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Graphene layered systems as the terahertz source with tuned frequency

K. Batrakov∗ and S. Maksimenko
Institute for Nuclear Problems, Belorussian State University, Bobruiskaya 11, 220050 Minsk, Belarus

Propagation of an electron beam over a graphene/dielectric sandwich structure is considered
assuming the distance between layers to be large enough to prevent interlayer tunnelling. A disper-
sion equation for the surface electromagnetic modes propagating along graphene sheets is derived
and Čerenkov synchronism between surface wave and non-relativistic electron beam is predicted at
achievable parameters of the system. The generation frequency tuning is proposed by varying the
graphene doping, the number of graphene sheets, the distance between sheets, etc.

PACS numbers: 41.60.-m,78.67.Ch,73.63.Fg

I. INTRODUCTION

Due to a variety of scientific and technical applica-
tions, there is a great need in the development of coher-
ent terahertz radiation sources with tunable frequency,
see e.g. Refs. 1,2 and references therein. In particular,
the tunability can be realized in the devices utilizing ki-
netic energy of moving electrons and transforming it into
the energy of the emitted electromagnetic wave3. Free
electron laser (FEL)4, travelling wave tube (TWT) and
backward wave oscillator (BWO), are the well-known de-
vices of such a type. The energy transfer occurs when
parameters of the electron beam moving with the veloc-
ity u and the electromagnetic wave meet the synchro-
nism condition (for example ω − ku = 0 in Čerenkov
case). Changing electron velocity one can smoothly tune
the frequency in a wide range. The development of FELs
was initiated, in particular, by this feature. However, the
electron beam sources are normally optimized for work-
ing at a given electron energy and do not allow its easy
variation without considerable efficiency drop. Instead,
the tunability could be achieved by exposing the medium
which provides the synchronization conditions to external
fields – for example, by varying the undulator magnetic
field4 – but again this way appears to be rarely used in
practice since undulator is usually designed for a given
operating frequency and its efficiency significantly drops
with deviation.

In the case of Čerenkov-type emitter5, the radiation
frequency depends also on electrodynamic parameters
of the medium providing thus alternative means of the
resonant frequency tuning. Among different possibili-
ties, graphene and carbon nanotubes (CNTs) are very
promising materials from this point of view since there
are well-known and rather facile methods of their con-
stitutive parameters wide-range varying. In particular,
well-developed methods of graphene doping inclusive of
electrostatic doping allow smooth alteration of the sur-
face conductivity6. Analogous effect is reported in doped
CNTs7,8. Besides, it has been shown that carbon nan-
otubes and graphene can considerably slow down sur-
face electromagnetic wave9,10 providing thus better con-
ditions for the synchronization of electron beam and elec-
tromagnetic surface wave.

Čerenkov mechanism of generation of the coherent
stimulated radiation in graphene and carbon nanotubes
was theoretically investigated in Refs. 10–15 demonstrat-
ing realizability of the nanotube-based nano-TWT and
nano-FEL at realistic parameters of CNTs and electron
beams14. In literature has also been discussed the mech-
anism of generation and amplification of plasmon oscil-
lations in graphene by optical or electrical pumping16–21.
Efficiency of emission and influence of quantum recoil ef-
fect on Čerenkov emission by hot electrons in graphene
were studied in Refs. 22,23. A possibility of terahertz
emission in CNTs imposed to transverse and axial elec-
tric fields due to electric-field induced heating of elec-
tron gas has been revealed in Refs. 24–28. A periodi-
cal systems of graphene nanoribbons has been proposed
as Čerenkov medium with regulation of generation fre-
quency by nanoribbon width, spatial period and applied
voltage29,30. A similar approach exploiting periodic di-
electric substrate underlaying graphene sheet has been
developed in Refs. 31,32. Variant with analogous to
Čerenkov radiation due to excitation of dipole polariza-
tion an the array of nanotubes which leads to current
generation with a superluminal profile is considered in
Refs. 33,34.

Unique physical properties of graphene, plane or rolled
up into cylinder, are featured in that not only exter-
nal electron beam can be used for excitation of surface
waves but also graphene’s own π electrons10,14,29. There
are several reasons in favor of such a generation scheme:
First, graphene and nanotubes support extraordinary
large continuous electric current density, > 108 A/cm2,
without degradation, see e.g. Refs. 35–37. Then, macro-
scopically large ballistic length (up to several hundred
microns) in graphene and nanotubes is reported38–41.
For example, about 16 micron length electron ballis-
tic transport in graphene nanoribbons has recently been
observed42. Therefore, electrons can emit coherently
from this macroscopic length. Physical basis of such a
high ballisticity is in Dirac nature of graphene carriers
and Klein paradox43,44 which helps to overcome the po-
tential barriers. Lastly, metallic CNTs exhibit a strong,
as large as 50-100 times, slowing down of surface electro-
magnetic waves9. In single layer graphene this quantity
appears to be smaller but below we show that this prob-
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lem can be resolved using slow acoustic mode in multi-
layered structure due to coupling of plasmon-polariton
modes of different layers10. Similar effect can be achieved
by hybridization of graphene plasmon with its mirror
image in the metal plate disposed near graphene layer
that leads, in particular, to strongly confined asymmetric
mode45,46. Thus, as it has been stressed in Ref.14, a com-
bination in graphene and CNTs of three key properties,
(i) ballisticity of the electron flow over typical length,
(ii) extremely high current-carrying capacity, and (iii)
strong slowing down of surface electromagnetic waves9,
allows proposing them as candidates for the development
of nano-sized Černekov-type emitters. As our estimates
show14,the electron mean free path as large as tens of mi-
crons would be enough to provide coherent emission and
reach the above stated goal. However, practical realiza-
tion of such a large ballistical transport is a complicated
task and, in any case, is inconsistent with the high cur-
rent density.

Alternatively, traditional Černekov and Smith-Purcell
generation scheme can be utilized, when an external elec-
tron beam moves synchronously with the excited surface
wave over the graphene surface on the distance sufficient
to neglect electron collisions with carbon atoms. Later
condition allows exclude negative role of electrons multi-
ple scattering which destroys Čerenkov synchronism. To
provide necessary slowing down we propose to make use
a sandwich structure consisted of parallel noninteract-
ing graphene layers. In Ref. 10 we have shown that in
two spatially separated graphene layers one of the sur-
face plasmonic modes can be significantly slowed down,
up to the velocity of graphene π-electrons. Moreover, a
new mechanism of the frequency tuning appears exploit-
ing the interlayer distance varying. Recently47,48 we have
demonstrated a strong graphene interaction with radia-
tion. In particular, free standing single graphene layer
can absorb up to 50% of exposing radiation intensity in
microwave and terahertz frequency ranges. This percent-
age can be significantly increased under corresponding
choice of the substrate. From the Einstein rules follows
that the inverse process, i.e. stimulated radiation emis-
sion, can proceed equally effectively.

In the present paper we study excitation of surface
waves propagating in graphene sandwich structures and
resonantly interacting with an electron beam, aiming at
the reveal of the generation conditions and methods of
the smooth frequency tuning by variation of the system
parameters. The remainder of the paper is organized as
follows. In Sect. II the problem formulation and basic
equations are presented. A solution of the boundary-
value problem for a single layer graphene sheet, possibil-
ity of electromagnetic wave slowing down and frequency
tuning in that case is presented in Sect. III. Section IV
presents results concerning surface electromagnetic wave
in two-layer graphene system, enhanced wave slowing
down for acoustical mode and addictive change of effec-
tive chemical potential for optical mode. Both these ef-
fects give possibility to regulate the generated frequency

and resonance electron beam energy. Dispersion equa-
tion for graphene system with external electron beam is
presented in V. Solution of this equation gives incre-
ment of instability and estimation of required for gener-
ation parameters. Sect. VI contains analysis concerning
possibilities of generation and frequency tuning based on
previous calculations and conclusion remarks.

II. BASIC EQUATIONS

Consider an electron beam propagating along the x
axis parallel to a graphene sheet or multi-layer graphene
sandwich structure comprising graphene sheets separated
by layers of a mediums with dielectric functions εi. The
index i marks the double layer graphene+underlying
medium in the sandwich, see Fig. 1. On its way over the
sandwich the beam interacts with the surface electromag-
netic wave retained by the graphene structure. For the
coherent radiation generation, the beam motion should
be synchronized with the electromagnetic wave on the
beam propagation length over the structure. In partic-
ular, for the Čerenkov emission mechanism the electron
beam velocity must coincide with the phase velocity vph
of electromagnetic wave. That is, since the electron ve-
locity is smaller the speed of light, the surface wave slow-
ing down is the necessary condition of synchronization.
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FIG. 1: Geometry of the problem

Let us examine propagation of surface waves along the
sandwich in free space, assuming the distances between
graphene layers large on the atomic scale and, therefore,
neglecting electron interlayer tunnelling in the sandwich.
Further we follow the procedure developed in Refs.47–49.
The eigenwaves under study satisfy the Maxwell equa-
tions, boundary conditions at the graphene surfaces in
each layer, and the condition that there are no exterior
current sources at infinity. From the Maxwell equations
we express the field of TM wave in piecewise continuous
form:

H(i)
y = eiqx

(

c
(i)
1 exp{ik(i)z z}+ c

(i)
2 exp{−ik(i)z z}

)

. (1)

Here axis z is perpendicular to the graphene layers,

k
(i)
z =

√

ω2εi/c2 − q2 is the z-projection of the wave vec-
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tor in the i-th layer, q is the tangential component of the
wave vector. Further we assume εi = 1. Generalization
the case εi 6= 1 can easily be performed and, what is im-
portant, does not bring to essential changes. To find the
surface eigenmodes we need to determine the unknown
coefficients c(i). The boundary conditions state conti-
nuity of the electric field tangential component on the
graphene surface while tangential component of magnetic
field undergoes discontinuity proportional to the surface
current jt excited in graphene47–49:

H (zi + 0)−H (zi − 0) =
4π

c
[jt (zi)× n] . (2)

Here n is the unit vector along the z axis. As it has been
shown in Ref.49, the surface current excited in graphene
layer is related to the electric field by

jt = σEt = αgsgv
T

π~
ln
[

2 cosh
( µ

2T

)] ic

ω + iΓ
Et , (3)

where σ is the sheet conductivity of graphene monolayer,
µ is the chemical potential of electron subsystem, T is
the temperature in energy units, Γ is the broadening pa-
rameter (collision frequency), and α is the fine structure
constant. In further calculations we assume Γ ∼ 10 THz
in accordance with our previous experiments on the elec-
tromagnetic radiation absorption in graphene sandwich
structures47,48. Note that in our approach any deviations
of graphene from idealness (defects, doping, strains, non-
homogeneities, etc.) are taken into account by variation
of chemical potential and broadening parameter Γ.
The coefficients gs and gv are due to spin and valley

degenerations49 and for graphene can be accepted both
as equal 2. In Eq. (3)we only restrict ourselves to intra-
band transitions. At realistic values of chemical poten-
tial this is correct for the terahertz and microwave fre-
quency ranges and inapplicable in optical and NIR ranges
where interband transitions come into play. If chemical
potential proves to be less the operating frequency, inter-
band transitions should also be accounted for even at low
frequencies. However, to reach such a situation special
efforts are required during the graphene synthesis and
storage50.

III. SURFACE WAVES IN SINGLE-LAYER

SYSTEM

Applying the procedure described to the sandwich
structure consisting of n layers, we arrive at the homo-
geneous system of 2n linear equations for 2n coefficients

c
(i)
1,2. Dispersion equation of the system arises when we
set the determinant of the system equal to zero and de-
termines the frequency dependence of the surface wave
wavevector. For single graphene layer the system com-
prises 2 equations for 2 coefficients:

c2 + c1 = 0 , c2(1 + σ0)− c1 = 0 . (4)

Here σ0 = (4π/ω)kzσ is a dimensionless parameter with
σ given by Eq. (3) under assumption gs, gv = 2. Assum-
ing chemical potential considerably exceeding the tem-
perature, from (4) follows the equation

2µα

~ω

√

q2c2 − ω2

ω + iΓ
= 1 , (5)

which describes dispersion of surface electromagnetic
wave propagating in graphene. Dispersion equation (5)
leads to

q2c2 = ω2 +

[

~ω (ω + iΓ)

2µα

]2

. (6)

This equation demonstrates frequency dependence of the
surface wave wavevector characteristic for degenerated
2D quantum systems. In the case of potential fields, when
we can neglect the first term in the right-hand part of Eq.
(6), we arrive at the dependence51 q ∼ ω2 or ω ∼ √

q).
Note that such a dependence drastically differs from the
dependence inherent in the 3D case where eigenfrequency
is proportional the Langmuir plasma frequency and does
not depend on the wavevector52. Specific dispersion law
admits strong slowing down of surface waves in 2D sys-
tems. The slowing down of surface wave at different µ is
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FIG. 2: The phase velocity slowing down for surface wave in
an isolated graphene layer for different values of the chemical
potential: µ = 0.05 eV (1 ), µ = 0.1 eV (2 ), µ = 0.2 eV (3 ).

illustrated by Fig. 2. It is seen that the effect can vary in
a wide range of values depending on the frequency and
chemical potential.
The dependence of the Čerenkov resonant frequency

(the frequency corresponding to the synchronism con-
dition) ν on chemical potential is depicted on Fig. 3
at different values of the electron beam energy. Fig. 4
demonstrates the Čerenkov resonant frequency variation
by changing the electron beam energy. Calculations were
made for typical value of the chemical potential µ = 0.1
eV and µ = 0.2 eV.
In the above analysis we considered the TM wave,

whose magnetic field vector is coplanar with graphene
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FIG. 3: Čerenkov resonant frequency vs chemical potential at
the electron beam energy 4 KeV (1), 10 KeV (2) and 60 KeV
(3).
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FIG. 4: The Čerenkov frequency dependence on the electron
beam energy. Chemical potential µ = 0.1 eV (1) and µ = 0.2
eV (2).

and wavevector is normal to magnetic field. Analogously,
boundary conditions can stated for TE wave and corre-
sponding dispersion equation can be obtained:

4µα

~
√

q2c2 − ω2

ω

ω + iΓ
= −2 . (7)

see (5) for comparison. Since TE wave can exist only

when the real part of
√

q2c2 − ω2 is positive, from (7)
one can conclude that graphene does not supports TE
wave in the frequency range under consideration. Exci-
tation of TE waves in isolated graphene layer is possible
at much higher frequencies when contribution of inter-
band transitions becomes significant53.

IV. SURFACE WAVES IN DOUBLE-LAYER

SYSTEM

A double-layer graphene system can be used for the
generation of Čerenkov radiation by an electron beam10.
The advantage being achieved by graphene doubling is
the appearance of the acoustic mode among plasmon
oscillations inherent in the system. This mode whose
frequency is proportional to difference of frequencies of
plasmonic oscillations in layers. As a result, the phase
velocity of this wave appears to be much less than that
achievable in monolayer. Owing to such a large slowing
down one can meet the Čerenkov synchronism even for
graphene π electrons whose velocity is ≈ 300 less then
the speed of light.
It should be noted that the Eq. (3) for surface conduc-

tivity deduced in Ref. 49 holds only true if ω ≫ qvF . If
this condition is not valid, a more precise expression for
conductivity should be applied, see Eq. (39) in Ref. 10:

σ′ = αgsgv
T

π~
log

[

2 cosh
( µ

2T

)] ic(ω + iΓ)

v2F q
2

× (ω + iΓ)−
[

(ω + iΓ)2 − v2F q
2
]1/2

[(ω + iΓ)2 − v2F q
2]

1/2
. (8)

Here vF is the π-electrons velocoty at the Fermi level. In
the case ω ≫ vF q, Eq. (8) is reduced to (3).
Let us analyze surface electromagnetic modes in two

graphene layers separated by the distance l. Magnetic
field of the TM wave can be written as

Hy = exp {iqx}

×







a exp {−ikzz} , z < 0,
c1 exp {ikzz}+ c2 exp {−ikzz} , 0 < z < l,
d exp {ikz(z − l)} , z > l.

(9)

In regions before (z < 0) and after (z > l) structure, sys-
tem (9) contains only waves exponentially decaying with
the distance from graphene. The boundary conditions
allowing evaluation of four coefficients a, d, c1, c2 are
given by:

c1 − c2 + a = 0 ,
c1 + c2 − a(1 + σ′

0) = 0 ,

c1 exp{−
√

q2 − ω2/c2l}
−c2 exp{

√

q2 − ω2/c2l} − d = 0 ,

c1 exp{−
√

q2 − ω2/c2l}
+c2 exp{

√

q2 − ω2/c2l} − d(1 + σ′

0) = 0 ,

(10)

where, as in previous section, σ′

0 = (4π/ω)kzσ
′ and σ′

is given by Eq. (8) under assumption gs, gv = 2. The
resulting dispersion equation

2 + σ′

0 ± σ′

0 exp{−
√

q2 − ω2/c2l} = 0 (11)

manifests appearance of optical and acoustic modes (up-
per and lower signs, respectively). At distances l much
less than the wavelength, acoustic mode slows down much
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faster. This is because the terms proportional to conduc-
tivity in (11) are mutually suppressed in that case. Thus,
in acoustic mode the wavenumber q must be sufficiently
large in order to satisfy the dispersion equation.
Figure 5 presents the phase velocity dependence of the

surface asymmetric electromagnetic mode on frequency.
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FIG. 5: Phase velocity slowing down for the acoustic mode
in structure with two graphene layers. In curves 1 − 5, the
distances between layers are 10 nm,20 nm, 50 nm, 100 nm and
1µm, respectively. Chemical potential in all cases is µ = 0.1
eV.
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FIG. 6: The acoustic mode slowing down as a function of
interlayer distance in double graphene structure at different
values of chemical potential: µ = 0.05(curve 1), 0.1 (curve 2),
0.2 (curve 3)

Comparing the curves on this plot with curve 2 from
Fig. 2 which has been plotted for the single layer at the
same value of chemical potential µ = 0.1 eV, one can
see that the the acoustic mode slows down in double-

layer structure much faster than in monolayer graphene.
Figure 5 also demonstrate a weak frequency dependence
of the slowing down factor in the range considered. On
the contrary, the dependence of this factor on interlayer
distance is essential, see Fig. 6. This gives us a tool of
the effect control by varying the distance.
There is also optical mode in the double-layer structure

under consideration (”+” in (11)). When wavelength
exceeds significantly the interlayer distance, the disper-
sion equation of optical mode differs from the single-layer
case in that only that chemical potential should be dou-
bled in all expressions. In particular, this means that
the slowing down of this mode is less than in a single
graphene layer. When intertlayer distance is consider-
ably less then the wavelength, it can easily be seen that
for optical mode which corresponds to sign ”+” in (11),
the effective sheet conductivity is doubled as compared to
the case of graphene monolayer. Analogous effect holds
true for sandwich graphene structure with number of lay-
ers more then two. For this case, effective conductivity is
equal to sum of layers conductivities. Such an additivity
has been observed experimentally in studying of electro-
magnetic wave transmission through sandwich graphene
structures47,48.
Note that in the above consideration we restricted our-

selves to the case µ ≫ T . When this inequality is vio-
lated, the system can be described by the effective chem-
ical potential

µeff = 2T log
[

2 cosh
( µ

2T

)]

, (12)

as it can easily be deduced from (3)and (8). Figure 7
shows temperature dependence of the ratio µeff/µ for
different values of chemical potentials. One can see that
temperature has low influence on the ratio for µ > 0.1 eV
up to PMMAmelting point. what is why in our transmis-
sion/absorption experiments with CVD graphene47,48,
where chemical potential was estimated as µ ∼ 0.14−0.17
eV, we did not observe temperature dependence. More
”pure” graphene is expected to be more sensitive to tem-
perature change.

V. DISPERSION EQUATION IN GRAPHENE

STRUCTURES IN THE PRESENCE OF

ELECTRON BEAM

Let the electron beam of the width δ propagates on
the distance h from the two-layer graphene structure.
The dispersion equation can be derived in the manner
described in the previous section. The difference con-
sists in the appearance of additional region occupied by
the electron beam. In this region the z-projection of the
wavevector is given by:

kbz = kz

√

1− ω2
l

γ3(ω − qu)2
, (13)
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FIG. 7: Temperature dependence of the effective chemi-
cal potential for different values of chemical potential: µ =
0.05(curve 1), 0.1 (curve 2), 0.2 (curve 3)

where ωL =
√

4πe2ne/me is the Langmuir frequency of

the electron beam and γ = 1/
√

1− u2/c2 its Lorentz
factor, u is the velocity of electrons, ne is the elec-
tron density and e and me are the electron charge and
mass.System of boundary conditions in this case is dis-
cussed in Appendix A. It leads to the following dispersion
equation

Ib = − (2 + σ′

0)
2 − (σ′

0)
2 exp{−2

√

q2 − ω2/c2l}
σ′

0

[

2 + σ′

0 + exp{−2
√

q2 − ω2/c2l}(2− σ′

0)
] ,

(14)
where

Ib = exp(2ikzh)

× (k2bz − k2z) {exp(ikbzδ)− exp(−ikbzδ)}
(kbz − kz)

2 exp(ikbzδ)− (kbz + kz)
2 exp(−ikbzδ)

.

It is obvious, that in the case when distance between
layers significantly exceeds the distance of the surface
wave dumping, the above dispersion equation is reduced
to the equation for a single layer. Mathematically this
is achieved by neglecting small exponential terms in nu-
merator and denominator in the right part of (14).
As an example, we depicted in Fig. 8 the instability

increment (imaginary part of the surface wave tangential
wavenumber q) as a function of the frequency. Negativity
of the increment is the necessary condition of the genera-
tion start. In the figure we compare the frequency depen-
dencies for sandwich structures with 4, 8 and 9 graphene
layers at µ = 0.2 eV in each layer. All curves are charac-
terized by pronounced minima at the Čerenkov resonant
frequencies (generation frequencies) with the linewidths
dictated by the broadening parameter. These frequen-
cies appear to be in the THz range and significantly shift
to short-wave side with the number of graphene layers.

Simultaneously, the increment strongly growth in abso-
lute value. Maximal absolute values of the instability
increments presented in Figs. 8 show us that the strong
amplification regime can already be realized at the in-
teraction length of the order of several centimeters. At
smaller lengthes, incorporation into the system of a feed-
back (for example, mirror) allows achieving generation in
the weak coupling regime.
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FIG. 8: Frequency dependence of the instability increment
(Im(q)) for 4 (1), 8 (2) and 9 (3) graphene layers with chem-
ical potential of a single layer µ = 0.2 eV. Electron beam
energy E = 10 keV, Γ = 10 THz.

Figure 9 demonstrates the increment frequency de-
pendencies for graphene monolayer at smaller electron
beam energy and two different chemical potential. In this
case the generation frequency is reduced to several tera-
hertz with simultaneous dropping the increment absolute
value. Thus, multilayer graphene sandwich provides us
with much better generation conditions as compared with
the monolayer and admits resonant frequency tuning.

VI. CONCLUSION

In the present paper, we have studied propagation in
graphene sandwich structures of surface waves exited by
an electron beam moving over the sandwich surface. We
have demonstrated existence in the multi-layered struc-
ture of strongly slowed down acoustic mode which al-
lows synchronization of the beam and the surface wave
at much less beam energy. Moreover, a smooth frequency
tuning becomes possible by varying the system parame-
ters, such as beam energy, chemical potential and inter-
layer distance.
At a given beam energy the frequency can smoothly

be tuned by varying the chemical potential µ by means
of electrostatic doping, see Fig. 3. At a fixed chemical
potential the tuning is attained by the electron beam
energy variation as is demonstrated by Fig. 4. If the
graphene sandwich structure allows alteration of the in-
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FIG. 9: Frequency dependence of the instability increment
(Im(q)) for a single graphene layer. Electron beam energy
E = 4 keV, chemical potential is µ = 0.1 eV (1) and µ = 0.2
eV (2).

terlayer distance, the spectrum tuning can be realized
even at a fixed chemical potential and beam energy, see
Fig. 5. This is because in multi-layered graphene struc-
tures there are electromagnetic modes whose phase ve-
locities can be both essentially smaller and exceed the
the surface wave phase velocity reachable in a single-
layer graphene. All the factor mentioned allow match-
ing the electron beam energy, the chemical potential and
the interlayer distance (and number of layers) to synchro-
nize electron beam and surface electromagnetic wave at
a fixed frequency, while external electrostatic field (elec-
trostatic doping) provides additional possibility for fine
frequency tuning.

It should be emphasized that the graphene layers in
sandwich should not be obligatory whole. In order to pro-
vide interaction of the electron beam with the graphene
on the several centimeters length, it is sufficient to have a
mosaic surface comprising disoriented in plane graphene
blocks. Moreover, since cylindrical and tubular beams
are widespread in electronic engineering, planar geome-
try considered in the present paper (see Fig. 1) can eas-
ily be rearranged to cylindrical by, for example, stacking
graphene layer on a cylinder.

Thus, based on the analysis carried out, one can con-
clude that multi-layered graphene/dielectric structures
with negligible interlayer tunnelling provide enhanced
conditions for the terahertz Čerenkov radiation gener-
ation excited by an external non-relativistic electron
beam. New methods of the generation frequency tun-
ing can be realized by varying the graphene doping, the
number of graphene sheets, the distance between sheets,
etc.
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Appendix A: Electron beam accounting

Consider electron beam propagating over some plane
structure, see Fig. 1. In further consideration we make
use the procedure developed in Ref. 54. Linealized equa-
tions describing electron beam dynamics are well-known
and given by:

∂δvx
∂t

+ u
∂δvx
∂x

=
e

mγ3
Ex

∂δn

∂t
+

∂

∂x
(n0δvx + uδn) = 0

(A1)

Fourier transform of (A1) leads to

(

k2bzc
2 − ω2

)

Ex − qkbzc
2Ez = −ω2

Lω
2

∆2γ3
Ex

−qkbzc
2Ex +

(

q2c2 − ω2
)

Ez = 0
(A2)

that gives the dispersion equation as follows

k2b c
2 − ω2 =

ω2
L

∆2γ3

(

q2c2 − ω2
)

, (A3)

where k2b = q2 + k2bz and ∆ = ω − qu. Solutions of
this equation is given by (13). Boundary conditions fot
the electromagnetic wave (1) interacting with electron
beam are produced by analogy with the case considered
in Sects. III-IV by imposing conditions on tangential
components of electric and magnetic fields on the bound-
aries. The only difference is that in the beam, the fol-
lowing relation dictated by Maxwell equation

Ex =
k20zc

ωkbz
Hy. (A4)

is used for tangential components of electric and mag-
netic fields. Particulary, for the electron beam with the
thickness δ propagating over two layer graphene on the
distance h we have a system for eight coefficients. Two
of them, a1 and a2 correspond to regions below struc-
ture and above the beam, respectively, while coefficients
c1,2 and d1,2 describe waves inside two-layer structure
and between structure and beam. Finally, coefficients
f1,2 correspond to two counter-propagating waves in the
beam:

Hy = exp {iqx}

×



























a1 exp {−ikzz} , z < 0,
c1 exp {ikzz}+ c2 exp {−ikzz} , 0 < z < l,
d1 exp {ikz (z − l)}

+d2 exp {−ikz (z − l)} , l < z < h,
f1 exp {ikbzz}+ f2 exp {−ikbzz} , h < z < h+ δ
a2 exp {ikzz} , z > h+ δ.
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Assuming determinant of this linear system to be zero we come to Eq. (14).
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