows
that: a) there are multiple sets of elemental features
that are likely to influence the formation enthalpy
of the alloys; b) the machine learning features are
not the same as those selected based on a-priori
knowledge of underlying physics; c) the two machine
learning feature sets also differ. Our main observa-
tion is that predictions based on the literature set
(based on prior knowledge) are better than the ones
obtained using the machine learning sets. Clearly,
the fourth feature set (literature+compound) yields
the best results amongst all the experiments. This
shows that coupling actual knowledge of relevant
physics (domain knowledge) with machine learning
provides improved performance. This is likely be-
cause the machine learning methods attempt to find
a linear relation between the features and the tar-
get property. However, the actual relation between
the different properties of a compound will typically
be highly nonlinear. Hence, we observe that cou-
pling prior physics (domain) knowledge with ma-
chine learning methods tend to give better results
than using pure machine learning features. We also
observe that the different machine learning methods
do not yield same results (do not agree with each
other). The ranking based on sensitivities does not
match the one based on Pearson’s correlation coef-
ficients. Moreover, the features selected by the sen-
sitivity method differs from the ones selected by the
modified LASSO.

SVR Model’s Predictive Ability

One of the primary goals of developing new tech-
niques for predicting properties of compounds is the
hope to identify compounds with desired properties
or to predict some unknown properties of existing
compounds. In this experiment, we examine such
predictive ability of our SVR based model by pre-
dicting the formation enthalpies of several new com-
pounds. Let us assume that all compounds contain-
ing the element Sc (scandium) are unknown to our
SVR model, i.e., we set aside all compounds contain-

ing Sc as a test dataset and put all other compounds
into the training set. Element Sc was chosen since
we have 45 binary alloys containing Sc in our ini-
tial dataset (which is a good number of instances for
testing), and also because the values of the formation
enthalpy of these compounds lie across a wide range
[−181,−6], making it a good test set. Once the
model is trained on the remaining 603 compounds,
we predicted the formation enthalpies (FE) of the
45 Sc binary alloys. Similar experiment results with
other elements are presented in Appendix B.

The corresponding results are presented in Fig-
ure 2 and Figure 3 of Appendix B. The plots dis-
play predicted FE values for Sc binary alloys us-
ing for Figure 2(i) the elemental properties (litera-
ture set). The results obtained using the elemen-
tal properties (sensitivity analysis), and the elemen-
tal properties (modified LASSO method) are pre-
sented in Figure 2(ii)–(iii), respectively. The results
obtained when the compound properties were cou-
pled with these sets of elemental properties are pre-
sented in Appendix B. In all six test cases the fea-
tures accounting for stoichiometric values were also
included.

Table III (and tables V- VI in Appendix B) list the
compounds’ chemical formula, the predicted and the
actual formation enthalpy values of the top six clos-
est (best) predictions (left side) and the bottom six
farthest (worst) predictions (right side) for the case
of Sc binary alloys using the 14(+2) elemental prop-
erties (literature set) and the compound properties.
Tables for the elemental properties obtained with
sensitivity analysis and the modified LASSO method
are given in Appendix B. When using 14(+2) ele-
mental properties (literature set) and the compound
properties as input features we have 56% of the
45 enthalpy predictions within the mean-regularized
relative error of 0.1 (10% relative error) and 71%
within 0.15 (15% relative error), whereas for the ele-
mental properties (sensitivity analysis) and the com-
pound properties we have 73% of the 45 enthalpy
predictions within the mean-regularized relative er-
ror of 0.1 (10% relative error) and 89% within 0.15
(15% relative error). For the sake of completeness,
analogous statistics for other 3d-, 4d-, 5d-transition,
actinide and noble metals are presented in Table VII
of Appendix B.

We observe that the values of formation enthalpies
predicted by the SVR model are very close to the val-
ues obtained using Miedema’s model and the ”worst”
predictions in Tables III–V include some alloys of Sc
with heavy elements, i.e., Bi, Pd and Ir. This ex-
periment illustrates the ability of our SVR model to
predict formation enthalpies of the new compounds.
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Appendix A: Supervised Learning Regression

Methods

In this section, we provide additional details of the
SVR method used in this paper. We also compare
the prediction performance of SVR against other
popular regression methods.

1. Support Vector Regression

As mentioned in Section III B, in this work, we
employ the nonlinear kernel ε-SVR method with
RBF kernels. Initially, the support vector machines
(SVM) were combined with the kernels to obtain
nonlinear classifications59. This idea was later ex-
tended to the regression problem by introducing an
alternative loss function49,53. We consider the ε- in-
sensitive loss function, or ε-SVR50, which is a popu-
lar SVR method. Here, the objective is to compute
a function f(x) that has deviations at most ε away
from the target training points vi. In the linear case,
the function f is given by,

f(x) = 〈w, x〉 + b, (A1)

where w ∈ R
d are the weights. In the simplest case,

the ε-SVR can be written as a convex optimization
problem:

minimize 1

2
‖w‖2 (A2)

subject to |vi − 〈w, x〉 − b| ≤ ε

where xi are the rows of the feature matrix X and vi
are components of target vector v. The standardized
version of SVR also includes slack variables52. The
above optimization problem is usually solved using
its Lagrangian dual and quadratic programming or
interior point methods, see47,50 for details.

As discussed earlier, the relation between the el-
emental features and the predicted property is ex-
pected to be highly nonlinear. The above SVR can
be made nonlinear by using implicit mapping and
nonlinear kernels50. The SVR algorithm only de-
pends on the inner (dot) products between the fea-
ture vectors xi. Hence, we can define the mapping
to the kernel space implicitly by simply replacing
the dot products as 〈xi, xj〉 → k(xi, xj). Then, the
function f becomes,

f(x) =

n∑

i=1

(αi − α∗
i )k(xi, x) + b,

where αi, α
∗
i are the Lagrange multipliers from the

dual problem.
Only certain types of kernels k(·, ·) that satisfy the

Mercer’s condition60 can be used (called admissible
SV kernels). Many admissible SV kernels have been
proposed in the literature47,50,51. In this work, we
consider the popular RBF (Radial Basis Function)
or Gaussian kernels given by

k(xi, xj) = exp
(
−γ‖xi − xj‖

2
)
,

where γ is the scaling factor.
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TABLE IV. Comparison of different regression tech-
niques.

Method name MAE RMSE MRRE NRE R
2

LR 23.5445 32.1228 0.2621 0.4885 0.1792

LR (L1 reg.) 23.5575 32.0789 0.2626 0.4892 0.1979

SVR 6.6816 11.4038 0.0677 0.1398 0.8752

RR. 22.8695 31.6553 0.2457 0.4745 0.2174

PLS 23.3401 31.3801 0.2593 0.4843 0.2631

KRR (Laplacian) 8.2970 15.3008 0.1395 0.1889 0.7638

KRR (Gaussian) 10.4969 18.0065 0.1841 0.3241 0.6888

2. Comparison of Machine Learning Methods

The primary reason for choosing SVR in this work
is because SVR outperforms other popular regres-
sion methods in predicting the formation enthalpies
of compounds. In this section, we present the follow-
ing experiment, which justifies our choice of the SVR
method. First, we consider five popular regression
techniques for predicting the properties of materi-
als, namely : Support Vector Regression (SVR), as
implemented in the libSVM Matlab library54, using
ε-SVR method with radial basis functions; Partial
Least Squares (PLS), available as Matlab built-in
function; Linear Regression (LR), Linear Regression
with L1-Regularization (LR-reg), Robust Regression
(RR), Kernel Ridge Regression (KRR) with Lapla-
cian and Gaussian Kernels.

Table IV presents the performance of each of these
five regression techniques in predicting the forma-
tion enthalpies of the 648 compounds in our dataset,
using five different evaluation measures. In almost
all of our experiments, Support Vector Regression
(SVR) method performed significantly better com-
pared to the other methods. Therefore, due to the
consistently superior performance of SVR, results
from other regression methods are not reported in
the extensive experimental results.

The performance evaluation of analyzed regres-
sion techniques, and the various input features were
assessed using the following five error measures:

1. Mean Absolute Error (MAE)

1

n

n∑

i=1

|vi − v̂i|,

where v is the vector of actual formation en-
thalpies and v̂ is the vector of predicted for-
mation enthalpies.

2. Root Mean Square Error (RMSE)

√√√√ 1

n

n∑

i=1

(vi − v̂i)2.

3. Mean-Regularized Relative Error (MRRE)

1

n

n∑

i=1

|v̂i − vi|

|v̄|+ |vi|
,

where v̄ =
∑n

i=1
vi/n is the mean value of v.

We use regularized relative error since some vi
can be zero.

4. Net Relative Error (NRE)

1

n

n∑

i=1

∑n
i=1

|vi − v̂i|

n · |v̄|
.

5. R2

R2 = 1−

∑n
i=1

(vi − v̂i)
2

∑n
i=1

(vi − v̄)2
=

∑n
i=1

(v̂i − v̄)2∑n
i=1

(vi − v̄)2
.

In the linear case, this measure is equivalent to
the ratio between the explained sum of squares
(also called regression sum of squares) and the
total sum of squares (proportional to the vari-
ance).

Note that except for R2, the error measure closer
to zero indicates better performance. For R2 the
desired value is 1, indicating a perfect prediction.

d. Feature selection with nonlinear functions:
Since the relations between the elemental features
and the formation enthalpy are likely to be nonlin-
ear, in the LASSO feature selection method, we also
included nonlinear functions of the features. Along
with the 98 features (from 49 elemental properties),
we used the six prototypical functions of the fea-
tures, namely, x, x2, x3,

√
|x|, log(1 + |x|), and ex,

where x represents the given feature. The idea of
combining LASSO with such functions of features
were used in previous literature, for example27,28,58.
Although the modified LASSO method chose a few
nonlinear functions of the features are best represen-
tatives, the same set of features and functions were
not selected for the two elements (we tired tuning
the parameters λ and µ with a range of values, but
in vein). More importantly, the FE predictions (us-
ing both LASSO and RBF SVR methods) we ob-
tained from these (nonlinear) features were quite
poor. Hence, we have not reported these results.
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FIG. 3. Predictions of enthalpies of formation of Sc binary alloys obtained using (i) elemental properties from the
literature, (ii) the elemental properties from the sensitivity analysis, (iii) elemental properties from the modified
LASSO method and the compound properties.

TABLE V. Predicted and actual formation enthalpies (FE) of Sc binary alloys using the elemental properties (sensi-

tivity analysis) and the compound properties as input features. Values in
[

kJ
mol

]

.

Chemical formula Actual FE Predicted FE Chemical formula Actual FE Predicted FE

best worst

ScPd3 -85 -86 ScAl2 -59 -39

ScAs -130 -131 ScBi -83 -105

ScZn2 -46 -45 ScPd -128 -101

ScAl3 -47 -46 Sc3In -39 -69

ScN -184 -182 Sc2C -56 -86

ScGe -85 -87 Sc3P2 -157 -124

TABLE VI. Predicted and actual formation enthalpies (FE) of Sc binary alloys using the elemental properties (LASSO

analysis) and the compound properties as input features. Values in
[

kJ
mol

]

.

Chemical formula Actual FE Predicted FE Chemical formula Actual FE Predicted FE

best worst

Sc5Sn3 -76 -76 ScPd3 -85 -53

ScGa3 -45 -44 ScN -184 -149

ScBe5 -31 -30 ScMn2 -12 -47

ScZn2 -46 -44 ScP -172 -135

ScGa -68 -66 ScMg -8 -56

ScCd -55 -53 ScPd -128 -67

Appendix B: Prediction Ability Results

In this section, we present additional results re-
lated to the prediction ability experiments. Figure 3
plots the predictions of enthalpies of formation of Sc
binary alloys when the compound properties were
coupled with three sets of elemental properties. Ta-
bles V and VI list the best and worst predictions for

the case of Sc binary alloys using the 14(+2) elemen-
tal properties (sensitivity and LASSO sets) and the
compound properties. Table VII lists the percent-
age of compounds in the dataset containing a par-
ticular element whose enthalpy prediction is within
the mean-regularized relative error of 0.1 (10% rel-
ative error) when predicted using our SVR model
with literature feature set.
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TABLE VII. Percent of compounds in the dataset containing a particular element whose enthalpy prediction is within
the mean-regularized relative error of 0.1 (10% relative error) when using elemental properties (sensitivity analysis)
and the compound properties as input features.

TABLE VIII. 3d-, 4d-, 5d-transition metals

Sc
(73% of 45)

Ti
(34% of 35)

V
(28% of 32 )

Cr
(17% of 18)

Mn
(6% of 32)

Fe
(34% of 35)

Co
(50% of 36)

Ni
(11% of 38)

Y
(58% of 38)

Zr
(64% of 42)

Nb
(56% of 36)

Mo
(21% of 34 )

Tc
(22% of 9)

Ru
(38% of 26)

Rh
(70% of 33)

Pd
(40% of 45)

La
(48% of 33)

Hf
(70% of 47)

Ta
(65% of 34)

W
(11% of 19)

Re
(28% of 18)

Os
(61% of 28)

Ir
(59% of 34)

Pt
(51% of 45)

TABLE IX. actinide and noble metals

Th
(18% of 11)

U
(50% of 6)

Pu
(100% of 1)

Cu
(0%of 7)

Ag
(43% of 7)

Au
(14% of 7)

TABLE X. List of 3d-, 4d-, 5d-transition metals.

Sc Ti V Cr Mn Fe Co Ni

Y Zr Nb Mo Tc Ru Rh Pd

La Hf Ta W Re Os Ir Pt

TABLE XI. List of non-transition metals.

Li Be B C N

Na Mg Al Si P

K Ca Zn Ga Ge As

Rb Sr Cd In Sn Sb

Cs Ba Hg Tl Pb Bi

Appendix C: Dataset of 648 Compounds7

We consider the dataset7 (Chapter III) of binary
alloys based on each of the 3d-, 4d- or 5d-transition
metals sequentially, according to their position in the
periodic table (row-wise) including only one rare-
earth metal La, see Table X. We then predict the
enthalpies of formation for ordered compounds with
the following compositions of metal A with transi-
tion and non-transition metal, respectively: AX5,
AX3, AX2, A3X5, A2X3, AX, A3X2, A5X3,
A2X, A3X and A5X. The alloying partner met-
als X are arranged as follows: the 3d-, 4d- and 5d-
transition metals as in Table X, the actinide metals
Th, U and Pu, and the noble metals Cu, Ag and

Au. Due to identical parameters for Y and Gd, only
Y is considered. The non-transition partner metals
are grouped according to equal valency and simi-
lar alloying behavior in the periodic table (column-
wise), see Table XI. The values for other compo-
sitions can be easily interpolated from the obtained
predictions. Out of the 648 binary alloy compounds,
there are 416 alloys with unique combinations of el-
ements. We validated our predictions against the
enthalpies of formation calculated using Miedema’s
model and systematized in7.

Appendix D: Elemental Features
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TABLE XII. 49 considered elemental properties from the ‘Database on Properties of Chemical Elements’61.

Name of the feature Name of the feature

Atomic electron scattering factor at 0.5 Mendeleev H t-d start left

Atomic environment number (Villars, Daams) Mendeleev H t-d start right

Atomic number start counting left top, left-right sequence Mendeleev Pettifor

atomic weight Mendeleev Pettifor regular

Charge nuclear effective (Clementi) Mendeleev t-d start left

density Mendeleev t-d start right

Distance core electron (Schubert) molar heat capacity

Distance valence electron (Schubert) moment nuclear magnetic

Electrochemical weight equivalent nuclear charge effective

Electronegativity (Martynov&Batsanov) first oxidation state (number)

Electronegativity absolute periodic number counting bottom right, right-left sequence

Energy cohesive Brewer periodic number counting left bottom, left-right sequence

energy of ionization first periodic number counting top right, right-left sequence

enthalpy of melting quantum number

enthalpy of vaporization radius covalent

entropy of solid radius metal (Waber)

group number radius pseudo-potential (Zunger)

magnetic frequency of nuclei spin nuclei

magnetic resonance temperature boiling

mass attenuation coefficient for MoKα temperature melting

Mendeleev chemists sequence thermal neutron capture cross section

Mendeleev d-t start left valence electron number

Mendeleev d-t start right volume atom (Villars, Daams)

Mendeleev H d-t start left bulk modulus

Mendeleev H d-t start right
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