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We derive the Bloch equations for the spin dynamics of a two-dimensional electron gas in the
presence of spin-orbit coupling. For the latter we consider both the intrinsic mechanisms of struc-
ture inversion asymmetry (Rashba) and bulk inversion asymmetry (Dresselhaus), and the extrinsic
ones arising from the scattering from impurities. The derivation is based on the SU(2) gauge-field
formulation of the Rashba-Dresselhaus spin-orbit coupling. Our main result is the identification
of a spin-generation torque arising from Elliot-Yafet scattering, which opposes a similar term aris-
ing from Dyakonov-Perel relaxation. Such a torque, which to the best of our knowledge has gone
unnoticed so far, is of basic nature, i. e. should be effective whenever Elliott-Yafet processes are
present in a system with intrinsic spin-orbit coupling, irrespective of further specific details. The
spin-generation torque contributes to the current-induced spin polarization (CISP), also known as
inverse spin-galvanic or Edelstein effect. As a result, the behavior of the CISP turns out to be
more complex than one would surmise from consideration of the internal Rashba-Dresselhaus fields
alone. In particular, the symmetry of the current-induced spin polarization does not necessarily
coincide with that of the internal Rashba-Dresselhaus field, and an out-of-plane component of the
CISP is generally predicted, as observed in recent experiments. We also discuss the extension to
the three-dimensional electron gas, which may be relevant for the interpretation of experiments in
thin films.

PACS numbers: 72.25.-b, 71.70.Ej, 72.20.Dp, 85.75.-d

I. INTRODUCTION

Spin polarization by currents and its inverse effect are
currently a subject of intensive theoretical and experi-
mental investigation both in semiconducting and metallic
systems. (For recent reviews see [1–3]). Originally the ef-
fect was proposed by Ivchenko and Pikus[4] and observed
in tellurium [5]. Later it was theoretically analyzed in a
two-dimensional electron gas, either in the presence of
Dresselhaus spin-orbit coupling by Ivchenko et al. [6]
and Aronov and Lyanda-Geller [7], or Rashba spin-orbit
coupling by Edelstein [8]. In nonmagnetic conductors
with chiral symmetry, a magneto electric effect was also
investigated [9]. As highlighted in [1], the effect, which is
the consequence of symmetry-allowed coupling between
spin polarization and electrical current, may be referred
to under different names. The generation of a current
from a non-equilibrium spin polarization goes under the
equivalent names of spin galvanic effect (SGE) or inverse
Edelstein effect (IEE), while the reciprocal phenomenon
of current-induced spin polarizations is referred to as in-
verse spin galvanic effect (ISGE) or Edelstein effect (EE).

The first experimental observation of the SGE/IEE was
in quantum wells, by measuring the current produced by
the absorption of polarized light [10–12]. More recently it
has been shown that a non-equilibrium spin polarization
injected by spin-pumping into an Ag|Bi [13] or Fe|GaAs

[14] interface also yields an electrical current. Notice that
spin-to-charge conversion in this context is sometimes re-
ferred to as inverse Rashba-Edelstein effect [15] – for a
recent theoretical discussion see [16]. The SGE/IEE has
also been observed at ferromagnet-topological insulator
interfaces [17, 18] and in LAO|STO systems [19]. In semi-
conducting structures the reciprocal ISGE/EE is mea-
sured via optical detection of the current-induced spin
polarization [20–25]. The ISGE/EE is also measured by
analyzing the torques exercised, via exchange coupling,
by the non-equilibrium polarization on the magnetization
of an adjacent ferromagnetic system[26–32]. Recently
this has been extended also to antiferromagnets[33].

Although the key mechanism of the effect relies on the
symmetry properties of gyrotropic media[63], most of
the recent theoretical work has concentrated on mod-
els based on the Rashba and Dresselhaus spin-orbit cou-
pling (respectively RSOC and DSOC in the following) in
the presence of disorder scattering responsible for spin
relaxation[15, 34–51]. In a 2-dimensional electron gas, as
for instance the one studied in Ref. [25], spin-orbit cou-
pling (SOC) is also due to the electric field of the scatter-
ing impurities and the interplay between intrinsic and ex-
trinsic mechanisms becomes highly non trivial[42, 46, 52],
[64]. In this paper we analyze some aspects of this inter-
play focusing on the description of the of ISGE/EE and
SGE/IEE in a 2-dimensional electron gas – we will how-



ever also discuss results valid in 3d gases.
The model Hamiltonian reads

H =
p2

2m
+ αpyσx − αpxσy + βpxσx − βpyσy

+ V (r)− λ2
0

4
σ ×∇V (r) ·p, (1)

where p, r and σ represent the momentum, coordinate
and spin (in units of ~/2) operators, respectively, for elec-
trons in the 2-dimensional electron gas. The latter lies
in the (x, y) plane, while m is the effective mass and α, β
are the RSOC and DSOC coupling constants. V (r) is a
random potential describing the scattering from the im-
purities. The potential is assumed to have zero average
and second moment given by 〈V (r)V (r′)〉 = niv

2
0δ(r−r′),

where v0 is the scattering amplitude from a single impu-
rity and ni is the impurity concentration. Finally, λ0 is
the effective Compton wavelength describing the strength
of the extrinsic spin-orbit coupling.
The layout of the paper is as follows: The core message
is summarized in Sec. II, where we immediately “get into
the thick of it” by formulating the problem, providing its
solution, and highlighting certain experimentally relevant
consequences. We base our discussion on physical argu-
ments only, and postpone the technical details substan-
tiating our conclusions to Secs. III - V, which can thus
be skipped by the reader not interested in the specifics
of our derivation. More precisely, in Sec. III we briefly
review the SU(2) approach employed to build the kinetic
equation in the presence of the RSOC and DSOC, and
in Sec. IV we derive the Bloch equations when only in-
trinsic SOC is present. Finally, in Sec. V we present a
rigorous derivation of the Bloch equations, including the
corrections arising from extrinsic effects. Here we obtain
the crucial new spin-generation torque arising from the
Elliot-Yafet process, and discuss its implications for the
ISGE/EE and SGE/IEE in specific experimental setups.
Finer details concerning the calculation of the collision
integral are provided in Appendices A and B. We adopt
units such that ~ = c = 1 throughout.

II. THE PROBLEM AND ITS SOLUTION

Consider an ensemble of carriers in a generic solid state
environment, where the spin is not a conserved quan-
tity. In a homogeneous sample, in the presence of an ex-
change/Zeeman field ∆, the ensemble spin polarization
S will then obey the continuity (Bloch) equation

∂tS
a = −[∆× S]a + T a (2)

where here and throughout Latin superscritps stand for
spin components a = x, y, z. The first term on the r.h.s.
describes precession around the field ∆, while T a is the
a-th component of the torque acting on the spin polar-
ization, responsible for relaxation to equilibrium. In a

simple isotropic medium it reads

T a = − 1

τs

(
Sa − Saeq

)
, (3)

where τs is the spin relaxation time – of whatever origin
– and the equilibrium spin density Seq = χ∆ is given in
terms of the Pauli spin susceptibility χ = 1

4∂n/∂µ which
at zero temperature reduces to χ = N0/2, with N0 the
density of states per spin at the Fermi energy.
In the presence of intrinsic SOC a finite drift velocity v
of the ensemble is associated with a non-equilibrium spin
polarization. Let us take a drift vx in the x-direction
and RSOC for definiteness’ sake. The non-equilibrium
spin polarization then reads

Sy = χBy, (4)

with

By = 2mαvx (5)

an effective “drift field” felt by the moving ensemble.
When the drift is caused by an electric field, vx =
−eτEx/m, Eqs. (4) and (5) describe the usual ISGE/EE
[7, 8]. RSOC also leads to (anisotropic) Dyakonov-Perel
spin relaxation

1/τs → Γ̂DP =
1

τDP

 1 0 0
0 1 0
0 0 2

 , (6)

with 1/τDP = (2mα)2D and D = v2
F τ/2 the diffusion

constant. This suggests that we modify the Bloch equa-
tions (2) to

∂tS
a = −[Ω× S]a + T aint, (7)

where Ω = ∆ + B is the full effective exchange/Zeeman
field felt by the drifting carriers and (repeated indices are
summed over, unless otherwise specified)

T aint = −Γ̂abDP
(
Sb − χΩb

)
(8)

is the intrinsic torque, “intrinsic” meaning that spin-orbit
effects from impurities are not yet included. This torque
has a spin-relaxation component, −Γ̂DPS, and a spin-
generation one, Γ̂DPχΩ. The intuitive form of Eqs. (7)
and (8) will be rigorously justified in Sec. IV, and holds
for any kind of intrinsic SOC – e.g. RSOC + DSOC
– with the appropriate form of Γ̂DP and Ω. It shows
that the spin polarization relaxes to a non-equilibrium
steady-state value given by

Sneq ≡ χΩ = Seq + χB . (9)

What happens to this intuitive picture once extrinsic
SOC is taken into account? This is the central prob-
lem addressed in our work. While modifications to both
the relaxation and the spin generation torques are clearly
expected, their precise form is a priori far from obvious.



This is because extrinsic SOC gives rise to several phe-
nomena, such as side-jump, skew scattering, and Elliott-
Yafet relaxation, which are not necessarily additive with
respect to intrinsic SOC effects [46]. Let us start with
the spin relaxation torque, which acquires a contribution
due to Elliott-Yafet scattering

Γ̂DP S→ [Γ̂DP + Γ̂EY ] S ≡ Γ̂ S, (10)

with Γ̂EY ∼ λ4
0. Unsurprisingly, spin-flip events at im-

purities, which are second order in the extrinsic SOC
constant λ2

0, provide a parallel channel for relaxation.
However they also crucially affect the non-equilibrium
steady-state value Sneq the spins want to relax to. This is
subtler, and highlights the difference between a true equi-
librium state and a non-equilibrium steady-state. Such
state is determined by the spin generation torque, which
extrinsic SOC modifies in two ways: First via side-jump
and skew scattering, which together add an extrinsic
contribution θsHext ∼ λ2

0 to the intrinsic spin Hall angle,
θsHint ∼ (α2, β2) (this can have the same or the opposite
sign as the intrinsic angle) [65]. Second, via Elliott-Yafet
relaxation, which yields a correction opposite to the non
equilibrium part of the intrinsic spin generation term,
i.e., the Γ̂χB part of Γ̂χΩ in Eq. (8):

Γ̂DPχΩ →
[
Γ̂DP + Γ̂EY

]
χ∆ +

+

[
Γ̂DP + Γ̂DP

θsHext
θsHint
− Γ̂EY

]
χB

≡ Γ̂ Seq + δΓ̂χB , (11)

where

Γ̂ = Γ̂DP + Γ̂EY , (12)

and

δΓ̂ = Γ̂DP + Γ̂DP
θsHext
θsHint
− Γ̂EY . (13)

The full Bloch equations thus become

∂tS
a = −[Ω× S]a − Γ̂ab(Sb − χ∆b) + δΓ̂abχBb. (14)

This is the main result of our paper. It shows that,
while intrinsic and extrinsic SOC act in parallel as far
as relaxation to the equilibrium state is concerned – sec-
ond term on the r.h.s. of Eq. (14) – they compete for
the more interesting non-equilibrium contribution – the
spin-generation torque, described by the third term on
the r.h.s. of Eq. (14). In particular, the last term on
the right hand side of Eq. (13) describes an “Elliot-Yafet
spin-generation torque”, which opposes the more familiar
Dyakonov-Perel and spin Hall terms. Physically, this can
be understood as follows. The non-equilibrium spin po-
larization appears when the drifted Fermi surface is split
by intrinsic SOC, the outer surface having a larger spin
content than the inner one. Such an effect is counter-
acted by Elliott-Yafet relaxation, which is proportional

to the square of the momenta before and after scatter-
ing, and therefore more efficient for states on the outer
surface and less efficient for states on the inner surface.
Eq. (14) shows that the naive Bloch equation (8) is mod-
ified by extrinsic processes. While this fact had already
been recognized in previous works (Refs. [15, 46]) some
terms (third order in SOC: first order in RSOC and sec-
ond order in λ2

0) of the diagrammatic expansion had been

neglected leading to an incomplete form of δΓ̂, in which
the last term on the right hand side of Eq. (13) was
missing [66]. As a result, the numerical calculation of
current-induced spin polarization must be reconsidered.
Indeed, Eq. (14) implies that the competition between
intrinsic and extrinsic torques can generate out-of-plane
spin polarizations from in-plane spin-orbit fields. Note
that such a mechanism is very basic in nature, in the
sense that it does not require finer details such as band
non-parabolicities or angle-dependent scattering [36] in
order to be effective. As such, it may have important
consequences both in the analysis of existing experimen-
tal data [20, 22], and in the design of novel setups.
The non-trivial modification of the ISGE/EE arising
from Eq. (14) implies a corresponding modification of
the SGE/IEE, so as to fullfill Onsager relations. To be
explicit, in the scenario reciprocal to the one considered
in Eqs. (4), (5), the charge current Jx generated by a
non-equilibrium spin polarization Sy −χ∆y acquires the
correction

δJx =
2eατ

τEY
(Sy − χ∆y) . (15)

This ensures reciprocity between the spin response to
an electric field Ex and the charge response to a time-
dependent magnetic field −∆y(t) [15]. A microscopic
derivation of (15) in a more general context is discussed
in Ref. [16] and will not be pursued here.

III. THE SU(2) APPROACH FOR INTRINSIC
SOC

A convenient way to deal with the RSOC and DSOC of
Hamiltonian of Eq.(1) is the SU(2) approach, where the
SOC is described in terms of a spin-dependent gauge field
[43]. This formalism, introduced in the context of quark-
gluon kinetic theory [53, 54], was recently also extended
to superconducting structures with SOC [55, 56]. For a
recent pedagogical introduction, see Ref. [57]. Here we
limit ourselves to recall the key aspects of the approach
to make this presentation self-contained. Neglecting for
the time being the extrinsic SOC, the RSOC and DSOC
of (1) can be written in the form of a spin-dependent
vector potential and the Hamiltonian reads

H =
(p + eAaσa/2)2

2m
− eΨaσa

2
+ V (r), (16)

where terms O(A2) are dropped, as they are second-
order in A/pF � 1 [67]. The only non zero components



of Aa are

eAxx = 2mβ, eAyx = −2mα, eAxy = 2mα, eAyy = −2mβ.
(17)

Relations (17) follow by comparing (16) with (1). In the
Hamiltonian we have also included a Zeeman term

HZ = −∆aσa

2
≡ −eΨ

aσa

2
, (18)

which can be seen as a spin-dependent scalar potential.
In the above ∆ = gLµBBexter with gL the gyromagnetic
factor, µB the Bohr magneton and Bexter the external
magnetic field. In this way the theory can be written in
terms of a SU(2) gauge theory of electrons coupled to a
d-potential gauge field (Ψ,A), where each component of
the d-vector is expanded in Pauli matrices. Notice that in
this description the standard scalar and vector potentials
can be included as the identiy σ0 components. For the
sake of generality, we formulate the theory in d dimen-
sions. Whereas our first motivation is the description of
the spin dynamics in a 2DEG, our conclusions apply also
to the three-dimensional electron gas. This is specially
relevant in experimental situations where one deals with
semiconducting thin films. In the following we make use
of the compact (relativistic) space-time notations for the
potentials

Aµ = (Ψ,A), Aµ = (−Ψ,A), (19)

the coordinate and momentum

xµ = (t, r), xµ = (−t, r), pµ = (ε,p), pµ = (−ε,p)
(20)

and the corresponding derivatives

∂µ ≡ ∂

∂xµ
, ∂µ ≡

∂

∂xµ
, ∂µp ≡

∂

∂pµ
, ∂p,µ ≡

∂

∂pµ
. (21)

In this way the product pµxµ = −εt+p · r has the correct
Lorentz metrics. We also introduce mixed Wigner coor-
dinates given by the center-of-mass coordinates (t, r) and
energy-momentum variables (ε,p), which are the Fourier-
transformed variables of the relative coordinates.
According to the analysis of [43], a semiclassical Boltz-
mann kinetic equation can be derived from a microscopic
Keldysh formulation in the presence of non-Abelian
gauge fields. The starting point is the left-right sub-
tracted Dyson equation[

Ǧ−1
0 (x1, x3)⊗, Ǧ(x3, x2)

]
=
[
Σ̌(x1, x3)⊗, Ǧ(x3, x2)

]
,
(22)

where we have used space-time coordinates x1 ≡ (t1, r1)
etc, and quantities with a “check” (Ǧ−1

0 , Ǧ, Σ̌) are matri-
ces in Keldysh space [58]. In Eq. (22) the symbol ⊗ im-
plies integration over x3 and matrix multiplication both
in Keldysh and spin spaces. Furthermore

Ǧ−1
0 (x1, x3) = (i∂t1 −H) δ(x1 − x3), (23)

where H is the Hamiltonian operator (16), while the self-
energy Σ̌ appearing in the collision kernel [right hand side
of (22)] will be specified later.

The key step, with respect to the standard way of obtain-
ing semiclassical transport theories à la Boltzmann from
their microscopic counterparts, is the introduction of a lo-

cally covariant Green function ˇ̃G(x1, x2) (to be defined in
the following). From the Wigner transformed covariant

Green function ˇ̃G(p, x) one can define the SU(2) covari-
ant distribution function to be determined by the kinetic
equation. The introduction of the covariant Green func-
tion in the presence of non-Abelian gauge fields general-
izes the well known shift in the momentum dependence
of the Green function when one wants to make it gauge
invariant under U(1) gauge transformations[59, 60]. In
the SU(2) case, as shown in Ref. [43], such a shift, due
to the non commutative nature of the symmetry group,
can be carried out in terms of Wilson lines of the gauge
field, whose definition is recalled in Appendix A. For our
purposes, under the assumption that the spin-orbit en-
ergy scale is small compared to the Fermi energy, it is
enough to perform the shift to lowest order in the gauge
field and, as shown in Appendix A, obtain

Φ̃(p, x) = Φ(p, x)− 1

2
{eAµ, ∂µ,pΦ(p, x)} , (24)

where Φ(p, x) is any quantity in the Wigner represen-
tation to which the shift can be applied. The inverse
transformation reads

Φ(p, x) = Φ̃(p, x) +
1

2

{
eAµ, ∂µ,pΦ̃(p, x)

}
. (25)

We stress that in obtaining Eqs.(24-25) terms
O(Aµ∂p,µ)2 have been neglected in the above, and
will be throughout the paper.
In order to obtain the SU(2) Boltzmann equation from
the quantum kinetic equation we apply the transforma-
tion (24) to the Eq.(22) and to the matrix Keldysh Green
function

Ǧ =

(
GR GK

0 GA

)
→ ˇ̃G =

(
G̃R G̃K

0 G̃A

)
, (26)

where GR,A,K denotes respectively the retarded, ad-
vanced and Keldysh Green’s function [58]. As a result
we get

G̃R − G̃A = −2πiδ(ε− εp), (27)

G̃K = −2πiδ(ε− εp) [1− 2f(p, x)] , (28)

where εp = p2/2m− µ measures the energy with respect
to the the chemical potential µ. Notice that the SU(2)-

shifted spectral density (∼ G̃R − G̃A) has no spin struc-
ture: the latter is all in the distribution function f(p, x).

The fact that the locally-covariant G̃R,A do not depend
on the gauge fields, i.e. on the RSOC and DSOC, is the
great advantage of the approach as will appear later.

Finally, the equation for ˇ̃G reads

V µ
[
∂̃µ

ˇ̃G+
1

2

{
eFµν , ∂νp ˇ̃G

}]
=
[

ˇ̃Σ, ˇ̃G
]
, (29)



pp1 p′
1 p′
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⇒

FIG. 1: Self-energy diagram to second order in the impurity
potential (black dot vertex). The diagram on the left is before
the impurity average, which is carried in the diagram on the
right as a dashed line connecting the two impurity insertions.

where V µ = (1,p/m) is the d-current operator and we
have introduced the covariant derivative

∂̃µ
ˇ̃G = ∂µ

ˇ̃G+ i
[
eAµ, ˇ̃G

]
(30)

and the field strength

Fµν = ∂µAν − ∂νAµ + ie [Aµ,Aν ] . (31)

An intuitive way to understand Eq.(29) is by notic-
ing that the combination V µ∂µ is the ordinary hydro-
dynamical derivative entering the Boltzmann equation,
∂t + v · ∇r, written in compact d-vector notation. Fur-
thermore, in the case of the Abelian U(1) electromag-
netic gauge field, the combination V µFµν∂

ν
p yields the

familiar Lorentz force. Eq.(29) represents its extension
to the SU(2) scenario, as will become clear in the follow-
ing. The right hand side of Eq.(29) follows by applying
the covariant transformation to the Keldysh collision ker-
nel, IK = −i [Σ, G] and taking advantage of the unitarity
of the Wilson line as shown in Appendix A (cf. Eq.(A6)).
By taking the Keldysh component of (29) and separating
time and space components we get(
∂̃t +

p

m
· ∇̃r

)
f(p, r, t)−1

2

{
F · ∇p, f(p, r, t)

}
= I (32)

where F is the spin-dependent force due to the SU(2)
gauge fields

Fi = eF0i + e
pk
m
Fki = eEi + eεikj

pk
m
Bj . (33)

Here Ei = F0i and Bi = 1
2εijkFjk are the SU(2) electric

and magnetic fields, respectively.
The Boltzmann collision integral in Eq. (32) is given by

I ≡
∫

dε

2πi
IK = −

∫
dε

2π

[
ˇ̃Σ, ˇ̃Gp

]K
. (34)

To the level of the self-consistent Born approximation,
the self-energy due to the disorder potential is shown in
Fig.1 and reads [68]

Σ̌0(p, x) = niv
2
0

∑
p′

Ǧ(p′, x) (35)

and yields the familiar Boltzmann collision integral for
impurity scattering

I[f ] = −2πniv
2
0

∑
p′

δ(εp − εp′)(f(p, r, t)− f(p′, r, t)).

(36)

In the next Section we show how the Bloch equations
can be obtained starting from the generalized Boltzmann
equation (32).

IV. THE “INTRINSIC” BLOCH EQUATIONS

As shown in [43], the spin density and spin current den-
sity defined by

Sa(r, t) =
∑
p

Tr

[
f(p, r, t)

σa

2

]
,

Jai (r, t) =
∑
p

pi
m

Tr

[
f(p, r, t)

σa

2

]
, (37)

obey a continuity-like equation

∂̃tS
a + ∂̃iJ

a
i = 0. (38)

The above result can be derived from Eq.(32) by taking
the Pauli matrix component σa and integrating over the
momentum. After making explicit the covariant deriva-
tives according to (30), the continuity-like equation (38)
becomes

∂tS
a + εabceΨ

bSc +∇iJai − εabceAbiJci = 0. (39)

Here εabc is the fully antisymmetric Ricci tensor. The
second term in Eq.(39) is the standard precession term
due to the Zeeman term (18). The last term of (39) can
be made explicit by providing the expression for the spin
current Jai , where the lower (upper) index indicates the
space (spin) component. In [43] (cf. therein Eq.(68)) the
expression of Jai was derived via a microscopic theory in
the diffusive regime. The expression reads

Jai = viS
a−D(∇iSa− εabceAbiSc)−

eτn

4m
(Eai + εijkvjBak)

(40)
where vi = − eτmEi is the average drift velocity of elec-
trons driven by the external electric field. All the terms
in Eq. (40) have a specific physical origin. The first is
a drift term, containing the spin density Sa carried by
the electrons drifted by the electric field Ei. The sec-
ond is a diffusion term that contains two contributions:
(i) the standard diffusion current proportional to ∇iSa,
and (ii) the contribution originating from the gauge-field
part of the covariant derivative (30) acting on the spin
density. The third term corresponds the SU(2) drift cur-
rent driven by the spin-dependent force of Eq. (33). In
particular the second contribution in this term yields the
spin Hall coupling due to the SU(2) magnetic field Bai .
Because of non Abelian nature of the SU(2) gauge group
the corresponding magnetic and electric fields can be
nonzero even for spatially homogeneous potentials pro-
vided their components are not commuting. In this
important special case the SU(2) magnetic and electric
fields are determined by the commutator term in Eq. (31)



(cf. also Eqs.(25-30) in [43])

εijkBak = −εabceAbiAcj , (41)

Eai = εabceAbiΨc. (42)

Using this representation for the fields and recalling the
Einstein relation τn

m = D ∂n
∂µ ≡ 4Dχ one can combine the

gauge potential-dependent terms in Eq. (40) into a single
item, and rewrite the expression for the spin current in
the following compact form

Jai = viS
a −D∇iSa +DεabceAbi (Sc − χΩc) (43)

where Ω is the total magnetic field introduced in Sec. II:

Ωa = eΨa − eAakvk ≡ ∆a +Ba. (44)

Here ∆ is the usual Zeeman field defined after Eq. (18)
and B represents the internal SOC field induced by the
electric current (electric field)

Ba = −eAakvk =
eτ

m
eAakEk. (45)

Now the Bloch equation describing the global spin dy-
namics in the presence of intrinsic SOC can be derived
by assuming a homogeneous spin density (∇iS = 0) and
substituting the spin current of Eq. (43) into Eq. (39).
The resulting equation reads

∂tS
a = −(Ω× S)a − Γ̂abDP

(
Sb − χΩb

)
, (46)

where Ωa is given by Eq. (44) and the DP relaxation

tensor Γ̂abDP is defined as follows

Γ̂abDP = e2DεafcεbdcAdiAfi = e2D
(
δabAciAci −AaiAbi

)
.

(47)
Equation (46) generalizes Eq.(7) of Section II to the case
of arbitrary intrinsic SOC. It is worth noticing that in
the present formalism the DP relaxation arises as the sec-
ond order covariant derivative (the covariant Laplacian).
One needs to act twice with the gauge field to get the
quadratic dependence on the SOC in the spin relaxation
matrix.
The second term on the right hand side of the Bloch
equation (46) corresponds to the intrinsic torque T aint for
generic SOC. The part of T aint proportional to the internal
SO field B (45) can be recognized as the spin generation
torque

T aint,sg = Γ̂abDPB
b = e4D

τ

m
Abi (AbiAak −AbkAai )Ek. (48)

The intrinsic spin generation torque T aint,sg is given by the
covariant divergence of the spin Hall current, that is the
very last term proportional to Bk in Eq. (40). Therefore
the spin generation torque vanishes for the configurations
of the gauge potentials with vanishing SU(2) magnetic
field. These configurations correspond to a so called pure
gauge SOC for which different space components of the
SU(2) potential are commuting and the intrinsic spin Hall

effect is absent. Our results imply that in this situation
the current-induced spin polarization is also absent.
It is instructive to write explicitly the above general for-
mulas for the specific form of the vector potential of
Eq.(17) which corresponds to the Rashba-Dresselhaus
SOC. In this case the SU(2) magnetic field has only one
nonzero component

eBzz = −eFaxy = (2mβ)2 − (2mα)2. (49)

As the SU(2) magnetic field determines the spin Hall
coupling it can be expressed in terms of the spin Hall
angle for the intrinsic SOC defined by

θintSH = mτ(β2 − α2) =
eτBzz
4m

. (50)

The expression for the spin Hall angle has a suggestive
interpretation by recalling the classical Hall effect where
the coupling between the mutually orthogonal charge
currents is given by the product of the cyclotron fre-
quency and the scattering time ωcτ = eBexterτ/m. In
the present case to get the spin Hall angle (50) one needs
to combine the SU(2) cyclotron frequency eBzz/(4m) with
the scattering time τ . An intuitive way to understand the
origin of the factor of 4 in the denominator of the SU(2)
cyclotron frequency is the following. Let us imagine that
spin up and spin down particles undergo the ordinary
Hall effect in opposite directions with a spin-dependent
magnetic field, j↑y = (τ/m)B↑j↑x and j↓y = −(τ/m)B↓j↓x.

By defining the spin current as Jzy = (j↑y − j↓y)/2 and

identifying B↑ = −B↓ = Bzz/2, one immediately finds
the ”SU(2)” cyclotron frequency eBzz/(4m).
By introducing further an in-plane Zeeman field eΨx ≡
∆x and eΨy ≡ ∆y, we find that the only nonzero com-
ponents of the SU(2) electric field are

eEzx = ∆x2mα+ ∆y2mβ (51)

eEzy = ∆x2mβ + ∆y2mα. (52)

In this case the total magnetic field Ω of Eq. (44) also
has only in-plane components

Ωx = ∆x +Bx (53)

Ωy = ∆y +By (54)

with the internal SO field B (45) of the form

Bx = 2eτ(βEx + αEy) (55)

By = −2eτ(αEx + βEy). (56)

The general DP relaxation matrix Γ̂DP of Eq. (47) en-
tering Eq.(46) simplifies as follows

Γ̂DP =

τ−1
α + τ−1

β 2τ−1
αβ 0

2τ−1
αβ τ−1

α + τ−1
β 0

0 0 2(τ−1
α + τ−1

β )

 (57)

where τ−1
α = (2mα)2D, τ−1

β = (2mβ)2D and τ−1
αβ =

(2m)2αβD. Notice that for β = 0 the matrix Γ̂DP be-
comes diagonal, and τα reduces to the Dyakonov-Perel



FIG. 2: Self-energy diagram in second order in the spin-orbit
impurity potential, shown as a crossed empty dot, contribut-
ing to the Elliott-Yafet spin relaxation.

relaxation time introduced in Eq.(6). Finally, the spin
generation torque reads

Tint,sg ≡ Γ̂DPχB (58)

= −2mθintSH(−2eN0D)

−αEy + βEx
−βEy + αEx

0

 .

The above equation generalizes the spin generation
torque introduced in Eq.(8) to the case of RSOC and
DSOC for arbitrary direction of the electric field. [69] In
agreement with the general discussion after Eq. (48) the
spin generation torque is proportional to the spin Hall
angle. Therefore it vanishes for SOC giving θintSH = 0
which in the present case corresponds to the compen-
sated RSOC and DSOC with α = ±β.
The meaning of Eq. (46) is that, under stationary condi-
tions, S = χΩ, provided the spin Hall angle is nonzero.
This implies that the spin polarization follows the total
magnetic field and (for an energy-independent scattering
time [43]) there can be no out-of-plane spin polarization
since Ω lays in the xy plane. This is no longer the case
when one considers the extrinsic SOC as will be shown
in the following Section.

V. THE EFFECTS OF EXTRINSIC SOC

The interplay of intrinsic and extrinsic SOC was inves-
tigated previously in [42, 48, 52, 57]. According to the
analysis therein Eq. (46) acquires two modifications. The
first, to order λ2

0, is an additional contribution to the spin
Hall coupling in the third term in expression (40) for the
spin current. This arises from the inclusion of side-jump
and skew-scattering effects due to the extrinsic SOC and
leads to a renormalization of the spin Hall angle in the
expression of the spin generation torque in Eq.(58)

θintSH → θSH = θintSH + θextSH . (59)

The second term, which arises to order λ4
0, is an addi-

tional contribution to the spin relaxation matrix (the EY
spin relaxation). In fact, as discussed in Section II, there
exists, to the same order λ4

0, a third new contribution,
which will be derived in detail in the following.

To see how the new contribution arises, we focus on the
term of order λ4

0 in the self-energy, whose Feynman dia-
gram is shown in Fig. 2 and whose expression reads

Σ̌EY (p) = ni
∑
p′

V̂p,p′Ǧp′ V̂p′,p, (60)

where V̂p,p′ is the spin-dependent part of the impurity
scattering amplitude

V̂p,p′ = iv0(λ0/2)2(p× p′) ·σ. (61)

Shifting the self-energy of Eq.(60) according to SU(2)
shifts (24-25) yields the locally covariant EY self-energy

˜̌ΣEY = ˜̌Σ
(0)

EY + ˜̌Σ
(1)

EY . (62)

In Eq.(62) we separated the term responsible for the EY
relaxation

˜̌Σ
(0)

EY = ni
∑
p′

V̂p,p′
˜̌Gp′ V̂p′,p (63)

from that giving rise to the new contribution

˜̌Σ
(1)

EY =
ni
2

∑
p′

( V̂p,p′{Ak, ∂p′k
˜̌Gp′}V̂p′,p (64)

− {Ak, ∂pk V̂p,p′
˜̌Gp′ V̂p′,p}).

In the last equation the summation over the repeated in-
dex k is understood. Correspondingly, the Keldysh col-
lision kernel acquires two contributions to order λ4

0 and
reads

δIK ≡ −i
[

˜̌ΣEY ,
˜̌G
]

= −i
[

˜̌Σ
(0)
EY ,

˜̌G
]
− i
[

˜̌Σ
(1)
EY ,

˜̌G
]
. (65)

The first term on the right hand side gives rise to the EY
spin relaxation [52], and contributes an extra relaxation
channel on the right hand side of Eq.(46)

− 1

τEY

1 0 0
0 1 0
0 0 d− 2

 (S− χ∆) ≡ −Γ̂EY (S− χ∆) (66)

where we have introduced the dimensionality-dependent
EY spin relaxation rate given by

1

τEY
=

4(d− 1)

d2

1

τ

(
λ0pF

2

)4

. (67)

In the above d = 2, 3 is the dimensionality of the space
where particles move. The d = 2 case corresponds to the
2-dimensional electron gas case, where we have concen-
trated our attention until now. The z component of the
spin is a constant of the motion and does not undergo
relaxation in this case. However, the peculiarity of the
new term we are going to derive appears also, and more
remarkably, in the d = 3 case. For this reason we keep
the dependence on the dimensionality from now on.



The Keldysh (K) component of the second term in (65)
reads

δIKK = −i
(
G̃R − G̃A

)
Σ̃

(1),K
EY

− i
(

Σ̃
(1),R
EY G̃K − G̃KΣ̃

(1),A
EY

)
≡ δI(1) + δI(2), (68)

having used that G̃R,A ∼ σ0. In order to obtain the Bloch
equation we need to sum over the momentum as done for
obtaining the continuity equation (38). The summation
over momentum of the Boltzmann collision integral[70]
is obtained as∑

p

∫
dε

2πi
δIKK ≡ ∆I(1) + ∆I(2). (69)

By replacing G̃R, G̃A and G̃K with the expressions (27-
28), one obtains

∆I(1) =
niπ

2

∑
p′p

δ(εp − εp′)

(
∂p′k V̂p,p′{Ak, (1− 2fp′)}V̂p′,p

+ ∂pk{Ak, V̂p,p′(1− 2fp′)V̂p′,p

)
, (70)

and

∆I(2) = −niπ
2

∑
p′p

δ(εp − εp′)

1

2

{
(∂p′k V̂p,p′2AkV̂p′,p

+ ∂pk{Ak, V̂p,p′ V̂p′,p}), (1− 2fp)
}
.

(71)

In both of the above equations, the first term, after the
delta function, has been obtained by an integration by
parts with respect to the momentum p′. As a result, the
derivatives with respect to p′k and pk act on the V̂p,p′ fac-
tors only. In Eq.(70) the dependence on the directions of

the momentum p is restricted to the V̂p,p′ factors only,
so that one can perform at once the integration over the
solid angle of p and then take the derivative with re-
spect to p′. Appendix B provides some useful identities
(see Eqs.(B2-B4)) on how to carry out these operations.
Notice also that the second term in round brackets of
Eq.(70) vanishes, because the derivative with respect to
p yields a linear dependence on p so that the solid angle
integral gives zero.

By reasoning in the same way, one sees that the first term
in round brackets within the anticommutator of Eq.(71)
also vanishes. In the second term one can make at once
the integration over the solid angle of p′, again by using
the results of Appendix B. As a result, after working out

the Pauli algebra, one gets

∆I = πniv
2
0

(
λ0

2

)4
d− 1

d

∑
p′p

δ(εp − εp′)p2

[
d− 2

d− 1(
σk {eAk, p′lf(εp′)}σl

+ σl {eAk, p′lf(εp′)}σk
)

− σi {eAk, p′kf(εp′)}σi

+ 2p′2 {eAk, pkf(εp)}
]
. (72)

In Eq.(72) the summation over repeated indices runs over
x, y, z for d = 3. For d = 2, the last two lines of Eq.(72)
survive and only the i = z term remains. Then the sum
over momentum of the Boltzmann collision integral is [71]

∆Ia =
1

2
Tr[σa∆I]

=
1

τ

(
λ0

2

)4

p2
F

(d− 1)

2d

∑
p

f0(εp)pi (73)

×
(
eAai +

d− 2

d− 1
(eAia + eAnnδai).

)
This is zero as long as f0(εp) is isotropic, which is the case
in a homogeneous system at equilibrium. Things change
as soon as an electric field is switched on and carriers have
a finite drift velocity v = −eτE/m. We then have the
spin generation torque due to the interplay of intrinsic
and extrinsic SOCs T aext,sg ≡ ∆Ia

T aext,sg = − N0

2τEY

(
eAai +

d− 2

d− 1
(eAia + eAnnδai)

)
vi

= Cai vi (74)

where we have introduced the extrinsic SOC torque ten-
sor Cai . In d = 3 it is instructive to represent this tensor
as follows

Cai = − eN0

2τEY

[
Annδia +

3

2

(
1

2

(
Aai +Aia

)
− 1

3
Annδia

)
+

1

2

(
Aai −Aia

)]
(75)

by separating explicitly all irreducible tensor parts - the
unit, the traceless symmetric, and antisymmetric contri-
butions. Comparing this with the similar representation
for the plain Aak we see the the symmetric (“Dressel-
haus”) part has a contribution 3 times as large relative
to the antisymmetric (“Rashba”) part. Hence Eq. (75)
shows that the value at which the spin polarization would
like to relax to by EY processes has a form different from
the SOC internal field defined in Eq.(45) due to DP pro-
cesses. The latter has the same structure as the first
term in the brackets of Eq.(74) but with an opposite sign.
Three-dimensional motion adds an entirely new term to
the internal SOC field induced by the electric field. Al-
though when going to d = 3 the linear DSOC may not
be appropriate anymore, the overall message is that the



interplay of extrinsic SOC and SU(2) intrinsic SOC is
extremely rich. The exploration of the consequences of
this are however beyond the scope of the present paper.
For d = 2 only the first term in the brackets of Eq.(74)
survives, so that, by considering a = y for RSOC (eAyx =
−2mα), we have

T yext,sg = − 1

τEY
N0αmvx. (76)

Hence, the spin generation torque due to the inter-
play of RSOC and extrinsic SOC has the opposite sign
with respect to the corresponding term originating by
the Dyakonov-Perel precessional relaxation T yint,sg =

1/τDP (N0αmvx). We name this new term the Elliott-
Yafet torque (EYT).
We can then write the Bloch equation in the final form

∂tS = −Ω× S− (Γ̂DP + Γ̂EY ) (S− χ∆) + Tsg, (77)

where the spin generation torque Tsg, in the presence of
extrinsic SOC is given by

Tsg = Tint,sg + δTint,sg + Text,sg, (78)

where

Tint,sg = Γ̂DPχB (79)

δTint,sg =
θextSH

θintSH

Γ̂DPχB (80)

Text,sg = −Γ̂EY χB. (81)

Hence, the extrinsic SOC yields two additional spin gen-
eration torques (80) and (81) associated to spin Hall ef-
fect (to order λ2

0) and Elliott-Yafet processes (to order
λ4

0), respectively. The second torque has the same form
but opposite sign of the intrinsic torque, indicating that
the EY spin-relaxation is detrimental to the ISGE/EE as
anticipated in Sec. II. The Bloch equations (77) together
with the expressions of the various torques (78-81), the

DP (Γ̂DP ) and EY ( Γ̂EY ) spin relaxation matrices (57)
and (66) and the definition of the total magnetic field Ω
(53-54) are the main result of this paper. In accordance
with the experimental observations of Ref. [25], Eq. (77)
shows that, in general, the static non-equilibrium spin
polarization will not be aligned along the internal effec-
tive magnetic field Ω.

VI. CONCLUSIONS

In this paper we have considered the phenomenon of spin
orientation by current by analyzing the interplay of in-
trinsic (Rashba and Dresselhaus) and extrinsic spin-orbit
coupling. We have derived the Bloch equation governing
the spin dynamics by identifying the various relaxation
and spin generation torques. Whereas in the presence
of purely intrinsic spin-orbit coupling the spin polariza-
tion follows the internal effective magnetic field, this no

longer happens when the extrinsic spin-orbit is present.
The precise relation between the spin polarization and
the Rashba-Dresselhaus internal field depends on the rel-
ative magnitude of the Dyakonov-Perel and Elliott-Yafet
spin relaxation rates, as well as on the spin Hall angle
in the system. These observations may be very useful in
analyzing existing experiments on the ISGE/EE, and in
suggesting new ones.
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Appendix A: The covariant Green function in terms
of Wilson lines

The locally covariant Green function is defined as

ˇ̃G(x1, x2) = UΓ(x, x1)Ǧ(x1, x2)UΓ(x2, x) (A1)

where

UΓ(x, x1) = P exp

(
−i
∫ x

x1

eAµ(y)dyµ

)
. (A2)

The line integral of the gauge field is referred to as the
Wilson line. In Eq.(A2) P is a path-ordering opera-
tor. Since the Wilson line transforms covariantly under
a gauge transformation O(x)

UΓ(x, x1)→ O(x)UΓ(x, x1)O†(x1), (A3)

one easily sees that the covariant Green function ˇ̃G trans-
forms in a locally covariant way

ˇ̃G(x1, x2)→ O(x) ˇ̃G(x1, x2)O†(x). (A4)

To lowest order in the gauge field, one may expand the
exponential of the Wilson line and, after Fourier trans-
forming with respect ot the relative coordinate, obtain
Eqs.(24-25) of the main text.
The Wilson line is unitary in the sense that

UΓ(x, x1)UΓ(x1, x) = 1. (A5)

The unitarity of the Wilson line allows to express the co-
variant transformation of a convolution product of non
covariant objects in terms of the convolution of the co-
variant transformed objects. In particular, the covariant
transformation of the Keldysh collision integral gives

UΓ(x, x1)
[
Σ̌(x1, x3)⊗, Ǧ(x3, x2)

]
UΓ(x2, x)

=
[

ˇ̃Σ(x1, x3)⊗, ˇ̃G(x3, x2)
]

(A6)



after using the unitarity of the Wilson line by inserting

UΓ(x3, x)UΓ(x, x3) = 1

between the self-energy and the Green function.

Appendix B: An identity concerning angular
integration

In the text we need to perform the integration over the
solid angle of p∫ (

sin(θp)dθp
2

)d−2
dφp
2π

V̂p,p′ . . . V̂p′,p ≡ 〈V̂p,p′ . . . V̂p′,p〉.
(B1)

In the above the dots indicate any operator acting on the
spin indices, but not depending on the momenta p and
p′. By writing explicitly the cross products in the V̂p,p′

factors one has

−v2
0

(
λ0

2

)4

〈
∑

ijklmn

εijkεlmnpip
′
jσ
k . . . plp

′
mσ

n〉

= −v2
0

(
λ0

2

)4 ∑
ijklmn

εijkεlmn〈pipl〉p′jp′mσk . . . σn

= −v2
0

(
λ0

2

)4
p2

d

∑
ijklmn

εijkεlmnδilp
′
jp
′
mσ

k . . . σn

= −v2
0

(
λ0

2

)4
p2

d

(
p′2σi . . . σi

− (d− 2)p′ ·σ . . .p′ ·σ) (B2)

where in d = 3 it is understood a summation over i =
x, y, z and in d = 2 i = z. If the dots are replaced by the
identity in the spin space

〈V̂p,p′ . . . V̂p′,p〉 = −v2
0

(
λ0

2

)4
2p2p′2

d
σ0. (B3)

Then the derivative with respect to p′k yields

∂p′k〈V̂p,p′ . . . V̂p′,p〉

= −v2
0

(
λ0

2

)4
p2

d

(
2p′kσ

i . . . σi

− σk . . .p′ ·σ − p′ ·σ . . . σk
)

(B4)
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