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A comprehensive theoretical analysis of photo-induced forces in an illuminated nanojunction,
formed between an atomic force microscopy tip and a sample, is presented. The formalism is
valid within the dipolar approximation and includes multiple scattering effects between the tip,
sample and a planar substrate through a dyadic Green’s function approach. This physically intuitive
description allows a detailed look at the quantitative contribution of multiple scattering effects to
the measured photo-induced force, effects that are typically unaccounted for in simpler analytical
models. Our findings show that the presence of the planar substrate and anisotropy of the tip have
a substantial effect on the magnitude and the spectral response of the photo-induced force exerted
on the tip. Unlike previous models, our calculations predict photo-induced forces that are within
range of experimentally measured values in photo-induced force microscopy (PiFM) experiments.

PACS numbers: May be entered using the \pacs{#1} command.

I. INTRODUCTION

Due to the conservation of linear momentum, optical
fields can exert mechanical forces on the objects with
which they interact. In the regime of (sub)-wavelength
sized particles, these photo-induced forces are recognized
as the time-averaged gradient and scattering force. Us-
ing laser light of a few mW, the photo-induced forces
can manifest themselves in the pN range, which offers a
means to control and manipulate objects at the micro-
and nano-scales with light. This principle has been
widely used in optical tweezers and trapping studies of
objects on the microscale1,2, optical binding of particles
on the nanoscale3, and in plasmon-enhanced force ma-
nipulation of nano-particles4–6.

Photo-induced forces are also known to exert forces on
an illuminated atomic tip, such as used in atomic force
microscopy (AFM) techniques. The mechanical action of
light on the tip can produce optical artifacts in the force
image7, but can also be used as a contrast mechanism
to track local fields on the nanoscale8,9. This approach,
photo-induced force microscopy (PiFM), has been uti-
lized to map out the local electric field of tightly focused
laser beams10, propagating surface plasmon polaritons11

and localized surface plasmons12,13. In addition, the op-
tical binding force between the tip and a nearby polariz-
able object has been employed to generate photo-induced
force maps of nanoparticles and molecules with nanome-
ter scale resolution14–18. PiFM thus represents a promis-
ing tool for interrogating nanostructured samples with
spectroscopic contrast at a spatial resolution that rivals
other scan probe techniques. However, in order to extract
meaningful and quantitative information from PiFM im-
ages, a better understanding is required of how photo-
induced forces are translated into detectable mechanical
motions of the atomic force microscopy (AFM) tip. One

aspect of describing PiFM signals focuses on cantilever
dynamics and frequency demodulation19,20, whereas un-
derstanding the physics of the interactions in the tip-
sample junction constitutes another open question. De-
veloping a comprehensive and quantitative description of
the forces relevant to PiFM has remained somewhat of a
challenge.

Mechanical forces induced by the electromagnetic field
are fully described by the surface integral of the time-
averaged Maxwell’s stress tensor (MST)21. Because mod-
eling of the full three-dimensional problem near the tip-
sample junction is costly, simplifications are required to
retrieve the essential physics at play. In a recent study,
the photo-induced force was evaluated through the MST
for an idealized spherical tip apex in a full wave simula-
tion22. This approach intrinsically includes multiple scat-
tering mechanism between the tip and its image dipole or
between the tip and an isolated particle. In the geometry
examined, which did not include substrate effects, photo-
induced forces were found that are substantially weaker
than what is claimed in experimental work. Although full
wave simulations are powerful, they do not lend them-
selves well for segmenting the problem into fundamen-
tal physical mechanisms that contribute to the overall
observable force. For instance, it is unclear how much
multiple scattering via the substrate contributes to the
force, how gradient and scattering forces are indepen-
dently affected by the tip-sample nanojunction, or how
field gradients shape the magnitude of the force. For a
deeper insight into the nanojunction photophysics, ana-
lytical models are indispensable and can guide the design
of photo-induced force microscopes based on the relevant
mechanisms that constitute the force.

Simple analytical models based on the dipolar ap-
proximation of the tip’s polarizability offer clear insights
into the behavior of the photo-induced force exerted on
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the tip3,14,23–25. In particular, dipole-dipole based tip-
sample interactions predict a distance dependent gradi-
ent and scattering force that closely resembles experi-
mental observations19,20. This model provides a useful
physical picture for the tip-sample interaction, yet it ne-
glects the multiple scattering mechanisms between the
tip and sample through the substrate. In addition, the
predicted forces are generally smaller than what is ob-
served experimentally in PiFM. It is known that multiple
scattering effects are important for practical tip-sample
geometries, as was recently emphasized in a theoretical
study of the local fields in the nanojunction as it pertains
to tip-enhanced Raman scattering26. A recent theoret-
ical analysis of photo-induced forces between spherical
nanoparticles, which includes sample-substrate interac-
tions, provides a comprehensive formalism for quantita-
tively assessing forces at the nanoscale27. This latter
model can be applied to describe the forces measured in
PiFM, although the formalism is not designed to nat-
urally discriminate between separate scattering mecha-
nisms or to include the anisotropic geometry of the AFM
tip.

In this work, we present an alternative description of
the photo-induced force in the dipolar approximation by
adopting a dyadic Green’s function (GF) approach for
expressing the local fields near a planar multilayer sub-
strate. Unlike previous models, this description allows
analytical expressions that enable a closer look at the
multiple scattering pathways that shape the field and its
gradient, which jointly define the photo-induced force.
Through the application of this Green’s function formal-
ism, we show that the magnitude of the force in typical
PiFM measurements is largely dictated by the steep field
gradients in the tip-sample junction, which are a direct
consequence of multiple scattering between the tip, sam-
ple and substrate. We also establish that scattering path-
ways via the substrate make a significant contribution to
the photo-induced force in PiFM measurements, and can-
not be ignored. In addition, we show that by including
the anisotropy of the tip’s polarizability, photo-induced
forces are predicted that compare well with previously
reported experiments.

II. OPTICALLY INDUCED FORCES USING
THE DYADIC GREEN’S FUNCTION

A. Photo-induced force and electrodynamics of the
illuminated nanojunction using Green’s function

formalism

In this Section we will discuss the photo-induced force
exerted on a tip with the help of a dyadic Green’s func-
tion formalism for a multilayer planar substrate. We as-
sume that the tip’s apex can be modeled effectively in the
dipolar limit, i.e. higher order multipoles are assumed to
be negligible. The tip’s response to a time-harmonic field,
using the e−iωt convention, is described by the complex

electronic polarizability ᾱ, which gives rise to a dipole
moment p in the tip, where p = ᾱ · E. We will indi-
cate tensor quantities in bold with an overhead bar. The
net time-averaged force experienced by the dipole in a
spatially inhomogeneous field can be expressed as:21

〈F(t)〉 =
1

2

∑
l

Re
{
pl∗∇El

}
(1)

where l = x, y, z labels the polarization components
along each of the cartesian coordinates. In case the polar-
izability is isotropic, as defined by its diagonal elements
(αxx = αyy = αzz)

19,22, the force in Eq. (1) can be
expanded as:

〈F(t)〉 =
α′

2

∑
l

Re
{
El∗∇El

}
+
α′′

2

∑
l

Im
{
El∗∇El

}
(2)

where α = α′+iα′′, and El and ∇El are the local electric
field and the gradient of the field for the different polar-
ization components l of the field. In Eq. (2), the first term

is called the gradient force since α′

2

∑
l Re

{
El∗∇El

}
=

α′

2 ∇|E|
2 has zero circulation. The second term is often

referred to as the scattering force. Note that separating
the photo-induced force into the gradient and scattering
forces is possible when the particle of interest is isotropic
with a scalar polarizability. For an anisotropic particle
such as the tip, Eq. (2) is not generally valid, and we will
use Eq. (1) to calculate the force instead.

In the following, we will denote the time averaged force,
〈F(t)〉 as F without a time dependence and we note that
all other parameters discussed in the paper are expressed
in the frequency domain. The relevant geometry is shown
in Figure 1, where the tip and any nearby polarizable
nanoparticle (NP) are located above a (multilayer) planar
substrate and illuminated with a plane wave of amplitude
E0 that is incident at the angle θin relative to the surface
normal. The electric field above the substrate surface
z > 0 in the absence of the tip is the transmitted plane
wave with a wave vector and amplitude defined by the
Fresnel equations.

We will call the transmitted field the background field
Eb. The subscripts t and n denote the location of the
tip and NP, respectively, and will be used to indicate the
region of interest for Eb. By applying the dipolar approx-
imation for the tip and other scattering nanoparticles in
the system, we establish the electrodynamic model for pt
and pn, the induced dipole moment in the tip and the
NP, respectively. For the general configuration of the two
scatterers in air for z > 0, as shown in Fig. 1, the electric
field at rt is the sum of (i) the background field at the
location of the tip (Eb;t), (ii) the self interaction of pt
through the substrate and (iii) the field scattered by pn.
Using dyadic Green’s functions (GF), we can write the
following:

Et = Eb;t + Ḡsc;t,t · pt + Ḡt,n · pn (3)

where Ḡsc;t,t = Ḡsc(rt, rt) is the scattering GF which ac-
counts for the self interaction of the tip via the substrate,
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FIG. 1. PiFM setup for probing photo-induced forces. An
AFM tip and a nanoparticle (NP) are located above the sub-
strate, and illuminated from below through the substrate.

and the total GF, Ḡt,n = Ḡsc(rt, rn) + Ḡ0(rt, rn), is the
sum of the free space and the scattering GFs, which ac-
count for the direct and indirect (through the substrate)
coupling of the tip and the NP. Assuming that both scat-
terers are above the planar multilayered medium z > 0,
the scattering GF for an observer and source located at
r and r′, respectively, can be written as the integral of
scattered plane waves in the angular spectrum represen-
tation28:

Ḡ(r, r′) =
i

8π2

∫∫
dkxdky

1

k0z
×[

RTE ê(k0z)ê(−k0z) +RTM ĥ(k0z)ĥ(−k0z)
]
eik·re−iK·r

′

(4)

Here ê, ĥ, k̂ are the unit vectors for the electric field,
the magnetic field and the wavevector, which form an or-
thonormal system for representing any TE/TM polarized
wave. The wavevector k describes propagation along +z
and is written as k = x̂kx + ŷky + ẑk0z. Similarly, K is
the wavevector for propagation along −z and is defined
as K = x̂kx+ŷky−ẑk0z, where the lateral components of
the wave vector are indicated as kx and ky, and the lon-

gitudinal component is written as k0z =
√
k20 − k2x − k2y

for z > 0. The intrinsic wavenumber k0 is defined as√
εrµr(ω/c). RTE and RTM are the transverse electric

and transverse magnetic Fresnel coefficients, respectively.
For more details on the scattering GF see28.

Expanding the dipole moments pj = ᾱj ·Ej with j =
t, n in Eq. (3), we arrive at the following expression for

the local electric field at the tip:

Et =
[
S̄tt − M̄tnS̄

−1
nnM̄nt

]−1
(Eb;t + M̄tnS̄

−1
nn ·Eb;n) (5)

where S̄jj = Ī − Ḡsc;jj · ᾱj is the self interaction ma-
trix for scatterer j and M̄jk = Ḡjk · ᾱk is the mutual
interaction matrix. In the expression of M̄jk, the total
Green’s function Ḡjk tracks the influence of scatterer k
on the fields at the location of scatterer j. Note that
the interaction matrices are unitless. Although Fig 1
shows a one layer substrate, this formulation is general
for a multi-layered substrate with different permittivities
in the (z < 0) region. In all cases, appropriate reflec-
tion and/or transmission coefficients should be used for
calculating the scattering GF and Eb.

B. Computational details

For the isotropic model of the tip, we will assume that
the tip behaves as a polarizable spherical particle with
an effective dipolar response19,21,29,30. In this case, the
tip apex characterized by a R = 30 nm radius, similar to
the experimental value reported in 11. The tip is com-
posed of gold and the template-stripped gold permittiv-
ity described in31 is used in our calculations. The scalar
polarizability of the tip is calculated with the aid of the
Mie coefficients32,33 for a nanosphere of the apex dimen-
sion. For the anistropic tip, we will use the formalism
described in Appendix B. The substrate is glass with a
refractive index of 1.5. We will consider the forces in the
vicinity of the bare glass surface as well as a glass surface
covered with a 45 nm gold film, using the refractive index
reported in34. The incident field is a p polarized plane
wave with E0 = 106 V/m illuminated at θin. In both
cases, for the bare glass surface as well as the glass sur-
face covered with gold, θin is set to = 43.65o to produce
an evanescent background field for z > 0. Note that this
angle is at the Kretschmann angle for the gold covered
substrate, thus launching a surface plasmon polariton at
the gold/air interface. Unless otherwise noted, we will
focus on Fz, which is the photo-induced force directed
along the z-axis.

To compute the force, the GF in Eq. (4) and its spa-
tial derivatives are evaluated numerically. Once these
functions are determined, the field and field gradient can
be obtained analytically, which subsequently allow the
calculation of the photo-induced force through Eq. (1).
In the following Sections, we will provide explicit expres-
sions for the fields and field gradients along z that are rel-
evant to the different sample geometries considered here.

C. Field versus field gradient

Before studying the behavior of the photo-induced
force in detail, we will first examine two key aspects of the
force, namely the magnitude of the field and the field gra-
dient. For this discussion, we will consider the scenario
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of an isotropic gold tip in the vicinity of an glass/air or
gold/air planar interface. This corresponds to the situ-
ation sketched in Figure 1 without the presence of the
NP. We may thus set ᾱn = 0̄ in Eq. (5). In this case,
the expression for the electric field at the tip simplifies
considerably. The components of the local electric field
at the tip can then be written as:

Elt =
Elb;t
Slltt

l = x, y, z (6)

where Slltt = 1 − αllt Gllsc;tt, Elb;t = Elb0e
ikzzt is the back-

ground field at the location of the tip, and kz is the
wavenumber along z for z > 0. Because we will con-
sider an evanescent background field, we can use kz = iγ
to represent the field amplitude decay along z for z > 0.
We assume that the polarizability of the tip is not depen-
dent on the tip-surface distance, therefore using Eq. (6),
the field gradient along z direction is

∂

∂z
Elt = Elt

[
−γ +

αllt
Slltt

∂Gllsc;tt
∂z

]
. (7)

The photo-induced force in the longitudinal direction can
then be written as:

Fz =
1

2

∑
l

∣∣Elt∣∣2
(
−γαll′t +

∣∣αllt ∣∣2 Re

{
1

Slltt

∂Gllsc;tt
∂z

})
(8)

The magnitude of the photo-induced force depends on
two terms: one term that scales solely with the magni-
tude of the field components, and a second term that
also shows a dependence on the field gradient. We will
examine which quantity, the field or the field gradient,
is the dominant factor in the typical PiFM scenario con-
sidered here. Both the field and its gradient depend on
the self interaction term Slltt = 1 − αllt Gllsc;tt, which ap-
pears in the denominator of in Eqs. (6) and (7). This
self interaction term contains a resonance condition when
Re{αllt Gllsc;tt} ≈ 1 and Im{αllt Gllsc;tt} ≈ 0, which can be
associated with a spatial resonance that gives rise to the
local enhancement of the field. A detailed description of
this phenomenon for a dipolar scatterer beside a plas-
monic nanosphere is presented in35.

To study how the field and the field gradient are af-
fected by the process of multiple scattering, we define two
quantities, namely the field enhancement factor FEll,
which is normalized to the background field, and the nor-
malized gradient specific enhancement factor GSEll, as

FEll =
1

|Slltt|

GSEll =

∣∣αllt ∣∣2
−γαll′t

Re

{
1

Slltt

∂Gllsc;tt
∂zt

}
(9)

The field scales with FEll, as determined by the spa-
tial resonance described by Slltt. The field gradient, on

the other hand, has two contributions, one that scales as
FEll and the second that scales as GSEll. The latter
term is the gradient specific term, which depends more
strongly on the process of multiple scattering than the
FEll term. Hence, it can be expected that field gradi-
ent effects grow in importance when multiple scattering
effects become more significant.

FIG. 2. Enhancement factor due to multiple scattering effect
(MSE), comparing the distance dependence of the normalized
field enhancement (FEzz) factor and the normalized gradient
specific enhancement (GSEzz) factor using illumination at
450 THz. (a) Tip in the vicinity of a glass substrate. (b) Tip
in the vicinity of a glass substrate covered with a 45 nm gold
film.

The distance dependence of FEzz and GSEzz are dis-
played in Figure 2. In panel 2(a), the enhancement fac-
tors are shown for the force measured in the vicinity of
the bare glass surface. With reference to Figure 1, the
surface to surface distance d is defined as zt−R. We see
that FEzz shows only limited enhancement as a func-
tion of distance. A small enhancement is seen for shorter
distances (d < 10 nm), due to the spatial confinement
of the field in the tip-sample junction as described by
Szztt . The gradient specific enhancement factor, on the
other hand, shows a much more prominent distance de-
pendence. Since both quantities are normalized, we may
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compare the values of FEzz andGSEzz as the tip-sample
distance is shortened. It is clear that the enhancement in
the gradient specific contribution is significantly higher
than the enhancement in the field, as expected for shorter
distances when the effects of multiple scattering are be-
coming more relevant. Note that these results are rele-
vant to the dipole approximation considered here, which
may underestimate the extend of field confinement ef-
fects. Even stronger field and field gradient effects are
expected when multipoles are included35.

In Figure 2(b) a similar comparison is shown between
FEzz and GSEzz for the tip in the vicinity of the thin
gold film. Due to stronger permittivity contrast at the
gold/air interface compared to glass/air interface, the
scattering GF for a gold/glass substrate has higher am-
plitude. Consequently, the field enhancement between
the gold surface and the tip’s apex is more prominent.
The field gradient specific enhancement is even more sig-
nificant, especially for distances d < 10 nm. In this sce-
nario, the behavior of the photo-induced force is largely
dictated by the gradient field effects. The latter obser-
vation is a direct consequence of the enhanced multiple
scattering.

III. BEHAVIOR OF THE PHOTO-INDUCED
FORCE

In this Section, we present calculations of the photo-
induced force for several typical experimental geometries
that are relevant to PiFM imaging25. First, we will con-
sider the photo-induced force exerted on the tip over a
bare glass substrate. Second, we will highlight the photo-
induced force when the tip is driven by a surface plasmon
polariton on a thin gold film. Third, we will discuss the
magnitude and behavior of the photo-induced force when
the anisotropic polarizability of the tip is taken into ac-
count. Lastly, we will focus on the photo-induced forces
between the tip and a polarizable nanoparticle on the
substrate. Our goal is to show that the process of multi-
ple scattering and tip anisotropy are important and can
modify the magnitude and spectral dependence of the
force considerably.

A. Photo-induced force over a glass substrate

We first examine the force when an isotropic tip is po-
sitioned over a bare glass substrate under evanescent il-
lumination conditions. Figure 3 shows the frequency and
distance dependence of the computed Fz exerted by the
evanescent background field on the tip in pN. Note that
the minimum force sensitivity depends on the specifics
of the AFM system used for force mapping and can vary
from tens of fN to hundreds of fN under ambient con-
ditions12,22,36. For our system this value is about 0.1
pN11. In Fig. 3(a) the magnitude of the force is shown
without the effect of multiple scattering, calculated as

Fz =
α′

tγ
2 |Eb;t|

2 where α′t is the dispersive part of the
tip polarizability and γ is the evanescent wavenumber of
the background field (see Appendix A for details). In
Fig. 3(b) the effect of multiple scattering effect is in-
cluded. The spectral dependence of the dispersive and
dissipative parts of the tip’s polarizability are indicated
by the solid and dashed lines, respectively, in panel 3(c).

FIG. 3. Time-averaged photo-induced force Fz exerted on the
gold tip as a function of frequency and tip-substrate distance
d. (a) Fz without including multiple-scattering. (b) Fz cal-
culated with multiple-scattering included. Force is given in
picoNewton (pN).(c) Frequency dependence of the real (blue)
and imaginary (red) parts of the tip’s polarizability.

In both cases, the photo-induced force Fz is a neg-
ative (attractive) force, meaning that the tip is pulled
toward the surface. In addition, the frequency depen-
dence of the force closely traces the dispersive part of
the polarizability, reaching its maximum value near the
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plasmonic resonance of the tip apex. However, there are
also clear differences between Fig. 3(a) and (b). With-
out multiple-scattering, the distance dependence of the
photo-induced force is shallow, largely dictated by the z-
dependence of the evanescent background field. On the
other hand, with multiple-scattering included, the force
not only increases in magnitude by about 15-fold, but
also becomes more localized. We see that the force is
confined to shorter tip-substrate distances of up to 10
nm (Fig. 3(b)), displaying a much sharper distance de-
pendence. This feature is a direct consequence of the
coupling between the tip and the substrate, which grows
nonlinearly as the tip approaches the substrate surface.
The observed distance dependence of the force mimics
the interaction between the tip dipole and its image in
the substrate. The latter scenario in PiFM is usually re-
ferred to as the image dipole force, which, using a simple
analytical model based on dipole-dipole interaction, re-
sults in a ∼ z−4 dependence for the gradient force when
only the Ez component of the field is considered25. Our
formalism includes all field components and generalizes
the force for different illumination conditions. Figure 4
shows the distance dependence of the force for illumina-
tion at 450 THz using our GF model. We find that the
photo-induced force is still highly confined, but does not
follow exactly a z−4–dependence over the entire range of
frequencies and distances examined here. In Figure 4,
for shorter distances up to ∼ 9 nm, the GF-based cal-
culation is in close agreement with a z−4–dependence,
while the results deviate for larger tip-sample distances.
The difference largely reflects the effect of the different
illumination conditions. Whereas the z−4 dependence is
derived for propagating light, here we consider the force
in an evanescent illumination field.

FIG. 4. Time-averaged photo-induced force Fz exerted on the
tip as a function of tip position zt. Results from the scattering
Green’s function analysis (blue solid line) are shown in addi-
tion to a z−4–dependence (red dashed line). The agreement
between the two models is good up to ∼ 9 nm.

B. Photo-induced force over a gold surface with
surface plasmon polarition excitation

We next consider the photo-induced force for the case
of a gold tip positioned over a glass substrate covered
with a 45 nm gold thin film. As was clear from the discus-
sion in Section II C, compared to the bare glass substrate,
the field and its gradient under SPP excitation are more
significant in the nano-junction formed by the tip and the
gold surface. This translates into a higher magnitude of
the force. In Fig. 5, the tip-sample distance dependence
of Fz is compared for the case of the bare glass surface
and the thin gold film. As expected, the force in the case
of the gold surface is stronger than what is measured
over the glass surface. Under the conditions examined
here, we find a force that is approaching 24 pN as the tip
gets closer to the gold surface, more than two orders of
magnitude stronger than the force experienced by the tip
over the glass substrate. The magnitude of the computed
force roughly complies with PiFM measurements of SPP
fields on a gold surface11.

FIG. 5. Distance dependence of the photo-induced force ex-
erted on the tip when exciting an SPP mode (θi = 43.65o) at
the gold/air interface (blue line). The red dashed line corre-
sponds to the same measurement on the bare glass substrate.
Illumination is at 450 THz.

C. Photo-induced force at a tip with anisotropic
polarizability

The spherical polarizability model is widely used to
model an AFM tip. Yet, it is well known that an actual
tip exhibits an anisotropic response, which gives rise to a
stronger field enhancement in the longitudinal polariza-
tion direction of the excitation field21,37–39. The stronger
optical response along the axial dimension gives rise to
photo-induced forces that are stronger than what is pre-
dicted in the spherical polarizability model. In this sec-
tion, we investigate the possible effects of tip anisotropy
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on Fz when adopting an anisotropic description of the
tip’s polarizability. We use a polarizability model for a
virtual prolate particle40,41, taking into account losses
due to radiation42. The anisotropy factor, AF , is de-
fined as the aspect ratio of the major to minor axis of
the virtual prolate. It should be mentioned that the vir-
tual prolate is an effective model meant to represent the
stronger longitudinal polarizability of the tip rather than
to describe the exact physical morphology of the apex.
In this model, the location of the effective induced dipole
moment of the tip is considered the same as the isotropic
model, see Appendix B for details. In Figure 6(a) we
show the calculated frequency and distance dependence
of the photo-induced force Fz for AF = 2 when the tip is
placed over the bare glass substrate. The spectral depen-
dence of the longitudinal and transverse polarizabilities
is plotted in Figure 6(b), clearly showing the enhanced
response of the tip along the axial direction. The en-
hancement of the polarizability by about 5 times in the
longitudinal direction that we consider here is within em-
pirical ranges for a gold tip39.

Compared to the isotropic tip, discussed in Fig. 3(a),
Fig. 6(a) underlines that the photo-induced force can
grow to substantial values when the tip’s anisotropy is
included. We find that attractive forces up to 30 pN can
be reached for AF = 2, an increase of almost two orders
of magnitude compared to the calculation in Fig. 3(a).
The much stronger forces are a direct consequence of not
only the enhanced local field but also of the steeper field
gradient along z.

In addition to an enhancement of Fz, we see that the
maximum force is now found at lower frequencies. This
frequency shift is not only related to the shifted spectral
resonance for αzz, but also to the spatial resonances that
manifest themselves in the tip-sample junction. To illus-
trate the latter point, we show the magnitude of Fz at 450
THz as a function of the anisotropy factor in Figure 7.
As AF is increased, the attractive photo-induced force
grows to more than 50 pN before decreasing and turning
into a repulsive force. This somewhat unexpected depen-
dence can be explained through the concept of spatial
resonance. The field enhancement is a function of the
magnitude of the polarizability, producing a resonance
when the scattered field amplitude matches the back-
ground field and interferes with it constructively. The
(real) gradient of this spatial resonance in the field un-
dergoes a sign change, resulting in a dispersive lineshape,
and turning an attractive force into a repulsive force as
the tip’s responsiveness continues to grow. The observed
sign reversal of the force is remarkable, and underlines
that, unlike most optical effects in the tip-sample junc-
tion, the force does not only scale with the field amplitude
but also (very sensitively) with its gradient. A somewhat
related effect has been observed for two polarizable par-
ticles placed in waveguide structures 43,44. In this sce-
nario, geometric resonances also produce a sign reversal
of the photo-induced force between the particles. We
stress that the analysis provided here is derived under

the dipole approximation. Inclusion of higher multipoles
may affect the conditions under which spatial resonances
become prominent.

FIG. 6. Effect of anisotropic polarizability of the tip. (a)
Fz as a function of distance and frequency, using AF = 2.
The tip is place over a glass substrate, using θi = 43.65o.
(b) Spectral dependence of the real (solid line) and imaginary
(dotted line) parts of the tip’s polarizability tensors αzz (red)
and αxx (blue) for AF = 2.

D. Photo-induced force between a tip and a
nanoparticle

Analyzing the isolated tip above a multilayer surface
is useful for near field probing of surface fields. In many
PiFM applications, however, we are interested in imaging
nanostructures on top of the substrate, such as sketched
in Figure 1. We will first explore the behavior of the con-
fined fields in this configuration in the context of the scat-
tering Green’s function. In particular, we aim to show
the effects of indirect interactions through multiple scat-
tering via the substrate compared to direct scattering via
the nanoparticle.

To gain insight in the local field, Eq. (5) can be reduced
to a set of scalar equations for the electric field at the tip
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FIG. 7. Photo-induced force as a function of the tip
anisotropy factor AF , shown for two different tip-sample dis-
tances. Substrate is a bare glass surface and illumination
frequency is 450 THz.

in the limit of a diagonal polarizability tensor:

Elt =
Elb;t + αlln,effG

ll
tnE

l
b;n

1− αllt {Glltt + αlln,eff
(
Glltn

)2} (10)

where αlln,eff , the effective polarizability of the NP, is
defined as:

αlln,eff =
αlln

1− αllnGllsc;nn
(11)

Note that αlln,eff includes the effects of the self inter-
action of the NP via the substrate. The numerator in
Eq. (10) can be interpreted as a background field which
induces the primary dipole moment in the tip, and the

denominator W ll
tt = 1−αllt {Glltt+αlln,eff

(
Glltn

)2} accounts
for all the multiple scatterings mechanisms that modify
the tip local field. We assume that the location of the
NP is fixed, implying that αlln,eff and Elb;n are constant
numbers in the calculation of the field gradient along z.
Under these conditions, we find the following expression
for the field gradient along z:

∂Elt
∂z

=
−γElb;t + αlln,eff

∂Gll
tn

∂z Elb;n
W ll
tt

+Elt
αllt {

∂Gll
tt

∂z + 2αlln,eff
∂Gll

tn

∂z Glltn}
W ll
tt

(12)

We emphasize that Eqs. (10) and (12) include all scat-
tering mechanisms shown in Figure 8(a), accounting for
multiple scattering pathways to the tip via the substrate.
Our aim is to understand to what extent scattering via
the substrate contributes to the overall force experienced
by the tip. Therefore, we also consider the dipole-dipole

interaction model and define the field in the case of di-
rect scattering between the tip and NP, ignoring the sub-
strate contributions, as depicted in Figure 8(b). Under
this condition, Eq. (10) reduces to

Elt =
Elb;t + αllnG

ll
0;tnE

l
b;n

1− αllt αlln
(
Gll0;tn

)2 (13)

FIG. 8. Schematic of the scattering pathways in the tip-
nanoparticle interaction. (a) Pathways including scattering
via the substrate, as described by Ḡsc;tn. (b) Direct path-
way, as described by Ḡ0.

whose gradient along z can be obtained as:

∂Elt
∂z

=
−γElb;t + αlln

∂Gll
0;tn

∂z Elb;n
W ll
tt

+Elt
2αllt α

ll
n
∂Gll

0;tn

∂z Gll0;tn
W ll
tt

(14)

where the denominator now reads W ll
tt = 1 −

αllt α
ll
n

(
Gll0;tn

)2
. Using the fields defined in Eqs. (10-12)

or (13-14), we can compute calculate the force for the
two cases with the aid of Eq. (1). To illustrate the basic
features of the photo-induced force in the presence of a
nanoparticle, we consider a generic nanoparticle of radius
Rn = 4 nm that is placed on top of a glass substrate, right
under the tip, and which exhibits a spectrally dependent
polarizability as shown in Figure 9(a). The background
field is evanescent as discussed before. Figure 9(b) shows
the computed photo-induced force in the case of direct
scattering (red dashed line) and multiple-scattering with
the substrate effect included (blue solid line). It can be
seen that the spectral signature of the NP is imprinted
on the photo-induced force exerted on the (anisotropic)
tip. The spectral dependence of the force follows the dis-
persive part of the polarizability. The latter is expected
when the tip polarizability is dominated by α′t

25, which
is the case in this spectral range. This situation is rele-
vant to actual experimental settings, as is reported in17.
Figure 9(b) also makes clear that the influence of the
substrate can be substantial. In this particular example,



9

the force is more than ten times stronger when multiple
scattering via the substrate is properly accounted for. We
find that the substrate effect can be significant, generally
increasing the magnitude of the photo-induced force rel-
ative to the case of an isolated NP.

FIG. 9. (a) Spectral dependence of the polarizability of a
generic nanoparticle with radius Rn = 4 nm used in the com-
putation of the photo-induced force. (b) Fz exerted on the
anisotrpic gold tip (AF=2) calculated by including scattering
pathways via the substrate (blue solid line) and by ignoring
scattering pathways via the substrate (red dashed line). The
surface to surface distance between the tip and the NP is 1
nm.

IV. CONCLUSION

In this work, we have developed an electrodynamic
model to describe the optically induced forces in a tip-
sample nanojunction based on dyadic Green’s functions
for a planar multilayer substrate. Using this description,
we have examined the magnitude and behavior of the
photo-induced forces in different cases relevant to PiFM
experiments. Our analysis has enabled a detailed look
at the influence of field and field gradient effects in the
dipolar limit, effects that cannot be easily examined in-

dependently when using finite element methods. In addi-
tion, our model has allowed us to study the ramifications
of scattering pathways via the substrate and the effect of
tip anisotropy, and how these mechanisms contribute to
the observable force as measured in PiFM, in a physically
intuitive and accessible manner.

The qualitative and quantitative observations made
with this dyadic Green’s function approach go beyond
what was learned from simpler models for the photo-
induced force. Even though the dipolar approximation
may lead to an underestimation of the local field ampli-
tudes, the analysis presented here has allowed new and
complementary insights to what finite element methods
have revealed about photo-induced forces in PiFM type
measurements.

Our analysis has brought forth the following points:
1) The magnitude of the photo-induced force in the tip-
sample junction is a very sensitive function of the field
gradient. Our analysis shows that multiple scattering ef-
fects via the substrate introduce steep gradients that give
rise to a significant enhancement of the force. Neglect-
ing multiple-scattering pathways via the substrate thus
leads to an underestimation of the force. 2) For a tip
with an isotropic polarizability, the photo-induced force
over a glass substrate is weak (less than a pN), but can
be increased substantially when the substrate is covered
with a thin gold film, raising the force into the tens of
pN range. 3) The photo-induced force carries a spectral
dependence that reflects the polarizability of a nanopar-
ticle under the tip. Our scattering Green’s function anal-
ysis confirms that PiFM measurements can reveal spec-
troscopic signatures of particles probed by the tip. 4)
Strong photo-induced forces are predicted when the tip
anisotropy is included in the analysis. We also find a
remarkable sign reversal upon increasing the tip’s polar-
izability, which we attribute to spatial resonance effects
in the tip-sample junction. The sign reversal is a unique
feature of the photo-induced force, which, unlike many
optical signals, sensitively depends on the field gradients
in the tip-sample nano-junction. Finally, by including
the effects of multiple scattering and tip anisotropy, our
model predicts photo-induced forces that approach the
same order of magnitude as the forces reported in ex-
perimental PiFM studies. We note that by including
higher-order multipoles of the tip, which have not been
taken into consideration in the present analysis, further
enhancement of the fields in the nanojunction can be
expected, thus enabling an improved quantitative com-
parison with PiFM experiments.
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Appendix A: Back ground field and force without
any scattering mechanisms

In the following, we assume the substrate/air interface
illuminated by plane wave from the substrate side. The
resulting background field for z > 0 can be written as
Eb(x, z) = Eb0e

i(kxx+kzz) where Eb0, kx and kz are ob-
tained from the Fresnel equations21. Using Eq. (1) the
photo-induced force exerted by the background field on
any isotropically polarizable particle can be expressed as:

F =
|Eb|2

2
Re {iα∗(kxx̂ + kz ẑ)} (A1)

Eq. (A1) is valid for both s and p polarization states
of the illumination field, with the exception that Eb0 has
to be calculated separately for each polarization state. In
case the incident angle is beyond the critical angle, the
transmitted field is evanescenct, (kz = iγ) and the force
reads

F =
|Eb0|2

2
(α′′kxx̂− α′γẑ)e−2γz (A2)

We see that the z-directed force is an attractive force
towards the substrate, which is exponentially decaying
with e−2γz away from the interface. In addition, an x-
directed scattering force is present due to propagation of
the surface waves, which decays in the same manner as
Fz.

Appendix B: Anisotropic polarizability

As discussed in III C, an AFM tip typically exhibits an
anisotropic response, which gives rise to a stronger field
enhancement in the longitudinal polarization direction
of the excitation field. The anisotropy of the tip can be
taken into consideration with an effective dipole model,
in which the longitudinal component of the (diagonal)
polarizability tensor is larger than the lateral compo-
nents21,37–39. Instead of using numerical models for the
computation of the elements of the polarizability tensor,
here we seek to describe the tip anisotropy analytically
by modeling the apex as a virtual prolate. The advan-
tage of the prolate model is that it includes the expected

changes in the frequency response of the polarizability
as the ratio of the longitudinal to lateral dimensions is
varied. We assume a prolate with a major axis of length
a and a minor axis of length b. The static polarizability
for such a prolate particle in SI units reads40,41,

αll = V ε0εh
εt − εh

Ll(εt − εh) + εh
(B1)

where V = 4π
3 ab

2 is the volume of the prolate, and Ll is
the depolarization factor:

Lz =
1− e2

e2

(
−1 +

1

2e
ln

1 + e

1− e

)
e2 = 1− 1

AF 2
(B2)

Here AF = a/b is the anisotropy factor and

Lx = Ly =
1− Lz

2
(B3)

We will also include the effect of dipole radiation damp-
ing by writing the anisotropic polarizability of the tip
as:42

ᾱt = ᾱ

[
Ī− ik3

6πε0εh
ᾱ

]−1
(B4)

This model for the polarizability captures the basic
features of tip anisotropy, including reasonable estimates
of the stronger longitudinal polarizability component and
the associated red shift of the its longitudinal resonance
frequency as AF is increased. Although the current
model is not intended for definite quantitative predictions
of the tip polarizability, we point out that for the small
AF values considered in this paper, the predicted numer-
ical values are within practical ranges. The enhancement
of the longitudinal polarizability in this model compares
well with the enhancement factor reported in the litera-
ture21,38,39. For instance, values reported in39 based on
numerical calculations of the enhancement factor for a
10 nm gold tip at λ = 830nm (far from the resonant
frequency) is equivalent to a longitudinal polarizability
enhancement, |αzz/αxx|, of about 11. For AF = 3 in our
treatment, the enhancement of the longitudinal polariz-
ability is around 5 at the red side of the resonance, and
is below 10 within the whole frequency range considered
here.
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